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Abstract— Visual-based brain-computer interface (BCI)
enables people to communicate with others by spelling
words from the brain and helps professionals recognize
targets in large numbers of images. P300 signals evoked
by different types of stimuli, such as words or images,
may vary significantly in terms of both amplitude and
latency. A unified approach is required to detect variable
P300 signals, which facilitates BCI applications, as well
as deepens the understanding of the P300 generation
mechanism. In this study, our proposed approach involves
a cascade network structure that combines xDAWN and
classical EEGNet techniques. This network is designed to
classify target and non-target stimuli in both P300 speller
and rapid serial visual presentation (RSVP) paradigms. The
proposed approach is capable of recognizing more sym-
bols with fewer repetitions (up to 5 rounds) compared to
other models while possessing a better information trans-
fer rate (ITR) as demonstrated on Dataset II (17.22 bits/min
in the second repetition round) of BCI Competition III. Addi-
tionally, our approach has the highest unweighted average
recall (UAR) performance for both 5 Hz (0.8134±0.0259)
and 20 Hz (0.6527±0.0321) RSVP. The results show that the
cascade network structure has better performance between
both the P300 Speller and RSVP paradigms, manifesting
that such a cascade structure is robust enough for deal-
ing with P300-related signals (source code is available
at https://github.com/embneural/Cascade-xDAWN-EEGNet-
for-ERP-Detection).
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I. INTRODUCTION

BCIs are systems that enable people to communicate with
their surroundings using brain waves [1], [2]. They are

particularly helpful for individuals with disabilities, such as
those with amyotrophic lateral sclerosis (ALS), who may rely
on a BCI to interact with others [3], [4]. Electroencephalogram
(EEG)-based BCIs are becoming more popular in both com-
mercial and academic settings because they are non-invasive,
portable, and provide fast responses and over 80% of BCI
publications rely on EEG [5], [6], [7].

Various components of EEG signals can be appliable for
BCIs, such as sensorimotor rhythms (SMRs), steady-state
visual evoked potentials (SSVEPs), code-modulated visual
evoked potentials (c-VEPs), miniature asymmetric visual
evoked potentials (aVEPs) and event-related potentials (ERPs).
Specifically, ERP, which is known as electrical potentials
time-locked to events, has gained attention in BCI studies
because ERPs relevant to different modalities like visual, audi-
tory, or tactile events provide the best results for the control
of a BCI system [8], [9], [10]. P300, which is a response that
occurs about 300-600 milliseconds after the onset of a stimu-
lus, has been extensively investigated in ERP-based BCIs [11].
In visual P300 paradigms like row/column spellers, differences
between target and non-target ERPs are used to generate
characters by flashing corresponding rows and columns so that
the P300-based speller allows the user to communicate letter
by letter [7]. Because the EEG collection for the P300 speller
is non-invasive, the resulting signal-to-noise ratio (SNR) is
low [12]. To improve SNR, repeated stimuli are used and
multiple trials of EEG collections are averaged [13]. However,
this averaging method is time-consuming and inefficient [14],
and may negatively impact BCI real-time performance by
incorporating past information. As a result, it is still very
challenging to accurately classify P300 by using a single
trial. Apart from the row/column speller explored in BCI with
P300, RSVP-based BCI detects and recognizes objects, scenes
and events in static images and videos via P300. Different
from the P300 speller, the RSVP-based BCI can be beneficial
to more applications where a large number of images need
to be reviewed by professionals but are unable to be well
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analyzed by computers [15], [16], [17]. In the RSVP-based
P300 experiment, the participants need to distinguish between
target and non-target stimuli where the target should be odd
stimuli and account for 5%-10% of all stimuli [15].

Although both BCIs with the P300 speller and BCIs with
the RSVP use the P300 component for classification, there are
some differences between the two paradigms. Firstly, in the
P300 speller, the operator sets the sequence repetition number
to improve SNR, while in RSVP, the target or non-target stim-
uli are set in a single trial. Secondly, the stimulus frequency is
different for the two paradigms - the RSVP usually displays
with a refresh rate of 5-10 Hz, while the P300 speller flashes
for 125 ms and turns off for 62.5 ms until the next sequence
flashes [18]. Thirdly, due to the repetition of targeted stimuli
elicited by the P300 speller, the average amplitude of the
target P300 produced is weaker than that produced by the
single-trial RSVP paradigm. Lastly, the P300 speller is more
stable in EEG, whereas the RSVP paradigm is prone to noise
induction as it requires button presses to determine the target
stimuli. As mentioned, notable ERPs emerge at 315 ms in the
RSVP paradigm whereas occur at 262 ms in the row-column-
based P300 speller paradigm during target events compared
to non-target events [18]. As mentioned in [19] and [20],
an experimental protocol consisted of two sessions performed
on two days, day one of which is the first session for the
P300 speller experiment and day two of which is the second
session for the RSVP experiment. The results showed that the
temporal filtering capacity in the RSVP task can be a predictor
of both the P300-based BCI accuracy and the amplitude of
the P300 elicited when performing the BCI task. Moreover,
Won et al. reported a significant positive correlation between
P300 amplitude in RSVP and P300 speller performance. They
observed a strong negative correlation between the variation
in P300 latency across trials in RSVP and P300 speller
performance [21]. These findings indicate that there exists
a relationship between RSVP task characteristics and P300
speller performance.

To develop a sophisticated BCI system, a unified framework
for processing ERP signals is essential, as it can simplify
system maintenance and upgrades, and reduce overall devel-
opment costs. Additionally, a sophisticated BCI system must
meet the diverse requirements of its users. For instance, the
standard row-column paradigm used in the P300 speller may
not be appropriate for patients who lack gaze control [22].
In such cases, the RSVP paradigm presenting the stimuli in
the same position may serve as a useful alternative. While the
ERPs obtained from these two paradigms exhibit similarities,
a unified decoding approach is necessary to develop a BCI
system that can be tailored to different users [22]. To tar-
get the above characteristics of the P300 speller and RSVP
paradigms, various methods have been proposed for P300
component detection. Traditional machine learning methods,
such as support vector machines (SVM), discriminant analysis,
and common spatial pattern algorithms, were first applied [42],
[43], [46], [49], [50]. These methods detect ERP signals with
manual feature extraction, and the quality of the extracted
features plays a big role in how well the algorithm per-
forms. Recently, with the emergence of deep learning models,

ERP features can now be automatically learned from data
without any manual intervention. Several convolutional neural
networks (CNN), such as EEGNet, DeepConvNet, Shallow-
ConvNet, and BN3, have been developed for detecting ERP
signals [5], [13], [23], [24]. However, deep learning models
often require a large number of samples for better learn-
ing, as they lack domain knowledge about the data [25].
An important domain knowledge regarding ERP signals is that
the SNR can be enhanced through trial averaging [26], [27].
To take advantage of the domain information, it might be more
suitable to process the ERP signals by xDAWN spatial filtering
before sent to neural networks, as the xDAWN estimates
the spatial filters by maximizing the difference between the
averaged signals of the corresponding category and the whole
EEG data [28]. Research has extensively explored the com-
bination of xDAWN with classification algorithms, yielding
promising results. For instance, Cecotti et al. successfully
integrated xDAWN with MLP, BLDA, and linear SVM, result-
ing in performance enhancement [29]. In a similar vein, the
xDAWN-based algorithm emerged victorious in the Kaggle
BCI competition NER 2015, leveraging Riemannian geometry,
channel subset selection, L1 regularization, and elastic net
regression [30], [31]. Moreover, Wu et al. achieved remarkable
progress by aligning ERP data with Euclidean alignment and
enriching features with xDAWN and tangent space mapping
which secured the top spot in the RSVP detection competition
at the World Robot Contest 2021 [32], [33]. Meanwhile, in our
previous work, Zhang et al. achieved second place in the
same competition by combining xDAWN with EEGNet [34].
These studies showcase the potential of integrating xDAWN
with classification algorithms to achieve superior performance
across diverse applications. However, in the existing litera-
ture, there is no single algorithm that can be well-suited for
both P300 speller and RSVP target detection. To tackle this
challenge, we leverage our prior research [34] and extend the
methodologies of xDAWN and EEGNet to encompass both
the P300 speller and RSVP paradigms.

In the rest of this work, we describe the dataset in Section II
and detail the methods applied in Section III. We present
corresponding results in Section IV and compare them with
prevailing ones in the discussion part. Finally, we conclude
our findings.

II. METHOD AND MATERIALS

A. Dataset Description
The study utilized two datasets: the P300 speller-based

dataset and the RSVP dataset. The P300 speller-based dataset
was derived from two datasets, Dataset IIb from BCI Com-
petition II, which involved one participant, and Dataset II
from BCI Competition III, which consisted of subjects A and
B. The datasets were recorded using the BCI2000 system,
which employed 64 electrodes at a sampling rate of 240 Hz.
During the experiment, participants were shown a 6×6 symbol
matrix and were instructed to pay attention to specific target
symbols. The intensity of all the rows and columns in the
symbol matrix was randomly increased at a frequency of
5.7 Hz. Each intensification lasted for 100 ms. After each
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intensification, the matrix remained blank for a duration of
75 ms, followed by the next intensification of a row or column.
Each symbol presentation consisted of 15 rounds, with each
round containing 12 stimuli. In these 12 stimuli, only two
stimuli (rows/columns) corresponded to the desired symbols
and the elicited responses were labeled as P300 samples while
the responses elicited by the remaining 10 stimuli were labeled
as non-P300 samples. Thus, each symbol contains 150 non-
P300 samples and 30 P300 samples. In Dataset IIb, there
were 42 symbols for training and 31 symbols for testing.
In Dataset II, for each subject, 85 symbols were used for
training and 100 symbols for testing. The dataset is available
at https://www.bbci.de/competition/.

On the other hand, the RSVP dataset [35] employed a
stimulus set of 200 visual objects from different categories,
presented to 16 adult participants (5 females; age range 18–
38 years) who were instructed to count target stimuli (boats
or geometric star shapes) randomly inserted into the sequence,
with a maximum of 4 targets per sequence. Each sequence
lasted between 40.2 and 40.8 seconds, with a presentation rate
of 5 Hz in the first session and 20 Hz in the second session.
There were a total of 40 sequences for each session. The EEG
data were recorded at a sampling rate of 1000 Hz using a
BrainVision ActiChamp system and international standard 10-
10 system for 64-electrode placement. During recording, all
scalp electrodes were referenced to Cz. Then the recorded data
were filtered with a Hamming windowed FIR filter (0.1 Hz
high pass and 100 Hz lowpass filters) and down-sampled
to 250 Hz for further processing. This dataset is available at
https://osf.io/a7knv/.

B. Data Preprocessing
To preprocess the P300 speller-based dataset, we first

cropped an 800 ms segment after the stimulus onset, and then
detrended the data to remove linear trends. Next, we applied
a 30 Hz low-pass Chebyshev filter with zero phase to filter
out high-frequency noise, while preserving the desired signals.
Additionally, we down-sampled the data by half, resulting
in a 96-time sample segment. For the RSVP-based datasets,
we retrieved a 0-1000 ms segment after the stimulus onset,
detrended the data, and applied the same 30 Hz low pass
Chebyshev filter with zero phase, resulting in a 250-time
sample segment. Here, X i ∈ RC×T denotes the i th trial EEG
data sample, where C represents the number of EEG electrodes
and T is the time samples of one trial data. We set T to 96 and
250 for the P300 speller and RSVP datasets, respectively.
Since both datasets were collected using a 64-electrode system,
C was set to 64.

C. xDAWN Spatial Filtering
The EEG signals are noisy and have low SNR because

they record complete brain activity, including areas of the
brain that are not relevant to the task, which leads to a
difficult classification problem [30]. In addition, some channels
carry more valuable information than others, such as the
channels around the parietal lobe in the P300 speller and
RSVP paradigms. To effectively enhance the task-relevant

information in channels, we used the xDAWN spatial filtering
method to refine the original EEG signals. The xDAWN
algorithm is defined as follows:

Compute the averaged pattern of class k. X (k)
i , P(k) ∈ RC×T

and mk , are the i th trial EEG data in class k, the averaged
pattern for class k, the number of trials of class k, respectively.

P(k)
=

1
mk

∑
X (k)

i (1)

Estimate spatial filters for class k. The spatial filter is a vec-
tor w∈RC×1. w∗

∈ RC×1 represents an estimated spatial filter.
X ∈ RC×(T

∑
mk) is the concatenation of all the trials (from

all classes). Because (3) is a generalized Rayleigh quotient,
the solution could be given by calculating the eigenvectors
of the matrix

[
P(k) P(k)T (

X X T )−1
]
. The top n eigenvectors

(ordered by eigenvalues) were selected as spatial filters.

w∗
= argmax

wT P(k) P(k)T
w

wT X X T w
(2)

Apply spatial filters to raw EEG data. W (k) ∈ RC×n is
the spatial filters for class k. W =

[
W (1), W (2) . . . , W (N )

]
∈

RC×M is the spatial filters of all classes (N classes in total)
where M = n · N . n is the number of xDAWN spatial filters
and N is the number of classes. Zi ∈ RM×T is the enhanced
EEG data.

Zi = W T X i (3)

Finally, we applied the Z-score normalization to each indi-
vidual enhanced EEG segment:

Zi =
Zi − µ

σ
(4)

where µ and σ are the mean and standard deviation of each
channel of the enhanced EEG data respectively. This approach
ensured that the data were standardized and consistent across
participants and electrodes.

D. Network Architecture
The xDAWN filtering approach estimates a set of spatial

filters by maximizing the difference between the averaged pat-
terns of each class and the overall EEG signals. Such estimated
spatial filters make full use of strong domain knowledge (e.g.,
the SNR of ERP signals can be improved by trial averaging
and the averaged trial signals are representative of typical ERP
signals for respective tasks [26]). Deep learning models are
hard to learn specific domain knowledge as they often require
a large amount of data to learn a certain inductive bias [25].
Therefore, we linked the xDAWN with the classic EEGNet to
maximize the use of the prior information and further improve
the model’s detection performance on ERP signals.

Fig. 1 shows the structure and detailed description of our
proposed architecture. The xDAWN spatial filters were first
applied to the input EEG data X i , followed immediately by
a temporal convolution operation and BatchNorm (with a
convolution kernel of size 1 × 64, stride of 1 and padding
of ‘same’) to produce F1 feature maps (F1 was set to 8 in this
study). We then manipulated these feature maps using depth-
wise convolution, with depth D set to 2, a depth convolution
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Fig. 1. Network structure of the proposed cascade xDAWN-EEGNet. The network first applies xDAWN spatial filters to the input EEG signals and
then feeds the enhanced signals into the EEGNet. The max norm Was used to constrain the weights in the DepthwiseConv2D and dense layers,
where it was set to 1 and 0.25 respectively.

kernel size of M×1 and ‘valid’ padding. Then the BatchNorm
was used, and the results were activated by ELU operation.
Next, the average pooling operation was used to reduce the
size of feature maps and dropout was used to avoid overfitting.
The average pool kernel size and dropout value p were set
to be 1 × 4 and 0.25, respectively. We then used separable
convolution (with a kernel size of 1×16, stride of 1 and ‘same’
padding) to extract deeper features. The BatchNorm and ELU
activation were also used. Separable convolution is composed
of depthwise convolution and pointwise convolution, to reduce
the number of model parameters. Next, we apply an average
pooling layer of size 1 × 8 for dimension reduction and a
dropout layer with the p value equal to 0.25. In the dense layer,
N neurons are densely linked to the features of the previous
layer and activated by Softmax activation.

E. Training
We used the pyRiemann package [36] to estimate xDAWN

spatial filters and reproduced EEGNet with PyTorch [37]. The
proposed model was trained on GeForce RTX 2080 Ti. The
batch size was set to 64. The Adam optimizer with default
parameters was used, and the learning rate was initially set
to 0.001 with an exponential decay rate of 0.96. The P300
speller dataset consisted of two categories: non-P300 and
P300 samples. In contrast, the RSVP dataset encompassed
three categories: non-target, boat (target 1), and geometric star
(target 2) samples. Both datasets exhibit class imbalance, with
the P300 speller dataset having a category ratio of 5:1 and the
RSVP dataset showing a more pronounced class imbalance
with a category ratio of 145:1:1. To reduce the effect of
imbalance, we employed focal loss [38] with weights.

L F L = −

N∑
k=1

wk tk (1 − pk)
γ log (pk) (5)

where pk is the probability of class k, tk is the truth label (a
value of 0 or 1), wk is the assigned weight for class k (see (6)),
and γ is a hyperparameter to tune the loss of well-classified
samples. We set γ to 2 as recommended in [38].

wk =
max {mk}

N
k=1

mk
(6)

In addition, we used Mixup [39] defined in (7) for data
augmentation. In Mixup, a random variable λ is sampled from

a Beta distribution, λ ∼Beta (α, α), where α is the hyper-
parameter that controls the degree of interpolation. It picked
two random samples x and x̃ and the corresponding one-hot
labels y and ỹ, and then simply added them together linearly
to generate a new sample xmix and label ymix .

xmix = λ x +
(
1 − λ

)
x̃, ymix = λ y +

(
1 − λ

)
ỹ (7)

We set up different configurations for the P300 speller and
RSVP paradigm. Specifically, for the P300 speller, we set the
number of xDAWN filters to 8 and the Mixup alpha value to
0.3. In contrast, for the RSVP paradigm, it was found that
a different configuration yielded better performance. Hence,
we set the number of xDAWN filters to 4 and the Mixup alpha
value to 0.4 for the RSVP paradigm. Afterwards, for the P300
speller task, we trained the model in 80 epochs to achieve
optimal results. For the RSVP task, where a dedicated test set
was not available, we employed a three-fold cross-validation
approach to evaluate the model. This involved dividing the
dataset into three folds. Each fold was used as a validation
set, while the remaining two folds were used for training.
This process was repeated three times. For each subject,
we computed the unweighted average recall (UAR) for all
three folds during the cross-validation process and averaged
the three validation score curves across epochs resulting in
a single averaged validation score curve for each subject.
Finally, the epoch with the highest UAR was selected from
the averaged validation score curve as the RSVP result for
each subject.

F. Symbol Decision Function for P300 Speller
In the case of the P300 Speller dataset, once the model is

trained, the next step is to determine the position of the desired
symbol based on the model’s output. This involves detecting
the row and column in which the symbol is located. Each
symbol in the dataset is repeated 15 times, with each repetition
consisting of 12 stimuli represented by a stimulus code value
ranging from 1 to 12. Let q(i)

j denote the Softmax output
(with temperature 10) of the output neuron, which represents
P300 probability when the stimulus code value is j in the i th

repetition. Q(z)
j is the sum of those probabilities from the first

to the zth repetition under stimulus code value j.

Q(z)
j =

z∑
i=1

q(i)
j (8)
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Then, on the zth repetition, we may identify the target sym-
bol’s column c and row r by:

c = argmax Q(z)
j , j ∈ [1, 6] ; r = argmax Q(z)

j , j ∈ [7, 12]

(9)

G. Method of Evaluation
We used symbol recognition accuracy and ITR to evaluate

the performance of different models in the P300 speller
paradigm. We referred to the formula for calculating ITR in
the i th repetition in the paper [40], defined as follows:

I T R(i)
=

60
(
(1 − A) log2

1−A
G−1 + Alog2 A + log2G

)
2.5 + 2.1i

(10)

where A is the symbol recognition accuracy, and G (i.e.
36) denotes the number of symbols presented in the P300
speller paradigm. For the RSVP paradigm, we adopted the
unweighted average recall (UAR) [41] to evaluate the accuracy
of the imbalanced dataset which is defined as follows:

UAR =

N∑
r=1

wr
cr

tr
(11)

where N denoted the total number of categories, wr denotes
the weight factor applied for each category which was cur-
rently set to [0.33, 0.33, 0.33], tr denoted the number of
images per category, and cr was the number of correct
predictions per category.

H. Models for Comparison
A series of prevailing models are proposed for comparison

with the proposed one and we have provided a brief description
of the characteristics of these models:

1) Spatially weighted fisher linear discriminant-PCA
(SWFP) is a method designed for single-trial ERP
detection. It utilizes fisher linear discriminant (FLD) to
estimate spatial filters at each time point, which are
then applied to an EEG sample for spatial filtering.
PCA is then used for dimensionality reduction, with six
principal components retained to explain over 70% of
the variance [42].

2) Ensemble Support Vector Machines (ESVMs) [43] is a
machine learning method that combines multiple SVM
models to improve classification performance for P300
detection. This approach has been shown to achieve
good classification.

3) DeepConvNet [24] is a deeper convolutional model for
end-to-end EEG analysis, utilizing temporal convolution,
spatial convolution and pooling operations and is a
general approach for EEG decoding tasks in the BCI
domain.

4) ShallowConvNet [24] is a simpler model with fewer
convolutional layers and has also been successful in
EEG decoding tasks in the BCI domain.

5) BN3 [13] is a deep learning model specifically designed
for P300 detection, which uses Batch Normalization
for EEG signals and a conventional CNN model for
classification. This approach has been shown to achieve
good classification accuracy.

6) CNN-RG-MINMA is a hybrid feature extraction method
using CNN and Riemannian geometry for analyzing
ERP data. It aims to enhance feature discriminability
by extracting low-dimensional features with CNN and
constructing a Riemannian graph [44].

7) ST-CapsNet is an enhanced version of ERP-
CapsNet [45] that combined spatial-temporal attention
and Capsule Network for improved P300 detection [40].

8) Discriminative Canonical Pattern Matching (DCPM) is
a machine learning algorithm that is highly robust in
detecting ERP components from different paradigms
with excellent performance. It is especially useful when
there is limited training data available [46].

9) EEGNet [23] is a lightweight end-to-end CNN network
that incorporates temporal convolution, spatial convo-
lution, separable convolution, and classification layers.
It has demonstrated good robustness and has been widely
used as a benchmark in EEG analysis.

III. RESULTS

A. Performance of Symbol Recognition for P300 Speller
Dataset II consists of two subjects A and B, while Dataset

II-b only contains one subject. Table I and Table II present the
number of symbols correctly recognized per repetition by each
model on Dataset II and Dataset II-b, respectively. Table III
presents the results of paired t-tests (i.e., 30 pairs for Dataset II
and 15 pairs for IIb) which compare symbol accuracy accord-
ing to [45]. The authors did not report the performance of
the P300 speller for DeepConvNet, ShallowConvNet, EEGNet
and DCPM. Hence, we ran these models (except for DCPM as
it is a traditional machine learning algorithm) with the same
training strategy (see Section E Training). We also took the
reported results of other models (SWFP, ESVMs, BN3, CNN-
RG-MINMA and ST-CapsNet) for comparison. In Dataset
II, our proposed model shows the ability to recognize more
symbols with fewer repetition rounds. Notably, our model
has better performance than other models (p < 0.05), except
for the DeepConvNet (p > 0.05). In Dataset IIb, our model
exhibits superior performance compared to SWFP, BN3 and
DCPM, achieving statistically significant results (p < 0.05).
While the other methods may show better performance than
our model in Dataset IIb, these differences are not statisti-
cally significant (p > 0.05). These findings underscore the
effectiveness of our model as a viable option for P300 signal
detection, particularly in scenarios where there are limitations
on the number of repetition rounds and a need for a balance
between high accuracy and repetitions.

B. Effect of xDAWN Number on Symbol Recognition
Extensive experiments were conducted to investigate the

effect of the number of xDAWN filters on symbol recognition
rates, with results presented in Fig. 2. The averaged symbols
under repetitions (ASUR) metric [40] was used to compare
the performance of models with different numbers of xDAWN
filters more intuitively.

ASURk =
1
k

∑k

i=1
Ci , (12)
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Fig. 2. Effect of different number of xDAWN filters on the symbol recognition rate. Subplots (a), (b), and (c) represent the symbol recognition rates
of subjects A and B in Dataset II and Dataset IIb, respectively.

TABLE I
NUMBER OF SYMBOLS CORRECTLY RECOGNIZED PER REPETITION FOR EACH MODEL ON DATASET II

where ASURk stands for the average correctly recognized
symbols per repetition when we take k repetitions into account.
Ci stands for the correctly recognized symbols in the i th

repetition. The number of xDAWN filters ranged from 0 to
20 with an interval of 2, where 0 means xDAWN filter was
excluded (i.e. EEGNet). The interval of the alpha value of
Mixup was 0.2, 0.3, and 0.4. From Fig. 2, we observed that
in Dataset II, subject A displayed an upward trend in the
average symbol recognition rate as the number of xDAWN

filters increased from 2 to 8, eventually reaching a stable level.
Conversely, subject B exhibited a noticeable improvement in
symbol recognition from 2 to 4 filters, followed by stabiliza-
tion with a slight decline. Notably, when the xDAWN filter
number was set to 8, both subjects A and B demonstrated
a performance improvement. In addition to examining the
influence of xDAWN filters, we also investigated the impact
of the Mixup alpha value on the symbol recognition rate.
We found that the Mixup alpha value had a relatively minor
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TABLE II
NUMBER OF SYMBOLS CORRECTLY RECOGNIZED PER REPETITION FOR EACH MODEL ON DATASET IIB

TABLE III
PAIRED T-TEST COMPARATION ON P300 SPELLER

effect compared to xDAWN. Our results indicate that employ-
ing 8 xDAWN filters and a Mixup alpha value of 0.3 led to
improved performance compared to scenarios where xDAWN
and Mixup were not utilized. However, it is important to note
that for Dataset IIb, the xDAWN filters resulted in a decrease
in the symbol recognition rate. This finding emphasizes the
need for careful consideration when selecting the number of
xDAWN filters, taking into account the specific dataset and
task at hand.

C. Performance of ITR for P300 Speller
The ITRs of each model on Dataset II and IIb were plotted

in Fig. 3 to visually compare the speed of symbol spelling. For
subject A of Dataset II, BN3 and ESVMs had higher ITRs than
other models, while our method and DeepConvNet had faster
ITR performance for subject B. Overall, our model had the
best ITR performance on Dataset II, particularly in the second
repetition where its ITR reached 17.22 bits/min. On Dataset
IIb, ST-CapsNet has the best ITR performance, as shown in
Fig. 3 (d). These findings suggest that our cascaded xDAWN-
EEGNet model, DeepConvNet, ST-CapsNet can be suitable
models for achieving high ITRs in P300 speller systems.

D. Performance of UAR for RSVP
To evaluate the model performance on RSVP tasks, a 3-fold

cross-validation was implemented for each model. The training
strategy (refer to Section E Training for details) was kept

consistent across all models (except for SWFP, ESVMs, and
DCPM which are traditional machine learning algorithms).
The significant difference was analyzed by a paired t-test (n =

16). The UAR performance of each model at 5 Hz and 20 Hz
RSVP is illustrated in Fig. 4 (a) and (b), respectively. The
proposed method achieved the highest UAR performance
for 5 Hz RSVP (proposed method: 0.8134±0.0259; EEGNet:
0.7823±0.0201, p < 0.05). Moreover, our method exhibited
even more significant improvements (p-value < 0.0001) over
the other models for both 5 Hz and 20 Hz RSVP. It is worth
noting that DeepConvNet exhibits significant variance across
multiple subjects. This can be primarily attributed to its large
model parameters and sensitivity to hyperparameter selection,
such as the γ value in the focal loss function, which leads to
convergence difficulty (i.e., failed to learn information from
multiple categories). SWFP performed the worst among all
models. In conclusion, the cascade xDAWN-EEGNet model
demonstrated the best UAR performance on RSVP tasks
compared to the other models. These findings suggest that the
proposed method shows the potential as an effective approach
for analyzing EEG data in RSVP tasks.

E. Effect of xDAWN Number on UAR Performance

To show the effect of xDAWN filter number and Mixup on
UAR, several experiments were conducted, and the results are
shown in Fig.5. The xDAWN filter number interval ranged
from 0 to 14 with an interval of 2, excluding the case of
xDAWN filter of 2 due to its known poor effect as shown
in Fig. 2. Fig. 5 (a) shows that as the number of xDAWN
filters increases, the detection accuracy for 5 Hz RSVP EEG
also increases. Furthermore, using larger alpha values for
Mixup leads to larger UAR. In Fig. 5 (b), for the detection
of 20Hz RSVP EEG, only when the number of xDAWN
filters was 4 was there a slight improvement in performance
over EEGNet. In other cases, performance decreased, but
the improvement of UAR performance by Mixup was still
significant. The results suggest that the number of xDAWN
filters should be carefully chosen according to the specific
RSVP characteristics. In addition, the findings indicate that
our model is particularly effective for improving detection
accuracy in RSVP tasks at low frequencies.
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Fig. 3. The ITR of each model on Datasets II and IIb. Subplots (a) and (b) represent the ITR measured on Dataset II for subjects A and B,
respectively; Subplot (c) represents the average of the ITR of subjects A and B; Subplot (d) represents the ITR of Dataset IIb.

Fig. 4. Comparison of the UAR performance of each model on RSVP. Figures (a) and (b) represent the UAR performance of the models at 5 Hz
and 20 Hz RSVP, respectively.

IV. DISCUSSION

In this study, we proposed a cascade structure combining
xDAWN and EEGNet for both the P300 speller and RSVP
paradigms. Compared with other methods like DeepConvNet
or mere EEGNet, the proposed method achieved better ITR
with fewer repetition rounds for the P300 speller and gained
high UAR performance in the RSVP paradigm.

A. P300 Speller and RSVP Paradigm
Selective attention, as measured by accuracy in an RSVP

task, is closely linked to an individual’s ability to update
changing information over time and may also be connected
to performance in P300 speller tasks [20], [47], [48]. This
ability relies on attentional filtering capacity, which involves

Fig. 5. Effect of different xDAWN filters and different Mixups on UAR.
Figures (a) and (b) show the effects on UAR for 5 Hz and 20 Hz RSVP,
respectively.

the ability to distinguish the object of interest from distractors
and maintain this differentiation over time [21]. This concept
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Fig. 6. Comparison of EEG signals of different paradigms. Figures (a), (c), (E) represent the averaged raw signal and its EEG topography;
Figures (b), (d), (F) represent the evoked potentials, time-frequency thermograms and xDAWN-extracted patterns after xDAWN filtering.

aligns with the P300 speller, where individuals must filter
out non-target rows/columns and focus on the target until a
letter is identified. The similarity between selective attention
and attentional filtering is reflected in EEG components.
Moreover, a multi-feature predictor that includes multiple
RSVP features has demonstrated that it can accurately pre-
dict P300 speller performance, outperforming single-feature
predictors [21]. Furthermore, the P300 speller and RSVP
paradigms exhibit shared characteristics, such as the utiliza-
tion of low-frequency stimuli and the presence of a positive
waveform observed within a specific time window following
stimulus presentation. These findings demonstrate the com-
monality between these two paradigms and suggest that a
uniform method could be applied across different BCI-related
tasks.

B. xDAWN Could Enhance the P300 Pattern
In the proposed approach, we used xDAWN spatial filtering

to improve the SNR of the raw EEG signals before feeding

them into EEGNet, thus providing a process for incorporating
prior domain knowledge into the model. To visualize the
EEG signals evoked by different paradigm stimuli, we first
plotted the EEG signals evoked by P300 speller, 5 Hz RSVP,
and 20 Hz RSVP, along with their EEG spatial distribution
(0.25-0.6 s), as is shown in Fig. 6 (a), (c) and (e). From
these figures, it can be seen that the spatial distribution of
the EEG signals evoked by the target sample in the P300
speller and the EEG signals evoked by the target 1 and
target 2 samples in the 5 Hz and 20 Hz RSVP are similar.
Afterward, we utilized the xDAWN spatial filter to enhance
the EEG signal evoked by the target stimulus. For unifor-
mity, we set the xDAWN spatial filter to 4 for visualization.
The evoked signals of each paradigm after the xDAWN
filter, the time-frequency thermograms, and their extracted
EEG distribution patterns are shown in Fig. 6 (b), (d) and
(f). From these plots, it can be observed that, compared
to the original signal, the evoked signal corresponding to
the target category in the P300 speller and RSVP has a
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clear positive wave at 0.33-0.5 s and 0.4-0.6 s, although the
amplitudes of the evoked potentials are different. Such char-
acteristics together with an inverse relationship between the
target and non-target stimulus imply that BCIs with different
paradigms can use uniform methods for different classification
applications. The xDAWN spatial filter enhances the P300
component in the original EEG in time and improves the SNR,
making the P300 signal more easily to be detected by the
classifier.

C. Compare With Other Methods
The key for ERP-based BCI is to distinguish ERP from the

background of EEG signals as ERPs have many components,
and they are weak and can be influenced by many factors.
Linear discriminative analysis (LDA) is a traditional method
for the detection of ERPs. However, such a method cannot
handle various components of ERPs [42], [49], [50]. Further-
more, as mentioned before, DCPM is a robust method that
has excellent performance for the detection of ERPs from
various paradigms [46]. To clearly illustrate the difference
between DCPM and the proposed method, we compare our
work with [46]. In [46], only the classification performance of
various models was compared across different ERP paradigms
in a single trial. However, important metrics such as symbol
recognition and ITR performance in the P300 speller paradigm
were not taken into consideration. These metrics are crucial
for evaluating the effectiveness of a BCI system. In contrast,
we conducted a comprehensive evaluation of our method and
compared it with other models on standard BCI competition
P300 speller datasets. We considered both ITR and symbol
recognition performance, and our results showed that our
method outperformed DCPM in both aspects, demonstrating
superior performance.

Furthermore, EEGNet has been proven its effectiveness
in BCI competitions [41], [51], [52]. Notably, the EEGNet
exhibits exceptional generalization capabilities, displaying the
ability to perform well on diverse datasets, and also exhibits
robustness to noise, enabling reliable performance even in
the presence of noisy input signals [23]. Besides, EEGNet
stands out for its computational efficiency, allowing for effi-
cient real-time processing. The effectiveness and simplicity
of its architecture make it an optimal choice as our basic
model. Building upon our previous study [34], which utilized
the combination of xDAWN with EEGNet and achieved the
second place in the RSVP competition at the BCI Controlled
Robot Contest during the 2021 World Robot Contest, we have
further extended our previous work [34]. In this extended
work, we focus on analyzing the impact of varying xDAWN
filter numbers on RSVP classification results, a crucial factor
that was not previously investigated [34]. Moreover, we have
explored the applicability of our algorithm to the P300 speller
and investigated the effectiveness of Mixup data augmentation
techniques for both the P300 speller and RSVP tasks. Through
our investigations, we discovered that selecting the appropriate
number of xDAWN filters and Mixup alpha value can enhance
the performance of our model. These findings highlight the
capability of our algorithm to address a wider range of BCI
applications effectively.

V. CONCLUSION

This study introduces a cascade structure for unified detec-
tion of visual-evoked related potentials. Evaluated on Dataset
II of the BCI Competition III, our method exhibited bet-
ter symbol recognition accuracy and achieved a higher ITR
compared to the compared methods, especially for reaching
17.22 bits/min in the second repetition round. Furthermore,
the results demonstrated that our method was superior to the
compared models in terms of the UAR on the RSVP paradigm
(0.8134±0.0259 at 5 Hz and 0.6527±0.0321 at 20 Hz).
In addition, we observed that applying xDAWN filters to raw
evoked EEG signals effectively enhances the P300 pattern,
which partially explains why our method has better perfor-
mance on both the P300 speller and RSVP paradigms. These
results underscored the effectiveness of the proposed cascade
structure for detecting P300-related signals across both P300
speller and RSVP paradigms.
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