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Abstract— Peripheral nerve stimulation (PNS) is an effec-
tive means to elicit sensation for rehabilitation of people
with loss of a limb or limb function. While most current
PNS paradigms deliver current through single electrode
contacts to elicit each tactile percept, multi-contact extra-
neural electrodes offer the opportunity to deliver PNS
with groups of contacts individually or simultaneously.
Multi-contact PNS strategies could be advantageous in
developing biomimetic PNS paradigms to recreate the nat-
ural neural activity during touch, because they may be
able to selectively recruit multiple distinct neural popu-
lations. We used computational models and optimization
approaches to develop a novel biomimetic PNS paradigm
that uses interleaved multi-contact (IMC) PNS to approxi-
mate the critical neural coding properties underlying touch.
The IMC paradigm combines field shaping, in which two
contacts are active simultaneously, with pulse-by-pulse
contact and parameter variations throughout the touch
stimulus. We show in simulation that IMC PNS results in
better neural code mimicry than single contact PNS cre-
ated with the same optimization techniques, and that field
steering via two-contact IMC PNS results in better neural
code mimicry than one-contact IMC PNS. We also show
that IMC PNS results in better neural code mimicry than
existing PNS paradigms, including prior biomimetic PNS.
Future clinical studies will determine if the IMC paradigm
can improve the naturalness and usefulness of sensory
feedback for those with neurological disorders.
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I. INTRODUCTION

TACTILE sensation allows a human to detect, discrimi-
nate, and identify external stimuli and respond to stimuli

appropriately [1], [2]. Tactile sensation can be lost through
disorders such as limb amputation, nerve injury, spinal cord
injury, and stroke. Losing tactile sensation creates numerous
functional consequences, including impaired performance in
tasks that require focus or fine motor skills [3]. To mitigate
these problems, researchers are developing neuroprostheses
that use peripheral nerve stimulation (PNS) to restore tactile
sensation. PNS of residual somatosensory nerves in the arm
can elicit “artificial” touch sensations in the hand. Current PNS
paradigms typically provide one or more sensory percepts on
the hand, where input from a force sensor directly scales a
PNS parameter, such as pulse amplitude (PA), pulse width
(PW), or pulse frequency, to influence the perceived intensity
of the evoked percept [4], [5], [6], [7]. However, many
sensations produced by PNS are described as unnatural tin-
gling or paresthesia, which can be bothersome to participants
[8], [9].

One key issue with PNS that may contribute to these percep-
tual deficits is that the neural activity created by PNS largely
does not resemble the complex, dynamic firing patterns in nat-
ural touch [10]. Recent work has begun to develop biomimetic
PNS paradigms that attempt to mimic aspects of the biological
neural code of natural touch. These biomimetic paradigms
have demonstrated preliminary success in improving sensation
naturalness and enhancing object detection reaction times,
at least for some participants [11], [12]. However, clinical
implementation of biomimetic paradigms can be challenging,
as it can be difficult to select specific stimulation parameters
to evoke important aspects of the natural neural code. Prior
studies in both humans and non-human primates have shown
that neuron type, neuron location, neural firing rate, and neural
population size over time are four important aspects of the
neural code underlying the perception of touch stimuli [13],
[14], yet no existing biomimetic paradigm mimics all four
of these coding properties [11], [12], [15], [16], [17], [18],
[19], [20]. In addition, computational models of neural acti-
vation from electrical stimulation can help to predict neural
activation patterns resulting from stimulation and allow us to
systematically select stimulation parameters to achieve a given
pattern of neural activity [21], [22], [23], [24].
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To mimic the neural code of touch with PNS, we must
be able to selectively activate small groups of neurons with
stimulation independently from the rest of the nerve. Multi-
contact extraneural electrodes offer an opportunity to achieve
selective activation of individual fascicles or portions of fas-
cicles in different areas of the target nerve [8], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34]. However, clini-
cal neurostimulation is typically applied via single electrode
contacts, where one contact is stimulated per target muscle or
sensory percept [4], [5], [6], [7], [8], [11], [12], [15], [16],
[17], [18]. Though never before applied to biomimetic PNS
for sensation, field shaping, in which pulses from multiple
contacts are applied synchronously, has been shown to perform
better than single-contact PNS to selectively activate neural
populations for muscle activation [25], [26], [27], [28] and
has also shown benefits for restoring sensation via intracortical
microstimulation [35]. Further, little work has been done in
the field of sensory PNS to examine the effects of interleaving
stimulation contacts throughout a stimulus to activate different
sub-groups of afferents at different times to achieve optimal
selectivity. However, prior studies have shown that interleaved
stimulation can reduce muscle fatigue [36], [37], [38], [39],
enhance selective neural recruitment for motor neuroprosthe-
ses [34], [40], and improve the position of sensations from
surface stimulation [41].

We hypothesize that developing interleaved multi-contact
(IMC) biomimetic PNS paradigms will enhance our ability
to activate natural tactile codes and ultimately provide useful
and intuitive sensory feedback to users of sensory neuro-
prostheses. We used TouchSim, a model that determines the
response of mechanoreceptive afferents to mechanical stimuli
applied to the hand [10], to identify the neural code to mimic
with PNS (Fig. 1). We used an electrical activation model
that predicts activation of peripheral afferents in response to
nerve stimulation [42], in conjunction with non-gradient-based
optimization algorithms, to select PNS stimulation parameters.
We then used this tool chain to create several PNS paradigms
constructed under different touch criteria, and used neural
response reproduction accuracy as a metric to compare the
performance between paradigms. We demonstrate that inter-
leaved multi-contact PNS approaches improve neural response
reproduction accuracy over current biomimetic paradigms. The
paradigms presented here can be implemented in future clin-
ical trials of PNS to determine how the sensations produced
are perceived and utilized in sensorimotor tasks.

II. METHODS

Our goal was to reproduce neural responses to natural touch
stimuli using PNS. We first used TouchSim to generate a set
of neural responses to touch stimuli applied to the index finger
that we aimed to replicate with PNS (Fig. 1a-b). We then
coupled optimization with a model of neural activation from
electrical stimulation applied through a multi-contact Compos-
ite Flat Interface Nerve Electrode (C-FINE) (Fig. 1c). This
process resulted in a time series of parameters for C-FINE
stimulation, called a playlist, that approximately reproduced
the original neural responses (see Fig. 2 for an overview of
our approach).

Fig. 1. (a) Example indentation stimulus with a 3 mm depth and a
250 ms ramp duration. The star (∗) denotes the timing of the exam-
ple TouchSim neural activation profile (TNAP) displayed in panel d.
(b) Raster plot of the TouchSim-generated neural response to the
touch stimulus in panel a. Color indicates afferent type. (c) 16-contact
Composite Flat Interface Nerve Electrode (C-FINE) placed around a
nerve. (d) Layout of all low-threshold mechanoreceptive afferents in the
index finger (grey) showing neurons active in the starred TNAP (purple).
(e) Cross section of a portion of the nerve with surrounding C-FINE
showing a subset of fascicles. Neurons active in the example electrically-
activated NAP (ENAP) are highlighted in purple (grey neurons are
inactive).

A. TouchSim Neural Activation Profiles (TNAPs)

TouchSim was used to generate neural responses to natural
touch stimuli applied to the index finger [10]. Briefly, the
TouchSim model places low-threshold mechanoreceptive affer-
ents in the palmar surface of the hand based on typical human
innervation densities, and then predicts how the neurons will
fire in response to spatiotemporal mechanical stimuli presented
to the skin. We used TouchSim to simulate 1704 afferents in
the index finger: 562 slowly-adapting type I (SA), 947 rapidly-
adapting type I (RA), and 195 rapidly-adapting type II (PC).

TouchSim data was generated for 1 s indentation stimuli
on the index finger that consisted of symmetrical ramp up and
ramp down periods, flanking a sustained period (Fig. 1a). Two
data sets were generated: 1) stimuli with a fixed depth and a
ramp duration that varied from 0.05 s to 0.5 s in increments
of 0.05 s, and 2) stimuli with a fixed ramp duration and
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Fig. 2. Optimization-based biomimetic interleaved multi-contact (IMC) peripheral nerve stimulation for tactile sensation. Blue boxes: TouchSim
generated neural activation patterns for a set of mechanical touch stimuli (indentations), which were then split into 1-ms touch neural activation
profiles (TNAPs). The TouchSim reachable set is the collection of all unique TNAPs for all modeled touch stimuli. Green boxes: Particle swarm
and pattern search optimization were used to select stimulation parameters to reproduce each TNAP. The optimization runs the electrical activation
model to generate electrically-stimulated NAPs (ENAPs) from stimulation parameters, calculates the reproduction error, and iterates until a minimum
reproduction error is reached. Purple boxes: A lookup table stores the association between each TNAP and the optimal stimulation parameters
to approximate it. Lookup tables using a fixed contact for all TNAPs were created using each electrode contact (1C) (n=15), along with sets of
two-contact (2C) pairs (n=21). Playlists were generated by ordering stimulation parameters from the lookup tables in series to create a sequence
of ENAPs that approximated a given touch stimulus. Playlists were generated for each 1C and the 2C non-IMC paradigms for illustration purposes,
though these were not used for further analyses. Orange boxes: Error was compared across non-IMC lookup table results, and the contact, or pair
of contacts, resulting in the lowest error for a given TNAP was selected for the 1C and 2C IMC paradigms, respectively. Playlists were generated
for the 1C and 2C IMC paradigms by ordering stimulation parameters in series to create a sequence of ENAPs that approximated a given touch
stimulus. Rectangles represent process steps, and rounded rectangles represent outputs.

a depth that varied from 1 mm to 6 mm in increments of
0.5 mm. We chose this range of ramp durations to span the
possible values of a 1 s stimulus with symmetrical ramp on
and ramp off periods. We chose this range of depths based on
the values over which TouchSim was validated [10]. In total,
we simulated 20 touch stimuli – 11 with varying depths and
10 with varying ramp durations (one stimulus was shared
between the two sets).

TouchSim output the spike times for each modeled neuron
(Fig. 1b). The neural response to each stimulus was parsed
into 1 ms bins, for a total of 1000 bins spanning the 1 s
stimuli. Each bin contains a neural activation profile (NAP),
or a row vector with binary values representing whether
activation occurred for each of the 1704 modeled index finger
neurons (Fig. 1d). Each NAP is considered to be independent
from other NAPs, such that no dependencies exist between
temporally adjacent NAPs. However, a series of NAPs can be
ordered in a sequence called a playlist to reproduce the neural
response to a specific stimulus over time.

The unique TouchSim-generated NAPs (TNAPs) among all
20 touch stimuli were found, creating the TouchSim reachable
set, or the set of NAPs we must be able to approximate with
PNS to recreate the set of touch stimuli (Fig. 2).

B. Electrical Neural Activation Profiles (ENAPs)
To determine the optimal stimulation parameters for PNS,

our optimization algorithm used a biophysical electrical acti-
vation model to determine which neurons in the median nerve
were activated from each PNS pulse. PNS was delivered to the
median nerve through a 16-contact C-FINE (Fig. 1c). Of these
contacts, one was a designated return path and the other
15 contacts were used for cathodic stimulation.

The electrical activation model consisted of a previously-
developed finite element model (FEM) of a human median
nerve [22] and a linear approximation method to determine

neural firing. The FEM was created in ANSYS Maxwell 3D
using ultrasound images of a median nerve that were taken
during C-FINE implantation surgery for a previous clinical
study [6], [19]. The electrical and geometrical properties of the
multi-contact C-FINE were simulated in the FEM [27], and
voltage fields within the cuff-nerve complex were generated
based on the propagation of a current through the tissue from
C-FINE stimulation [18]. All stimulation pulses were modeled
as square cathodal pulses. Neurons were randomly placed
within the modeled fascicles based on typical human fiber
densities and with fiber diameters selected from normal human
distributions, yielding a total of 7334 neurons in the median
nerve [43], [44].

A linear approximation method was then used to determine
neural activation of these axons in response to PNS [42].
Briefly, the linear approximation method is an algebraic func-
tion that predicts activation of a myelinated neuron given
inputs of stimulation PW, fiber diameter, and extracellular
voltage at each node of Ranvier. The approximation was previ-
ously generated [42] by fitting a curve to the boundary between
neural activation and non-activation produced by hundreds
of iterations of the MRG active neural model simulated in
NEURON [45].

The electrical activation model determined neural firing due
to stimulation pulses delivered through the C-FINE. Each
stimulation pulse was defined by the stimulating contact(s),
PW, and PA. For a given stimulation pulse, the PW was
held constant across all active contacts but the PA could vary
across the 15 contacts. The electrical activation model output
a vector with binary values representing whether each neuron
was activated by the pulse of PNS.

Of the 7334 neurons in the electrical activation model of the
median nerve, we selected 1704 neurons grouped within three
fascicles to be in the index finger in order to match the number
of neurons in the TouchSim model [10]. The fascicles selected
to contain index finger afferents were assumed to be adjacent
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to one another based on prior studies [46], [47]. Any neuron
in the median nerve model that was not assigned to be in the
index finger was removed. We then paired each remaining neu-
ron in the nerve model with a neuron in the TouchSim model
of the index finger. To produce this nerve-finger mapping,
we considered the distributional characteristics of neuron type
reported in the anatomical literature [48], [49], [50] and based
the location assignment on an assumed somatotopy of the
fascicles, such that neurons closer together in the finger were
grouped together in fascicles. Since neurons in the TouchSim
model had a specific position in the finger and an afferent
type (SA, RA, PC), we assumed this same type and position
identity for the corresponding neuron in the nerve model.
Thus, when the electrical activation model was run, it produced
an electrically-activated NAP (ENAP) of neurons in the index
finger with the same dimensions as a TNAP, and each neuron
in the ENAP had a neuron type, index finger location, and
fascicle location (Fig. 1e).

C. Optimization
We used optimization to minimize the reproduction error

between the TNAPs in the TouchSim reachable set and the
ENAPs created with PNS. We defined the reproduction error
between a TNAP and an ENAP, or the objective function of
the optimization problem, to be the mismatch of four critical
elements of the neural code of tactile sensation: neuron type,
neuron location, firing rate, and population size. We calculated
this mismatch as follows: First, each neuron modeled by
TouchSim and the electrical activation model had a type (SA,
RA, PC) and location in the index finger (proximal, middle,
distal segment). Thus, there were a total of nine possible
type-location combinations, and each neuron fell into one of
these nine categories. Each NAP could then be represented
as a 9-dimensional vector, where each component contained
the count of active neurons in each of the 9 type-location
categories. The firing rate was implicit because of the timing
of the TNAP within the stimulus, and the population size was
represented by the overall error vectors.

To quantify the error (E) between a TNAP and an ENAP,
we took the absolute value of the difference between the
9-dimensional vectors generated from the TNAP (T ) and
that generated form the ENAP (M), and then summed the
components, as in Equation (1).

E =

∑
|T − M| (1)

We used a hybrid of particle swarm and pattern search
optimization algorithms to determine optimal stimulation
parameters that are used to approximate the TNAPs via
PNS (Fig. 2). For each TNAP being approximated, particle
swarm optimization was run first, and then pattern search
optimization was run using the particle swarm optimization
results. We limited PW to 0-0.2 ms and PA to 0-0.5 mA. Our
optimization results were verified for a subset of TNAPs with
an enumeration method. See [51] for more information on the
optimization parameters and enumeration method.

We then repeated this process for each TNAP in the reach-
able set. Although some TNAPs might appear multiple times

within a given stimulus, or multiple times across all modeled
stimuli, we only ran the optimization once per TNAP in the
reachable set to reduce total computation time. We stored
the results of a given optimization in a “look-up table,” such
that each entry included the target TNAP and its associated
stimulation parameters that resulted in the closest matching
ENAP (Fig. 2).

D. Lookup Tables
We repeated the process described in Section C with four

sets of constraints, resulting in four stimulation paradigms.
First, we allowed the optimization to select PA and PW for
each pulse, but required that the same single C-FINE contact
be selected for each TNAP in the reachable set. We repeated
this for each of the 15 C-FINE contacts, creating 15 single-
contact lookup tables.

Second, we generated an interleaved pattern of stimulation
we call the “IMC” paradigm in which only a single contact
could provide stimulation at a time, but the active contact could
switch on a pulse-by-pulse basis. The single-contact IMC
lookup table was created by selecting among the 15 single-
contact lookup tables to find the contact (and stimulation
parameters) that led to the lowest error for each TNAP (Fig. 2).

Third, we generated two-contact stimulation paradigms in
which two contacts could be active simultaneously. We gen-
erated 21 non-IMC two-contact lookup tables using all
two-contact pairs of the following C-FINE contacts: M1, M2,
M3, M4, M13, M14, and M15. These non-IMC patterns used
the same pair of electrodes for all TNAPs in the reachable set.
We chose these contacts because they resulted in the lowest
error (see Results).

Fourth, we generated a two-contact IMC lookup table using
an interleaved pattern in which two contacts could activate
simultaneously, but the active contact pair could switch on a
pulse-by-pulse basis. The two-contact IMC lookup table was
created by selecting amongst the 21 two-contact lookup tables
generated as described above.

In summary, these lookup tables were generated (Fig. 2):
• 15 single-contact non-IMC lookup tables (one for each

of the 15 cathodal C-FINE contacts)
• 1 single-contact IMC lookup table that switches between

the 15 C-FINE contacts on a pulse-by-pulse basis
• 21 two-contact non-IMC lookup tables (one for each pair

of M1, M2, M3, M4, M13, M14, and M15)
• 1 two-contact IMC lookup table that switches between the

selected 21 two-contact pairs on a pulse-by-pulse basis

E. Playlists
To demonstrate the implementation of the IMC approach in

conveying touch stimuli via PNS, we created PNS pulse trains,
called a playlist, to reproduce a typical touch stimulus encoun-
tered in everyday tasks: an indentation stimulus with a depth
of 3 mm and a ramp duration of 250 ms (Fig. 1a). Whereas a
lookup table holds the C-FINE stimulation parameters for the
entire TouchSim reachable set, a playlist holds the pattern of
C-FINE stimulation parameters that, when applied to the nerve
in sequence, mimic the time course of this indentation stimulus
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as closely as possible. Thus, each playlist contains an ordered
sequence of 1000 sets of stimulation parameters, one for each
pulse in a 1000 Hz pulse train to create the 1000 TNAPs
in the 1 s touch stimulus. We constructed four versions of
this playlist by pulling the stimulation parameters from each
of the following lookup tables: 1) single-contact non-IMC
lookup table constructed for contact M1 (Fig. 3a), 2) single-
contact IMC lookup table (Fig. 3b), 3) two-contact non-IMC
lookup table constructed for contacts M1 and M2 (Fig. 3c),
and 4) two-contact IMC lookup table (Fig. 3c-d). Contacts
M1 and M2 were chosen for the non-IMC playlists based
on their frequency of occurrence in the IMC lookup tables
(Fig. 3e) [51]. Note that the two-contact IMC paradigm had
the option to use single-contact PNS to create an ENAP
if it was determined that single-contact PNS would result
in a lower reproduction error than two-contact PNS. The
optimization algorithm selected single-contact stimulation for
39 % of ENAPs (Fig. 3d). Note that only the two-contact
IMC playlist was used for further analyses; the non-IMC and
single-contact IMC playlists are only depicted to explain the
differences across paradigms.

F. Analyses
1) Comparison of Non-IMC and IMC Methods: We compared

reproduction accuracy between the non-IMC and IMC PNS
paradigms to determine any benefits of the interleaved multi-
contact approach. We hypothesized that using IMC PNS will
improve reproduction accuracy compared to non-IMC PNS.

For this analysis, we compared the single-contact IMC
lookup table to each of the 15 non-IMC lookup tables.
We compared lookup tables rather than playlists so that
each TNAP had equal weight in the error calculation since
each TNAP is sampled only once in a lookup table, whereas
a single TNAP could occur multiple times within a playlist.
Thus, the reproduction error across a lookup table more
accurately represents the ability of the stimulation paradigm to
replicate TNAPs associated with touch in general, whereas a
playlist more accurately represents the ability of the paradigm
to replicate specific tactile stimuli.

We subtracted the reproduction error of every ENAP in
each of the 15 non-IMC lookup tables from the error of the
corresponding ENAP in the IMC lookup table to compare
magnitude of reproduction error difference between IMC and
non-IMC paradigms. Then, we calculated the prevalence of
ENAPs that produced a smaller, larger, or equal reproduction
error with the IMC lookup table compared to each of the
15 non-IMC lookup tables. We also performed Wilcoxon rank
sum tests to see if there was a significant difference (α < 0.05)
between the IMC lookup table reproduction errors and each
of the 15 non-IMC lookup table reproduction errors.

2) Comparison of Single-Contact and Two-Contact IMC PNS:
We then compared the reproduction accuracy between the
single- and two-contact IMC PNS paradigms to determine any
benefits of using two-contact stimulation. We hypothesized
that using two-contact IMC PNS will improve reproduction
accuracy compared to single-contact IMC PNS.

For this analysis, we compared the single-contact IMC
lookup table and the two-contact IMC lookup table.

Fig. 3. Stimulation parameters selected by the optimization algorithm
for example non-IMC and IMC paradigms. (a) PA and PW for the first
50 ms of a single-contact (1C) non-IMC playlist for the example touch
stimulus in Fig. 1a. Note that for non-IMC PNS, the same contact is used
for every pulse. (b) PA and PW for the 1C IMC playlist for the same
stimulus. Color denotes the stimulating contact for the pulse (legend in
panel e). Note that for IMC PNS, the stimulating contact can change on
a pulse-by-pulse basis throughout the stimulus. (c) Contact usage for
an example two-contact (2C) non-IMC playlist and the 2C IMC playlist.
With 2C non-IMC PNS, the same two contacts are used for each pulse.
With 2C IMC PNS, two contacts can be active during each pulse, and
the two-contact pair can vary across pulses. (d) Selection frequency of
1C (39 %) and 2C (61 %) across pulses in the 2C IMC playlist for the
touch stimulus. (e) Breakdown of contact usage in the 1C non-IMC, 2C
non-IMC, 1C IMC, and 2C IMC playlists shown in panels a-c.

We subtracted the reproduction error of every ENAP in
the single-contact IMC lookup table from the error of the
corresponding ENAP in the two-contact IMC lookup table to
compare magnitude of reproduction error difference between
single-contact and two-contact IMC paradigms. Then, we cal-
culated the prevalence of ENAPs that produced a smaller,
larger, or equal reproduction error with the two-contact IMC
lookup table compared to the single-contact IMC lookup table.
We also used the Wilcoxon rank sum test to test for a signifi-
cant difference (α < 0.05) between the reproduction errors of
the single-contact and two-contact IMC lookup tables.
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Fig. 4. Reproduction error comparisons for lookup table ENAPs across optimization-based biomimetic paradigms. Significant differences (Wilcoxon
rank sum test, p<0.001) are denoted with a star (∗). Note that outliers were removed from boxplots. (a) Comparison of the magnitude of reproduction
error between each of the 15 single-contact (1C) non-IMC paradigms and the 1C IMC paradigm. Positive error indicates that IMC error was greater
than non-IMC error, while negative error indicates that IMC error was less than non-IMC error. (b) Comparison of the magnitude of reproduction
error between the 1C IMC and two-contact (2C) IMC paradigms. Positive error indicates that 2C error was greater than 1C error, while negative
error indicates that 2C error was less than 1C error. (c) Percentage of ENAPs in the 1C non-IMC look-up tables that had error greater than, equal to,
or less than the corresponding IMC ENAPs. Note that the IMC paradigm never had a larger reproduction error than any of the non-IMC paradigms
for any ENAP. (d) Percentage of ENAPs in the 1C IMC look-up table that had error greater than, equal to, or less than the corresponding 2C IMC
ENAPs.

3) Comparison of IMC Paradigm and Existing PNS
Paradigms: Finally, we sought to compare our novel
IMC paradigm to existing PNS paradigms reported in the
literature. We compared each existing PNS paradigm to the
two-contact IMC paradigm, as this IMC paradigm performed
the best in our previous analyses (see Results). For this
analysis, we compared playlists rather than lookup tables,
as existing PNS paradigms in literature are presented in terms
of their ability to replicate touch stimuli rather than their
ability to replicate TNAPs in general. We hypothesized that
the IMC paradigm would more closely mimic the neural code
of tactile sensation, resulting in lower reproduction error, than
existing PNS paradigms.

We compared the IMC paradigm to five previously reported
PNS paradigms: 1) fixed-pulse, in which stimulation param-
eters do not vary throughout the 1-s stimulus [4], [6], [8],
2) force-based, in which a stimulation parameter like PA
varies linearly with an input force signal [5], [7], 3) sinu-
soidal, in which a stimulation parameter varies sinusoidally in
time [6], [7], [8]), and 4 and 5) two neural population size-
based biomimetic paradigms (Biomim 1 [18] and Biomim 2
[11]) (see Fig. 5). We used contact M1 to apply stimulation
for all existing paradigms, as it was used most frequently in
the IMC lookup tables [51]. A single playlist was created for
each paradigm replicating the touch stimulus shown in Fig. 1a.

For the non-biomimetic PNS paradigms, we selected stimu-
lation parameters from Table I. The fixed-pulse paradigm [4],
[6], [8] had fixed stimulation parameters across the entire
stimulus duration (Fig. 5b). We fixed PW at PW25% = 0.05 ms

and PA at PATNAP = 0.091 mA. The force-based paradigm [5],
[7] varied PA based on the indentation depth throughout the
stimulus (Fig. 5c). Thus, to reproduce our target stimulus,
the PA ramped up linearly with the force exerted on the
finger, then held constant, then ramped down. We fixed PW at
PW25% = 0.05 ms. We set the upper limit of PA to PATNAP =

0.091 mA and the lower limit to PAth = 0.07 mA. The
sinusoidal paradigm [6], [7], [8] varies PW over time based
on the amplitude of a 1-Hz sine wave (Fig. 5d). We fixed
PA at PA25% = 0.125 mA. We set the upper limit of PW to
PWTNAP = 0.035 ms and the lower limit to PWth = 0.025 ms.

The two biomimetic paradigms [11], [18] attempted to
match the neural population size of the TNAP with electrical
stimulation, but in different ways. Biomim 1 chose stimulation
parameters by directly matching the overall neural population
size for each stimulation pulse, while Biomim 2 linearly
scaled the PA of the stimulation based on a percentage of
the maximum neural population size. For Biomim 1 [18],
we fixed PA at PA25% = 0.125 mA. We then used the electrical
activation model to find a PW that activated an ENAP with the
closest match in neural population size to that of the TNAP
at each millisecond of the neural response (Fig. 5e).

For Biomim 2 [11], we specifically mimicked the neural
population size component of HNM2. We first calculated the
neural population size of the TNAP at each millisecond and
found the maximum neural population size (NPSmax) of any
TNAP across the stimulus, which was 58 neurons for the
chosen indentation stimulus. We then used Equation (2) to
calculate PA for PNS at each millisecond of the stimulus.
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Fig. 5. Stimulation playlists reproducing the touch stimulus shown in Fig. 1a. Left: Stimulation parameters selected for each PNS paradigm. PA is
shown in grey on the left axis and PW is shown in purple on the right axis. Middle: Raster plots of neural responses to each stimulation pulse train.
Color denotes neuron type (SA, RA, PC). Right: Reproduction error magnitude for each paradigm broken down by neuron type (SA, RA, PC). Each
row is a different stimulation paradigm: (a) Two-contact IMC PNS. (b) Fixed-pulse PNS. (c) Force-based PNS. (d) Sinusoidal PNS. (e) Biomimetic
PNS Approach 1 (Biomim 1). (f) Biomimetic PNS Approach 2 (Biomim 2).

We fixed PW to PW25% = 0.05 ms, and we set PAmax in (2) to
PATNAP = 0.091 mA. The PA calculated by (2) was rounded
to three decimal places to match our 0.001 mA step size used
in the other paradigm simulations (Fig. 5f).

P A =
N P S

N P Smax
P Amax (2)

As described above, the IMC paradigm uses optimization
algorithms to select optimal PWs and PAs for each TNAP in

a stimulus over the range of 0 ms to PWmax = 0.2 ms and
0 mA to PAmax = 0.5 mA, respectively (Fig. 5a). Note that the
IMC paradigm is the only paradigm that varied PW, PA, and
contact on a pulse-by-pulse basis. The other paradigms only
vary at most one stimulation parameter at each millisecond
and use the same contact for the entire stimulus (Fig. 5b-f).

To calculate reproduction error, we first used the electrical
activation model to generate neural responses for each existing
PNS paradigm (Fig. 5). We then calculated the reproduction
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TABLE I
STIMULATION PARAMETERS USED FOR PNS PARADIGMS

error of each existing paradigm at each millisecond of the
stimulus, using the error metric as in Eqn 1. We also calculated
the reproduction error in number of neurons broken down by
afferent type (SA, RA, PC) for each paradigm.

Then, we subtracted the reproduction error of every ENAP
in each of existing PNS paradigm playlists from the error
of the corresponding ENAP in the IMC playlist to compare
magnitude of reproduction error difference between the IMC
paradigm and existing paradigms. We also determined the
prevalence of ENAPs that had a smaller, equivalent, or larger
reproduction error when using the IMC paradigm compared to
each of the existing paradigms. Finally, we used the Wilcoxon
rank sum test to test for a significant difference (α < 0.05)
between the IMC paradigm and each existing paradigm.

III. RESULTS

A. The IMC Method More Accurately Reproduced Neural
Activity Than the Non-IMC Method

First, we compared the reproduction error of each of the
15 single-contact non-IMC lookup tables to the single-contact
IMC lookup table. While all paradigms in this analysis used
our modeling and optimization approach to select stimulation
parameters, only the IMC paradigm involved interleaving stim-
ulation contacts on a pulse-by-pulse basis. The single-contact
IMC lookup table had significantly lower reproduction errors
than all 15 single-contact non-IMC lookup tables (Wilcoxon
rank sum test, p<0.001) (Fig. 4a). The single-contact IMC
reproduction error was less than or equal to the 15 single-
contact non-IMC reproduction errors for all ENAPs (Fig. 4c).
Thus, we conclude that IMC PNS outperformed non-IMC PNS
and used IMC PNS for all remaining analyses.

While no single-contact non-IMC ENAPs had lower error
than the IMC ENAPs, non-IMC paradigms with contacts
M1-M3 and M13-M15 had a higher proportion of ENAPs
with error equivalent to that of the IMC paradigm (16-57
%), compared to contacts M4-M12 (1 %) (Fig. 4c). That is,
contacts M1-M3 and M13-M15 generally reproduced TNAPs

more accurately than contacts M4-M12. This is why these con-
tacts were selected to generate the two-contact IMC approach.

B. Two-Contact IMC PNS More Accurately Reproduced
Neural Activity Than Single-Contact IMC PNS

After determining that IMC PNS outperformed non-IMC
PNS, we then compared the single-contact and two-contact
IMC lookup table reproduction errors to determine the influ-
ence of field shaping on ENAP reproduction accuracy. The
two-contact IMC lookup table had significantly lower repro-
duction error than the single-contact IMC lookup table,
(Wilcoxon rank sum test, p<0.001) though the numerical
difference in error was very small (Fig. 4b). The two-contact
IMC paradigm had smaller, equivalent, or larger error than
the one-contact IMC paradigm for 22%, 77%, and <1%
of ENAPs, respectively (Fig. 4d). Thus, we conclude that
two-contact IMC PNS more closely mimicked touch neural
responses than single-contact IMC PNS, and we used two-
contact IMC PNS for all remaining analyses.

C. The IMC Paradigm More Accurately Reproduced the
Neural Code of Tactile Sensation Than Existing PNS
Paradigms

We compared the two-contact IMC paradigm playlist to
three non-biomimetic paradigm playlists (fixed-pulse, force-
based, and sinusoidal) and two biomimetic paradigm playlists
(Biomim 1 [18] and Biomim 2 [11]) for a representative
indentation stimulus delivered to the index finger (Fig. 1a).
The stimulation parameters for each paradigm and the neural
activation pattern resulting from each paradigm are shown in
Fig. 5a-f. The natural neural activation for this touch stimulus
as predicted by TouchSim is shown in Fig. 1b for comparison.

We calculated the reproduction error for each paradigm and
found that across all paradigms, the reproduction error was
highest for RA neurons, intermediate for SA neurons, and
lowest for PC neurons (Fig. 5, right column). As expected,
this demonstrates that the relative contribution of each afferent
type to the overall reproduction error correlates with its
proportion in the neural population [1]. We then compared the
reproduction errors of each of the existing non-biomimetic and
biomimetic PNS paradigms to the IMC paradigm. The two-
contact IMC paradigm had significantly smaller reproduction
errors than all five existing paradigms (Wilcoxon rank sum
test, p<0.001) (Fig. 6a). While the two-contact IMC paradigm
had lower error than any existing paradigm in the majority
of all ENAPs, the existing biomimetic paradigms performed
better than the existing non-biomimetic paradigms (Fig. 6b).
The two-contact IMC paradigm had less reproduction error
in a higher proportion of ENAPs when compared to the
non-biomimetic existing paradigms (98-100 %) than when
compared to the biomimetic existing paradigms (41-59 %).
In addition, the two-contact IMC paradigm was more likely
to have an equivalent reproduction error to the existing
biomimetic paradigms (41-59 % of ENAPs) compared to
the existing non-biomimetic paradigms (0-3 % of ENAPs)
(Fig. 6b). Still, the two-contact IMC ENAPs rarely had
reproduction errors larger than the existing paradigm ENAPs
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Fig. 6. Comparison of reproduction error between the interleaved multi-contact (IMC) approach and existing paradigms (EP) of peripheral nerve
stimulation. (a) Reproduction error magnitude between the two-contact IMC playlist and each EP playlist. Positive error indicates that IMC error
was greater than EP error, while negative error indicates that IMC error was less than EP error. (b) Percentage of pulses in the playlist in which
the IMC error was equal to, less than, or greater than the EP error. Significant differences (Wilcoxon rank sum test, p<0.001) are denoted with a
star (∗). Note that outliers were removed from boxplots. EP key: B: Fixed-pulse PNS. C: Force-based PNS. D: Sinusoidal PNS. E: Biomimetic PNS
approach 1 (Biomim 1). F: Biomimetic PNS approach 2 (Biomim 2).

(<1 %). In fact, this only occurred for one ENAP in one
existing paradigm (Biomim 2). Thus, we conclude that the
two-contact IMC paradigm performed better than the exist-
ing PNS paradigms we simulated, including the previously
reported biomimetic paradigms.

D. Discussion
1) Interleaved Multi-Contact Stimulation Most Closely

Approximates Natural Neural Activity: We showed that IMC
PNS more accurately reproduced the neural response to
touch stimuli than non-IMC PNS, demonstrating that
interleaved multi-contact biomimetic stimulation outperforms
non-interleaved single-contact stimulation. Importantly, the
non-IMC PNS paradigms were also biomimetic, since they
were generated using the same optimization approach to
approximate natural neural activity as the IMC PNS, yet they
still resulted in higher error than the interleaved approach.
We believe that the critical factor was that the IMC paradigm
was able to recruit numerous different populations of neurons
throughout the stimulus, whereas traditional biomimetic (i.e.
non-interleaved) approaches can only scale the size of a single
recruited population. Prior interleaved stimulation approaches
to reduce fatigue in motor neuroprostheses were similarly
founded on the concept of activating smaller sub-groups of
neurons at different times, although these prior approaches
did so by cyclically repeating a set of contacts rather than
attempting biomimicry [36], [37], [38], [39]. While a prior
study reported an interleaved surface stimulation approach
for sensory feedback [41], this approach was based on the
idea of modulating the activation threshold of a single neural
population by applying stimulation through two contact pairs
with sub-millisecond delays, rather than activating multiple
sub-groups of afferents by successive pulses.

Our results also show that the two-contact IMC paradigm
resulted in significantly smaller reproduction error than the
single-contact IMC paradigm. This is likely because the two-
contact approach produced field shaping to enable selective
activation of even more specific groups of neurons than

can be achieved with single-contact stimulation [25], [26],
[27], [28]. While no prior biomimetic PNS paradigm applied
stimulation through multiple contacts simultaneously, these
approaches are beginning to be evaluated for biomimetic
brain stimulation using groups of up to four microelectrode
contacts simultaneously [35]. Assuming the initial clinical
results from intracortical microstimulation will extend to PNS,
multi-contact biomimetic PNS may be able to improve force
discriminability and dynamic range of evoked touch percepts.
However, one drawback to multi-contact stimulation is that
it is likely to require higher power consumption, since more
electrical charge could be delivered throughout the stimulus.

Given that our paradigm benefited from the ability to apply
interleaved stimulation via contacts distributed around the
nerve, as well as the ability to stimulate with multiple contacts
at a time, further studies should examine the impact of contact
number, spacing, and size on the implementation and outcomes
of IMC biomimetic stimulation. These findings could influence
future multi-contact electrode designs.

2) The IMC Paradigm Outperforms Prior PNS Paradigms:
We compared the performance of our novel IMC paradigm to
several existing PNS paradigms previously reported in the lit-
erature. We found that the IMC paradigm outperformed every
simulated existing paradigm, including both biomimetic and
non-biomimetic approaches, by producing lower reproduction
error.

In natural touch, tactile sensation produces a dynamic
neural response such that the size and composition of the
recruited neural population varies throughout the stimu-
lus [1]. We found that prior biomimetic paradigms [11], [18]
resulted in smaller reproduction error than the non-biomimetic
fixed-pulse, force-based, and sinusoidal paradigms. The prior
biomimetic paradigms have better performance than the non-
biomimetic paradigms because they are attempting to replicate
some aspect of the neural code, such as neural population
size and firing rate. However, they do not consider neuron
type or neuron location, which likely contribute to their lower
performance as compared to the IMC paradigm, which did
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account for these neural codes in addition to neural population
size and firing frequency. In addition, the IMC paradigm
allows for pulse-by-pulse switching of the stimulating con-
tact(s), as well as the use of multi-contact stimulation for a
given pulse, to enable selective recruitment of specific neural
populations throughout the stimulus, while the prior paradigms
only involved a single electrode contact for a given stimulus.

However, the importance of lower reproduction error in
creating more natural or more informative sensation has not
yet been confirmed in clinical tests. Further, it is unknown
how low reproduction error needs to be for the evoked neural
activity to be “close enough” to natural activity to yield a
natural feeling sensation. Future clinical testing of the IMC
paradigm and direct comparisons to other paradigms would
allow a better understanding of the relationship between
reproduction error and sensation experience. Additionally,
our results are based on neural activation patterns predicted
from a biophysical model, which has not yet been validated.
Neurophysiological studies utilizing neuron-specific recording
techniques, such as microneurography, are needed to confirm
that each stimulation paradigm produces the predicted neural
firing patterns in vivo.

3) Future Improvements to the Optimization Approach: In
the single contact analyses, electrode contacts M1-M3 and
M13-M15 had smaller errors than contacts M4-M12 and were
preferentially selected for the IMC paradigm. This might be
explained by the proximity of these contacts to the fascicles
of interest. Interestingly, the optimization algorithm selected
near-contacts rather than far-contacts even though our error
metric did not penalize the recruitment of off-target neurons
(i.e. neurons in the median nerve that innervate other hand
regions other than the index finger). Future research should
examine the effect of the inclusion of a penalty for off-target
neural recruitment in the optimization function [51].

Another factor impacting contact selection was the bias of
the optimization algorithm toward lower numbered contacts.
In times where reproduction error was equivalent between
one or more contacts, the optimization algorithm would select
the lower numbered contact. For example, if an ENAP had
the same error when using contacts M1 and M15, contact
M1 would be selected by the algorithm. In scenarios where
multiple contacts output the same reproduction error for an
ENAP, the contact selection process could be improved by
adding a secondary optimization term after reproduction error
is minimized, such as selecting the contact that produces the
minimum charge rather than the contact with the smallest
numerical label.

Regarding the use of field shaping in the IMC approach,
we hypothesize that enabling the optimization algorithm to
select more than two contacts at a time (i.e. three or more
simultaneous multi-contact PNS) has the potential to further
reduce reproduction error. Our optimization algorithm can eas-
ily be expanded to account for additional stimulating contacts,
but with a tradeoff in computation time. Another benefit of the
field shaping approach is that the algorithm can still choose
to use fewer contacts for a given pulse, and thus may select
a single contact if it would result in a lower reproduction
error.

4) Adapting the IMC Paradigm for Real-World Use: Ulti-
mately, our goal is to implement the IMC paradigm into
real-time sensory encoders to be used to deliver sensory stimu-
lation to augment functional task performance for people with
neurological disorders or disabilities. For example, an upper
limb prosthesis user could receive IMC stimulation to convey
naturalistic, informative haptic feedback from pressure sensors
on the prosthetic fingertips.

First, we will need to test the IMC paradigm in human
participants to characterize its perception. To implement the
IMC paradigm in clinical studies, we should develop patient-
specific electrical activation models based on the participant’s
fascicular structure, neuroanatomy, and electrode configura-
tion. We would then couple neural activation predictions from
the novel IMC paradigm with clinical assessments of the
perceived location of sensations produced by single-contact
stimulation to identify target fascicles in the nerve correspond-
ing to specific hand locations. We would also need to scale
the stimulation parameters in the model to real stimulation
parameters based on clinical assessments of sensory detection
threshold and maximum limits. To use the IMC paradigm dur-
ing functional task performance, we would need to reconfigure
the optimization approach to select stimulation parameters
on a pulse-by-pulse basis in real-time based on an incoming
sensor signal. In contrast, in the approach reported here, opti-
mization was used offline to select stimulation parameters for
an idealized indentation stimulus. The optimization algorithm
would need to be sped up and must be able to account for
sensor noise or artifact. Moreover, it would be ideal if the
optimization algorithm could select stimulation parameters and
electrode contact in a single step, rather than sequentially as
reported here (see Fig. 2). This would increase the difficulty
of solving the optimization problem, increasing computational
complexity and time.

In addition, we must map TNAPs to parameters of nat-
ural stimuli that can be measured with real-time sensors.
To approach this problem, we could use our existing dataset
to correlate TNAPs with specific depths in the ramp-up,
hold, and ramp-down phases of the indentation stimuli. This
would be challenging, however, as multiple TNAPs produce
the same depth in each phase of our TouchSim-generated
neural responses. The most important features, or in this case
neurons, that contribute to a specific sensation must be selected
and reproduced from all TNAPs that produce the same depth
at a stimulus. The TNAPs that came beforehand must also
be considered, as current TNAPs depend on previous TNAPs
rather than being independent at each millisecond.

IV. CONCLUSION

In conclusion, we present a new approach to biomimetic
stimulation. The IMC paradigm is based on biophysical
models of neural activation and can approximate the neural
response to tactile stimuli with high accuracy. The IMC
paradigm’s key innovation is that it includes pulse-by-pulse
updating of electrode contact and stimulation pulse parameters
to selectively recruit different small sub-fascicular affer-
ent populations throughout the stimulus time course. The
IMC paradigm can also include multi-contact field shaping
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approaches, which leads to better performance than single
contact stimulation. Overall, the IMC paradigm mimics critical
neural coding properties better than existing PNS paradigms,
including previously reported biomimetic PNS paradigms.
Future studies will test the IMC paradigm in human subjects to
determine whether it leads to improvements in the perceptual
experience and information content of generated sensations.
If human subject testing yields improved perceptual perfor-
mance, the IMC paradigm will then be adapted for real-time
use in sensor-based neuroprosthetic devices. We envision that
the IMC paradigm will provide natural sensory feedback
to those who have lost tactile sensory capabilities, greatly
improving their functionality and overall quality of life.
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