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Video-Based Detection of Freezing of Gait in
Daily Clinical Practice in Patients

With Parkinsonism
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Abstract— Freezing of gait (FoG) is a prevalent symptom
among individuals with Parkinson’s disease and related
disorders. FoG detection from videos has been devel-
oped recently; however, the process requires using videos
filmed within a controlled environment. We attempted
to establish an automatic FoG detection method from
videos taken in uncontrolled environments such as in
daily clinical practices. Motion features of 16 patients were
extracted from timed-up-and-go test in 109 video data
points, through object tracking and three-dimension pose
estimation. These motion features were utilized to form
the FoG detection model, which combined rule-based and
machine learning-based models. The rule-based model dis-
tinguished the frames in which the patient was walking
from those when the patient has stopped, using the pelvic
position coordinates; the machine learning-based model
distinguished between FoG and stop using a combined
one-dimensional convolutional neural network and long
short-term memory (1dCNN-LSTM ). The model achieved
a high intraclass correlation coefficient of 0.75–0.94 with
a manually-annotated duration of FoG and %FoG. This
method is novel as it combines object tracking, 3D pose
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estimation, and expert-guided feature selection in the pre-
processing and modeling phases, enabling FoG detection
even from videos captured in uncontrolled environments.

Index Terms— Freezing of gait, machine learning,
Parkinson’s disease, pose estimation, video.

I. INTRODUCTION

FREEZING of gait (FoG) is a characteristic symptom of
Parkinson’s disease (PD) and related disorders, defined

as “episodic absence or pronounced reduction in the forward
progression of the feet during ambulation despite the intention
to walk” [1]. The reported prevalence of FoG is 50.6%, which
gradually increases with the progression of the disease [2].
Moreover, FoG frequently leads to falls [3], [4], fall-related
injuries, and loss of independence [5], [6], [7].

Accurate assessment of FoG is essential for initiating or
modifying treatment and evaluating its efficiency. Establish-
ing the effectiveness of any intervention requires a precise
assessment of FoG [8], [9]. Various clinical methods are
used to assess the severity of FoG, including qualitative tools
such as the Movement Disorder Society-sponsored revision
of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) [10], FoG questionnaire (FoG-Q) [11], and New FoG
Questionnaire (NFoG-Q) [12]. In addition, more sophisticated
quantitative methods such as video-recorded [13], [14], [15],
three-dimensional (3D) motion capture systems [16], force
plates [17], [18], Inertial Measurement Units (IMU) [19], [20],
[21], [22], [23], [24], [25], [26], [27], and electroencephalog-
raphy caps [28], [29] have been employed to detect FoG
episodes [30].

Scoring FoG based on video-recorded walking tasks is
being increasingly acknowledged as the gold standard for
FoG assessment [13], [14], [15]. However, identifying FoG
events requires trained experts and is time-consuming. There-
fore, there is a growing interest in developing automatic
video-based FoG detection methods using machine learning.
Automatic FoG detection has previously been attempted using
red–green–blue (RGB) cameras for 2D keypoint recogni-
tion [31], [32], [33], [34], allowing image capturing with
a monocular camera, without the use of external scales or
markers to estimate joint coordinates. Compared to specialized
equipment—such as depth sensors, IMU, and 3D motion
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capture systems—affordable devices like smartphones enable
recording of different FoG phenomena by researchers, patients,
and their families, in the form of easily available videos. Fur-
thermore, unlike wearable devices which rely on estimates and
cannot be verified after the event has occurred, video-based
methods allow for the confirmation of FoG episodes even
after screening. Because FoG rarely occurs in a laboratory
setting [35], [36], [37], it is essential to develop a method that
is capable of detecting FoG at home or other settings. FoG
detection from videos is therefore a promising approach for
addressing the ailment.

This study aimed to establish a method for automatically
detecting FoG in videos captured during daily clinical prac-
tices. In addition, we validated the ability of this method to
quantify FoG, and also evaluated its reliability.

Although there have been recent advancements in automatic
FoG detection, several challenges still persist that limit the
accurate quantification of FoG and its automatic detection
in diverse daily clinical and home environments. First, the
environments in which videos can be captured for FoG detec-
tion are limited. Most studies rely on videos captured in
controlled environments, such as laboratories, where camera
positions are fixed. Uncontrolled environments include dif-
ferent field-of-view, variation in light condition, disturbance
by other therapists or patients, or video captured without
indicating the start and end of gait. However, because indi-
viduals with PD and related disorders often experience FoG
in their daily lives [35], [36], [37], whether at home or in
outdoor environments, it is challenging to capture videos under
consistent conditions. Therefore, establishing methods that are
less affected by variations in camera positions is essential.
Second, in previous studies, videos typically featured only
the participant [33], or the participant with no more than two
assistants [31], [32], [34]. However, videos from daily clinical
practices often capture multiple individuals, including patients,
their families, and therapists who prevent falls. Therefore,
algorithms capable of selecting an analysis target among
multiple individuals in a video are required.

Considering the aforementioned aspects, we chose and
applied an object-tracking technique on videos captured in
daily clinical practices to select the target patient, followed by
3D pose estimation to extract motion features. An algorithm
was developed to detect the duration of FoG based on the
temporal characteristics of these motion features. In contrast
to quantifying FoG in a controlled environment, it was more
convenient to quantify it using camera videos, as it allowed
unrestricted movement for patients and could help detect FoG
at home; in addition, this approach allowed detection of FoG
from videos capturing other individuals as well. Furthermore,
the ability to directly quantify FoG from videos may reduce
the workload, which would be both time-saving and patient-
friendly, and therefore convenient for daily use.

The novelty of our method primarily resides in the prepro-
cessing and modeling phases. By focusing on these stages,
we successfully developed a method capable of automatically
detecting FoG from videos captured in uncontrolled environ-
ments. Our approach markedly differs from previous studies
like those by Hu et al. [31], [32], Li et al. [33], Shalin et al.
[38], and Sun et al. [34], especially in terms of video capture

methodology. Unlike these prior works, which often relied on
videos shot from limited or fixed camera angles, our method
can effectively utilize videos captured from a variety of angles.
In the preprocessing phase, rather than training the model
directly on the raw video data, we included an initial step that
involved isolating the subject from videos showing multiple
individuals, using object tracking techniques. Following this,
we applied 3D pose estimation to the acquired 3D skeletal
data. When using videos captured from the same position,
similar features can be obtained from 2D poses with suffi-
cient accuracy. However, for videos captured from different
positions and angles, the features obtained vary depending on
the viewpoint, thereby limiting the effectiveness of 2D pose
extraction methods. Thus, we considered that 3D estimation
would allow us to extract poses from any viewpoint, resulting
in more accurate FoG detection. In the modeling phase, these
data were then utilized to construct our model, integrating
features that were critically observed by experts during the
assessment of FoG. In the Forward Progression Identification
Model, we employed a simple rule-based approach, using
the pelvic marker to determine the presence of any forward
movement. Segments identified as stops by this model were
then passed to the FoG Classification Model, which employed
machine learning to differentiate between FoG and stops. The
features used for this model were carefully selected based
on variables that experts focus on when evaluating FoG.
By combining these two models—the Forward Progression
Identification Model and the FoG Classification Model—we
completed our novel FoG Detection Model. Our study demon-
strates that even without incorporating multi-modal learning,
a standard CNN-LSTM algorithm can achieve high accuracy.
This underscores the effectiveness of our preprocessing and
data handling techniques. By aligning the model’s focus with
the critical features identified by medical experts, we signifi-
cantly enhanced the system’s predictive performance.

II. MATERIALS AND METHODS

A. Dataset

We collected the video data recorded during clinical practice
at the National Center of Neurology and Psychiatry (NCNP),
between April 2012 and March 2021. The recorded video
data included the following: (1) clinical findings of PD and
related disorders, (2) performance in the Timed Up and Go
(TUG) test to provoke FoG [15], and (3) occurrence of
FoG. In addition, our dataset includes videos that captured
FoG episodes, regardless of the medication state (ON or
OFF). We focused on identifying the observable FoG episodes
captured in the videos. The TUG test is commonly used in
the rehabilitation assessment of dynamic balance and involves
getting up from a chair, walking at an easy or moderate pace,
turning and walking back to the chair, and sitting down [39],
[40]. Shine et al. [15] found that the TUG test is a reliable
method for provoking FoG in a clinical setting because all
the conditions associated with FoG, such as the start of a
walk, turning, or moving in front of a target, are included.
Videos were taken in daily clinical practice settings, resulting
in variations in patient distances and camera angles in each
video (Fig. 1). The extracted videos were captured using a
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Fig. 1. Circumstances under which the video was shot videos taken
from various distances and camera angles during the tug test were used.
Video a was taken from directly beside the tug test; b was taken from an
oblique angle; c was taken from directly in front of the tug test.

commercially-available monocular RGB camera (Panasonic
HC-V720M-T) with a resolution of 720 × 480 pixels and a
frame rate of 30 fps.

This study was approved by the Institutional Review
Board of the University of Tsukuba, Japan (approval number
2023R739) and NCNP, Japan (approval number A2021-062),
and conducted according to the guidelines of the Ethics
Committee of University of Tsukuba, the NCNP, and the
Declaration of Helsinki.

The datasets were divided into training and validation
datasets, and test datasets, as follows: videos taken at an
angle oblique to the TUG test (Fig. 1b) were used as the
training and validation data, and those taken from other angles
(Fig. 1a and 1c) were used as the test data. The video
data comprised videos captured in the same room but under
uncontrolled environment, which implies that camera positions
as well as the arrangements of objects (such as computers) and
the positions of other people varied in the videos (Supplemen-
tary Figure 1). Owing to the lack of consistency in camera
positioning, videos not captured directly beside or in front of
the TUG test were classified as “obliquely captured videos”
(Fig. 1b).

B. Video Annotation
For annotating videos, we used a free template by Gilat

which can be implemented in open-source software to score
FoG based on videos [41]. The ELAN (version 6.0) software
was used, which is a tool for creating complex annotations on
video and audio recordings. The FoG scoring template used
in ELAN contains predefined annotations frequently used to
score FoG in research and clinical practices. This template
and the user guide for measuring the percentage of time spent
in FoG during the walking task (%FoG) can be downloaded
freely.

The duration of FoG and %FoG were evaluated based on
the videos. Using ELAN, the duration of FoG was scored by

three specialists in rehabilitation for movement disorders. The
evaluators did not offer any insights regarding the assessment
of the video recordings. A total of 109 videos for 16 patients
were presented to each evaluator in the same sequence. The
three evaluators interpreted the definition of FoG by Nutt
et al. [1]—which suggested episodic absence or pronounced
reduction in the forward progression of the feet during ambu-
lation despite the intention to walk—and designated FoG
scores through discussion. The FoG start time was defined
as “the moment when the foot of the participant is suddenly
no longer producing an effective step forward and displays
FoG-related features, despite the participant’s intention to
continue walking.” The end time was defined as “the moment
of initial toe-off after FoG when the participant is again able to
perform at least two effective alternating steps with both legs
showing no FoG-related features” [1], [41], [42]. In addition,
the start of FoG during a turn was defined as “the moment of
toe-off of the first step that touches down in the area where the
turn should be performed, with the foot pointing towards the
direction of the turn.” The end during a turn was defined as
“the moment of heel-strike of the first step that leaves the area
where the turn was performed, with the foot pointing towards
the end target of the gait task” [41].The %FoG was calculated
using TFoG and Tv , where TFoG represents the duration of
FoG observed, and Tv denotes the total duration of the TUG
test. The following equation (1) was used [41]:

%F OG =
TFoG × 100

Tv

(1)

Based on the error range reported by Kondo et al. [42],
we employed a protocol of consensus discussion among the
evaluators. Specifically, a group discussion was initiated if any
video, as rated by the three evaluators, exhibited an error in
FoG duration as >1.6 s or 5.5% in %FoG. The discussions
were aimed at reaching consensus and creating a common
interpretation for each video.

C. Automatic FoG Detection
The two steps in developing the model were preprocessing

(pose estimation) and modeling. A flowchart of the automatic
FoG detection is shown in Fig. 2.

D. Preprocessing (Pose Estimation)
1) Object Tracking: In clinical practice settings, video

recordings often capture multiple individuals, including medi-
cal staff, families of patients, and other accompanying patients,
who prevent falls. Therefore, before obtaining skeletal infor-
mation, extracting the target individual for analysis from the
captured video is essential. We used the “LightTrack” model
as an object-tracking solution for our method to address this
complication (Fig. 3). Object tracking is a technique that
involves assigning numbers to bound boxes obtained from
object detection to track the target individual. LightTrack is
a lightweight and efficient object-tracking model built based
on the neural architecture search approach, enabling recent
efficient execution with limited resources [43].



KONDO et al.: VIDEO-BASED DETECTION OF FREEZING OF GAIT IN DAILY CLINICAL PRACTICE 2253

Fig. 2. Summary of the automatic FoG detection method after selecting the target subjects using object tracking, coordinate data were extracted
using a 3D pose estimation model. An algorithm was developed to determine the duration of FoG based on the temporal characteristics of the
obtained motion features.

Fig. 3. Examples of videos taken in clinical practice and object
tracking.The top image depicts the setting before the bounding box was
specified and the bottom image shows the setting after the bounding
box was specified.

2) 3D Pose Estimation: In videos with varying camera
positions, accurately identifying the pose of the patient using
2D pose estimation is challenging. For example, in videos that

capture a person walking from the background to the fore-
ground, determining whether the person is moving forward is
complicated. We believed that this could be solved using a 3D
pose-estimation model. In our study, we employed markerless
motion capture technology, artificial intelligence-based motion
analysis techniques, and the MediaPipe model, which converts
2D video information into 3D skeletal information. This
allowed us to overcome the aforementioned challenges and
analyze human motion in 3D. MediaPipe, a data stream pro-
cessing machine learning application development framework
developed and open-sourced by Google, is a learning develop-
ment framework with built-in fast machine learning reasoning
and processing, which can achieve end-to-end acceleration
on common hardware. Hence, data collection, model training
and making predictions (the ‘end-to-end’ part) can be done
more quickly (‘acceleration’) even on regular consumer-grade
computers or devices (‘common hardware’), without requiring
high-end, specialized equipment. MediaPipe has been used
successfully for detecting and analyzing characteristic tremors
associated with Parkinson’s disease [38]. In this framework,
the center of the screen was the origin, and the obtained
coordinate data are shown in Fig. 4.

We visually confirmed that both object tracking and 3D pose
estimations were performed correctly in our study. However,
we also observed that occlusion could potentially reduce the
accuracy of pose estimation. To address this issue, we preemp-
tively identified and removed videos having occluded subjects
from our analysis.

We initially hypothesized that monocular cameras might
have limitations in accurately capturing depth information.
However, the proposed method did not rely on precise distance
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Fig. 4. Coordinates data obtained with MediaPipe.

measurements. We rather focused on determining whether the
patient was moving forward, as we believe this could enable
the detection of FoG.

E. Modeling
1) FoG Detection Model: The segments identified as walking

stops in Model I were extracted. A model for automatic
FoG detection was created by subtracting from Model I
the segment recognized as a walking stop in Model II that
machine learning-based model and not subtracting from Model
I the segment recognized as FoG in Model II. Using the
strategy of first calculating the displacement of the pelvis and
detecting the FoG, we developed the FoG Detection Model.
We considered that it could reduce errors by not using multiple
machine learning models.

2) [Model I] Forward Progression Identification Model: We
calculated the displacement from the starting position using (2)
for the pelvic position coordinates obtained using the 3D pose
estimation. Outliers were removed using a median filter, and
the data were smoothed. We defined a walking stop as a
segment where the displacement di at the i-th segment was
less than 3% of the total distance traveled in the TUG test
within 1 s (30 frames) and developed a model to calculate
the duration of walking stops by summing up the number of
frames.

di =

√
(xi+1 − xi )

2
+ (yi+1 − yi )

2
+ (zi+1 − zi )

2 (2)

3) [Model II] FoG Classification Model: In the training data,
30 consecutive frames identified as walking stops in Model I
were manually classified by author by referring to the ground
truth mentioned earlier in video annotation as FoG and walk-
ing stop instance. To prevent overfitting, we randomly used
three instances of 30-frame segments per video dataset during
training and did not train all walking stops. For example,
if there were eight instances of a 30-frame FoG within a single
video data, it meant selecting any three instances for training
data of the FoG instances. Consequently, the training data were
divided into 214 FoG instances and 197 non-FoG instances
(walking stops).

TABLE I
LIST OF VARIABLES USED IN TRAINING

We trained a binary classification model for time-series
data using a combined one-dimensional convolutional neural
network (1dCNN) and a long short-term memory (LSTM)
architecture. This model is known to be effective for
time-series analysis and has shown high accuracy in the
analysis of electroencephalographic (EEG) signals [44]. Video
data can essentially be interpreted as a type of time-series data.
A video is a series of frames (images) that progress over time.
Therefore, models that are effective for time-series analysis,
such as the 1d-CNN combined with LSTM, can likely be used
for analyzing video data. The 1d CNN-LSTM architecture for
Model II is shown in Fig. 5. The variables corresponding to
the segments identified as walking stops in Model I, as listed
in Table I, were used for training in Model II.

We constructed a 1D CNN-LSTM model for our study
using different hyperparameters. The input shape for the model
included three different input sequences, each consisting of
15 frames captured at a rate of 30 frames per second.
We strategically selected 15 frames for the input sequences,
equivalent to a total of half a second at a frame rate of
30 frames per second. This helped balance computational
efficiency and the capacity of the model to capture temporal
patterns associated with FoG events. While shorter video
sequences may lack sufficient temporal context for FoG detec-
tion, longer sequences pose a risk of diluting crucial FoG
information across an extensive number of frames. The CNN
layers comprised 32 filters with a kernel size of 7 employing
the Swish activation function. Average pooling was applied to
compress the temporal dimension by half. The LSTM layer
had 32 hidden units with a dropout rate of 0.2 to mitigate
overfitting. In addition, dropout regularization was employed
to enhance the robustness of the model. The output layer
involves using a sigmoid activation function to produce binary
classification results. The model was trained for 128 epochs
using a batch size of 8. To prevent overfitting and improve
the generalization performance, we employed early stopping.
We identified the hyperparameters of our model by referencing
those used in previous 1dCNN-LSTM models as well as via
an iterative process of trial and error.

To assess the generalization performance of our 1dCNN-
LSTM model, we employed 5-fold cross-validation [45].
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Fig. 5. 1dCNN-LSTM architecture in Model II.

Specifically, we randomly split the entire dataset into five
equal-sized folds. We used each fold as the validation set and
trained the model on the remaining 5-1 folds. We repeated
this process five times, and each fold was used once as
the validation set. After each run, the validation accuracy,
precision, recall/sensitivity, specificity and F-measure score
were obtained.

To determine the optimal threshold for distinguishing
between FoG and stop, we applied the trained model to the
training data and generated the receiver operating charac-
teristic (ROC) curve and Precision–Recall (PR) curve with
thresholds ranging from 0 to 1.0, in increments of 0.1.

F. Statistical Analysis

To confirm whether the data obtained in Model I and
FoG detection model in each validation and test dataset
agreed with the annotation data obtained by the expert, the
intraclass correlation coefficients (ICCs) (2, 1) between the
data obtained in each model and the expert were calculated.
The ICCs < 0.5 showed a poor agreement, those between
0.5 and 0.75 showed a moderate agreement, those between
0.75 and 0.9 showed a good agreement, and those greater
than 0.90 showed an excellent agreement [46]. All statistical
analyses were performed using Python 3.9.

Bland–Altman plots were used to assess the characteristics
of measurement errors, focusing on the limit of agreement
(LoA) between the ground truth and the FoG detection
model. This analysis aided in better understanding the mag-
nitude of discrepancies between the two sets of values
obtained [47]. The 95% LoA was determined as the “average
difference ±1.96 × standard deviation”.

III. RESULTS

A. Details of the Dataset

A total of 109 video data points were collected from
16 patients, nine of whom had PD and seven had progressive
supranuclear palsy. There were six men and ten women with
a mean ± standard deviation age of 69.6 ± 8.4 years and a
disease duration of 12.8 ± 9.0 years. Five patients were in
stage 3, and eleven were in stage 4 of the disease, according
to the Hoehn and Yahr clinical staging. The number of videos
per participant varied, ranging from as few as one video to as
many as 21 videos.

The 109 videos comprised 74 videos of patients performing
a 180-degree turn, and 35 of those performing a 540-degree
turn. There were 95 videos as training and validation data
and 14 as test data. It should be noted here that among the
14 test data videos, only 2 videos (1 data point each from
2 different patients) included footage of patients who were also
part of the training data, albeit filmed from different angles
(Supplementary Table I).

B. Video Annotation Model II Evaluation of Validation
Data

The results of the 5-fold cross-validation are presented in
Table II. On average, Model II, which differentiates between
FoG and walking stops, demonstrated an accuracy of 93.2%
accuracy, 97.9% precision, 88.8% recall/ sensitivity, 97.9%
specificity, and 93.1% F-value across the cross-validation
results. ROC curve and PR curve of Model II were drawn
(Fig. 6). Based on the results, the threshold for distinguishing
between FoG and stop was set at 0.5.
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TABLE II
K-FOLD (5-FOLD) CROSS VALIDATION OF MODEL II

Fig. 6. ROC curve (A) and PR curve (B) of the trained 1dCNN-LSTM
model.

C. Example of Sample
An example of the FoG durations obtained using these three

models is shown in Fig. 7. Model I involved extracting the
walking stops, and the extracted regions were identified as FoG
or walking stops using Model II. The FoG detection model is
a complete model used in calculating the duration of FoG by
subtracting the parts identified as walking stops in Model II
from the total number of walking stops extracted in Model I.

D. ICCs of Model I and FoG Detection Mode
The durations of FoG, FoG%, and respective ICCs (2,1) for

Model I and the FoG detection model for the validation and
test data are shown in Table III. The Bland–Altman analyses
of the duration of FoG and %FoG are shown in Fig. 8, with
separate plots for each dataset (training and test) and individual
subjects denoted.

IV. DISCUSSION

This study aimed to establish a method for automatically
detecting and quantifying FoG from videos taken in daily
clinical practices. The FoG detection model was constructed
by combining the rule-based model and the machine learning-
based model, ensuring high reliability of our method.

A key advantage of our method is its capability to utilize
videos captured in uncontrolled clinical settings. Unlike cur-
rent systems that require special equipment, our method allows
for the use of commonly available devices like smartphones to
capture videos, making it accessible to medical professionals,
patients, and their families. While 3D motion analysis offers
high accuracy in detecting FoG [48], [49], its applicability
is limited outside laboratory settings. Given the challenges of
eliciting FoG in laboratory settings [35], [36], [37], we believe
that the ability to quantify FoG episodes at home, where FoG
mostly occurs, using readily-available equipment and from any
camera position, has high potential. For example, therapists or

TABLE III
GRAND TRUTH AND INTER-RATER RELIABILITY OF EACH MODEL

family members can likely record the walking movement of
the patient using smartphones or similar devices. In addition,
because the recording is done by trusted individuals for a
set period of time, rather than continuously by permanently-
installed cameras, privacy concerns can be addressed. The
method proposed in this study can assist clinicians in accu-
rately detecting the duration of FoG, which is often used as
an indicator of treatment effectiveness. The strength of the
duration of FoG and %FoG is that it is an objective outcome
of the ratio measurement level that directly reflects the severity
of FoG at the time of testing, as opposed to subjective
scales such as FoG questionnaires [41] Moreover, automatic
FoG detection can improve the efficiency of FoG assessment,
reducing the reliance on trained experts, and minimizing
subjective judgments of evaluators. Therefore, we believe that
our automatic FoG detection method is the first step toward
detecting true endpoints of occurring FoG in daily clinical and
home environments.

Based on videos, the FoG detection model showed good
reliability regarding FoG duration and %FoG in the FoG
scoring. This was indicated by the high ICC obtained from the
validation (ICC = 0.94 for the duration of FoG and 0.84 for
%FoG) and test data (ICC = 0.91 for the duration of FoG and
0.75 for %FoG). ICC values greater than 0.75 are considered
good, according to Koo and Li [46]. While Sun et al. [34]
also attempted the calculation of FoG duration by counting
FoG frame events from videos, the absence of reported error
values in their study precludes a direct comparison with our
findings. Previous studies employing graph-based neural net-
works [31], [32], [33] and Transformer neural networks [34]
have used raw video data as input; however, by adopting the
preprocessing steps established in this study, it may be possible
to refine the feature extraction process. Furthermore, features
obtained from 2D poses may lack consistency across different
angles, potentially affecting the performance of FoG detection.
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Fig. 7. Example sample The areas identified as walking stops in Model I were indicated by blue bars. The green bar identified as walking stops
and the yellow bar identified as FoG by Model II; Model I minus Model II was detected as FoG and was shown by a red bar.

Fig. 8. Bland–Altman plots Panels (A) and (B) show the results for each dataset, with (A) depicting the duration of FoG and (B) illustrating %FoG.
Panels (C) and (D) showcase the same analyses for individual subjects, with each subject denoted by a unique color. Panel (C) represents the
duration of FoG and panel (D) represents %FoG.

In contrast, our method, which utilizes 3D pose estimation, can
extract pose information that is invariant to camera viewpoints,
allowing for consistent feature extraction regardless of the
camera angle.

The difference in ICC values between the duration of FoG
and %FoG must be considered after understanding that they
represent different perspectives of the FoG phenomenon and
might be influenced by distinct factors. FoG focused on the
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absolute time during which FoG occurred, irrespective of
the total task duration, essentially providing an isolated view
of FoG events. In contrast, %FoG offers a relative measure
of FoG, interpreting it as a part of the total task duration.
Hence, it can give a more comprehensive overview of the
degree by which FoG affects the task performance. In our
experimental setup, the total task duration was constant and
did not involve any automated identification by the algorithm.
Thus, the discrepancy in ICC values between FoG duration
and %FoG is unlikely to be a consequence of the variation in
task duration.

The Bland–Altman plots for the duration of FoG initially
indicate larger errors for medium duration FoG episodes
(5 to 30s); however, when FoG was expressed as a percent-
age of the total task, these biased errors appear to be less
pronounced. Furthermore, the minimum/smallest detectable
change, which can provide clinicians with useful and easy-to-
understand criteria to assess change (improvement or decline)
in individual performance, was reported as 6.9 s for the
duration of FoG and 18.3% for %FoG [42]. This implies that
a potential variability of 6.9 s and 18.3% occurs even in eval-
uations conducted by experts. Consequently, the differences
between the mean values of the ground truth and those of the
FoG detection models calculated in this study fall within these
ranges, attesting to the accuracy of our model.

The test data comprised videos captured from varying angles
and distances that were distinct from the validation data.
Our model demonstrated a robust generalization performance
unaffected by camera positions, as evidenced by achieving
ICC values >0.75 for FoG duration and %FoG. The narrow
confidence interval further attests to the consistent outcomes,
reinforcing the potential for generalization of our findings.
In addition, the lack of detection bias across datasets and
subjects, as shown in the Bland–Altman plots, further supports
the generalizability of our approach. Though the test data in
the present study comprises videos taken in the same room,
they different not only with respect to the camera positions but
also the arrangements of objects such as computers and beds,
and the number and positions of people captured in the videos.
Concerns were initially raised regarding the accuracy of the
depth information when using a monocular camera, which
could potentially affect the FoG detection accuracy. How-
ever, without precise distance information, accurate detection
remained achievable by distinguishing forward movements.
Thus, the proposed FoG detection model is generalizable and
suitable for practical clinical applications.

Model II, which is a model to distinguish whether the
portion where there is no forward movement in Model I is FoG
or a walking stop, was highly accurate for predictions, having
93.2%, 98.0%, 88.7%, 97.9%, and 93.1% accuracy, preci-
sion, recall/sensitivity, specificity, and F-value, respectively.
These results indicate that Model II is efficient for accurately
predicting positive instances while effectively balancing false
and true positives. Previous research employing video-based
detection for classifying FoG, such as the studies conducted
by Hu et al. [31], [32] and Li et al. [33], the method for
classifying FoG reported an accuracy range of 81.6-82.5%.
However, the present study achieving a higher accuracy of

93.2% compared to the previous studies. In comparison, the
present study reported sensitivity and specificity of 88.7%
and 97.9%, respectively, thereby demonstrating the substantial
progress made in FoG detection. By employing a relatively
simple method for classifying instances as FoG or walking
stops rather than differentiating between FoG and normal
walking, we achieved a highly accurate Model II. This model
could help us discern whether an event is FoG or a stop using
15 frames, which translates to 0.5 s. Hence, FoG episodes
lasting less than 0.5 s cannot be detected by our system.
However, it is challenging even for experts to determine
whether an episode is FoG based on video footage that
lasts < 0.5 s.

In addition to the significant advancements that our current
FoG detection methodology ensues, we recognize the impor-
tance of identifying early signs of FoG within the gait cycle.
The ability to detect these preliminary signs will have profound
implications for both diagnosis and intervention strategies. Our
technology of utilizing video analysis holds the potential to
identify these early indicators. This feature could be pivotal in
developing real-time monitoring systems, which could poten-
tially alert patients or caregivers to impending FoG episodes,
enabling timely interventions such as cueing strategies to
prevent the onset of FoG. It is well-recognized that preserving
optimal gait can effectively prevent FoG [50]. The prospect
of integrating this technology into therapeutic interventions,
especially in home settings, is particularly promising. It could
offer a proactive approach for managing FoG, enhancing the
quality of life for patients. As we move forward, expanding
our research to encompass the detection of early signs of FoG
will be our key focus, aiming to contribute further to the field
of PD management.

This study has some limitations. First, the accuracy of our
automatic FoG detection method at home remains unknown.
Although the accuracy of different camera positions is guaran-
teed, system performance may vary in real-world environments
with inconsistent conditions. Nevertheless, this study serves
as a foundation for future research on the application of
video-based FoG detection methods in uncontrolled environ-
ments. Second, our study was limited to the TUG test, which
implies that the accuracy of applying this system for assessing
other gait-related characteristics remains unknown. Therefore,
further evaluation of system performance in diverse clinical
and home environments is required. Third, it is unknown
whether the camera distance to the patient influences accuracy.
The videos in this study were captured in a routine clinical
setting, and the precise camera distance to the patient was
not measured. Fourth, accurate FoG detection is impossible
in the presence of occlusion. Occlusions of the patient by
other people or objects in the environment, such as furniture
and obstacles, may hinder accurate FoG detection. Fifth,
the sample size was small. However, our study included a
substantial number of data points (109 data points) collected in
a clinical setting. Our dataset meets the COSMIN (Consensus-
based Standards for the selection of health Measurement
Instruments) guidelines, which recommends that a sample of
100 data points adequate [51]. Furthermore, previous studies
on FoG detection have been conducted with as few as seven
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cases [49]. Considering that our study primarily aims to
propose a novel method, this sample size can be considered
reasonable within the context of methodological development.
Sixth, our system is not currently capable of real-time FoG
detection, as the necessity for such immediate identification is
relatively limited. However, if real-time detection were achiev-
able, it could be utilized for interventions such as providing
external cues upon detecting early signs of FoG. Seventh, our
study lacks an explicit evaluation protocol considering subject
independence. Regardless, the overlap between subjects in the
training and testing sets was limited in our study, and our
method could detect FoG with a certain level of accuracy
even from diverse video data collected during daily clinical
practice, suggesting its potential contribution to advances in
the engineering field. Finally, two manual processes were
performed for the analysis. The first was the manual trimming
of the recorded video in the situation to be analyzed, and the
second was selecting the analysis target from the bounding
box extracted by object tracking, which requires manual work.
These processes are time-consuming and may limit practicing
the system in clinical settings.

V. CONCLUSION

The automatic FoG detection method established in this
study exhibited high reliability, with an accuracy comparable
with that of expert identification. This is the first system
capable of automatically detecting FoG in an uncontrolled
environment, regardless of differences in camera positions or
the presence of individuals other than the patient in the frame.
This automatic FoG detection method can improve the clinical
evaluation and management of patients with PD.
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