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Abstract— Multimodal physiological signals play a piv-
otal role in drivers’ perception of work stress. However, the
scarcity of labels and the multitude of modalities render
the utilization of physiological signals for driving cognitive
alertness detection challenging. We thus propose a
multimodal physiological signal detection model based on
self-supervised learning. First, in order to mine the intrinsic
information of data and enable data to highlight effective
information, we introduce a multiscale entropy (MSE)
evoked attention mechanism. Secondly, the multimodal
patches undergo processing through a novel cascaded
attention mechanism. This attention mechanism is rooted
in patch-level interactions within each modality, progres-
sively integrating and interacting with other modalities in a
cascading manner, thereby mitigating computational com-
plexity. Moreover, a multimodal uncertainty-aware module
is devised to effectively cope with intricate variations
in the data. This module enhances its generalization
ability through the incorporation of uncertain resampling.
Experiments were conducted on the DriveDB dataset and
the CogPilot dataset with both the linear probing and the
fine-tuning evaluation protocols. Experimental results in
subject-dependent setting show that our model signifi-
cantly outperforms previous competitive baselines. In the
linear probing evaluation, our model achieves on average
6.26%, 6.64%, and 7.75% improvements in Accuracy (Acc),
Recall (Rec), and F1 Score. It also outperforms other
models by 7.96% in Acc, 9.13% in Rec, and 9.2% in F1 using
the fine-tuning evaluation. Furthermore, our model also
demonstrates robust performance in subject-independent
setting.

Index Terms— Multimodal physiological signals, self-
supervised learning, multiscale entropy, multimodal
uncertainty-aware, multimodal cascaded attention.
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[. INTRODUCTION

S DRIVING automation advances and intelligent trans-

portation develops rapidly, vehicle operators, including
drivers, pilots and crew members are increasingly required
to perform multiple tasks while driving. These demands have
progressively outpaced the cognitive capabilities of the vehicle
operators [1]. Due to the constraints of human perception
and cognition, engaging in high cognitive workloads prompts
vehicle operators to concentrate on one stimulus, potentially
overlooking other critical tasks or information. This can result
in human errors and potentially fatal accidents [2]. Hence,
there is a need for comprehensive monitoring of the vehicle
operators’ cognitive state, timely detection and alleviation of
mental fatigue and negative stress emotions, or alerting to
potential driving risks. Recent studies demonstrate that vehicle
operators’ cognitive load can be tracked through various
measures, including physical signals, operational signals and
behavioral signals [3], [4]. Behavioral signals and operational
signals are highly susceptible to external variables. With
the advancement of wearable physiological measurement
technology and artificial intelligence, physiological signals
have emerged as one of the most promising methods for
assessing cognitive load. Physiological signal data are the
most essential mapping of neural and psychological stress
and can provide the most objective measurement of the
vehicle operators’ cognitive state [5]. Several physiological
signals, such as electrocardiography (ECG), electromyography
(EMG), electrodermal activity (EDA) and respiration (RESP),
contain information that can offer insights into the driver’s
neurocognitive status. This information can be utilized to
provide feedback to driver assistance systems, enabling the
delivery of safe driving recommendations [6], [7]. Specifically,
we aim to construct reliable and robust algorithms to classify
and estimate driver cognitive states through multimodal
physiological signals.

Confronted with the dynamically changing scenarios of
driving, multimodal physiological signals initiate a cascade of
physiological responses, each physiological signal bearing its
distinct strengths and limitations. We visualize the multimodal
physiological signals of the complete driving task for two
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Fig. 1.  Comparison of multimodal physiological signals between two
subjects on the same complete driving task, with a magnified view
applied to certain areas. The entire driving task comprises two Rest
sections, three City sections, and two Highway sections.

subjects in the DriverDB dataset [8], as shown in Fig. 1 with
a magnified view: 1) the same physiological signals of the two
subjects have similar trends overall, but significant differences
emerge during the same driving stage; 2) each modality
demonstrates varying sensitivity to risk perception throughout
the entire driving task; and 3) each modality exhibits irregular
fluctuations across different driving stages, particularly evident
when transitioning between stages, where the signals display
noticeable jumps. The complex changing characteristics of
these differences are currently unclear, posing challenges in
the utilization of multimodal physiological data. Regardless
of how the data mapping changes, the most fundamental
changes in the data can be extracted from the perspective
of information theory. Through the application of entropy
parameters, we can aptly characterize the ordered changes
within complex systems, assess trend states and unveil hidden
details within the signals. Therefore, we employ MSE to
quantify the changes in the complex characteristics of each
modality across various time scales. As illustrated in Fig. 2,
the entropy values at various scales have obvious peaks in
some driving stages, and this phenomenon also appears in
various modalities at the same time. This can be interpreted
as a collaborative transformation of their global dynamics,
elucidating the specific characteristics of the data in different
driving states [10], [11].

In this paper, recognizing the challenges posed by the high
cost and subjective nature of obtaining physiological data
labels, we propose a multimodal self-supervised approach for
detecting cognitive load in drivers and pilots. Specifically,

inspired by the steady-state evoked potential (SSVEP) in brain-
computer interfaces [12], [13], we devise a method named
MSE evoked attention. In the training phase, we adhere
to the multimodal self-supervised paradigm [14] with a
random masking strategy. To address the challenges posed by
multimodal physiological signals, we devise the multimodal
uncertainty-aware module. To enhance the integration of
multimodal features, we introduce the multimodal cascade
attention module. The performance of the model is fully
validated by subject-dependent and subject-independent exper-
imental settings. Subject-dependent experiments facilitate a
faster and clearer evaluation of models, circumventing the
significant complexity and external interference introduced by
cross-subjects. Although the subject-independent experimental
setting lead to higher experimental costs, it is essential
for evaluating the robustness and generalization ability of
the model, thus providing a more accurate reflection of its
performance in practical applications. In summary, we make
the following contributions:

1) We leverage MSE to elicit the essence of the data and
construct an evoked attention mechanism. This attention
highlights the specific values of the samples, offering
clear data guidance for the model.

2) We propose a multimodal cascade attention module
that is alternately connected with the original attention
mechanism. This design aims to enhance the fusion of
multimodal physiological signals.

3) We introduce a multimodal uncertainty-aware repre-
sentation to mitigate differences between physiological
samples and increase the robustness of the model.

4) Extensive experiments are conducted using two publicly
available datasets. The results of the experiments
demonstrate that our model outperforms other models
in both driver and pilot categories.

The remainder of this article is organized as follows. Section II
presents related work about supervised learning and self-
supervised learning of multimodal physiological signals.
Section III describes the proposed model in detail. Section IV
discusses the experimental design. The performance of the
proposed method is evaluated in Section V. In Section VI,
we conclude this paper and provide directions for future work.

[1. RELATED WORK
A. Full-Supervised Learning for Physiological Signals

In recent years, there has been a notable shift in focus
towards physiological signal time series analysis, giving rise to
a series of robust baseline classification models that leverage
convolutional neural network layers [15], [16]. SCINet [17]
effectively models complex dynamic time series by employing
multiple convolutions to learn effective representations of
recursively downsampled subsequences. Xiao et al. [18]
proposed a sparsely connected dynamic sparse network,
which leverages various receptive fields to train each sparse
layer, exploring under-constrained areas and achieving better
performance. Vit_Arjun [19] inherited the standard ViT
architecture, the raw 1D EEG signal is directly sliced into
different patches along the time dimension and then fed
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Fig. 2. Comparison results of MSE for multimodal physiological signals from two subjects. The scale factor in MSE is set from 1-4.

into the encoder. Crossformer [20] used dimension-segment-
wise to embed the input data into a 2D vector array and
then captured cross-time and cross-dimensional dependencies
through a two-stage attention layer. In order to capture a wider
range of temporal dependencies, Pyraformer [21] proposed a
pyramidal attention module, which includes an inter-scale tree
structure and an intra-scale neighboring connections model.
The aforementioned studies have all focused on the analysis
of a single modality, and researchers have gradually expanded
to encompass multimodal. Esener [7] proposed a subspace-
based feature extraction scheme, using five physiological
signals for driver distress recognition. Alonso et al. [22]
extracted a set of feature vectors from six biometric signals
and applied a combination of principal component analysis
and support vector machines for biometric identification,
achieving a considerable correct recognition rate. However,
most methods heavily depend on labeled physiological data,
which can be challenging to obtain in real-world scenarios.
Therefore, traditional fully supervised methods may not yield
satisfactory results.

B. Self-Supervised Learning for Physiological Signals
Gradually, people are migrating the self-supervised learning
paradigm to physiological signal time series, and the current
main work still follows the masked modeling and contrastive
learning paradigms. For the first time, TsT [23] used unlabeled
multivariate time series data to train a Transformer encoder-
based architecture, and proved on multiple data sets that
applying the masking modeling paradigm to time series
also has huge advantages. PatchTST [24] divided the time
series into sub-sequence-level patches, which were then
sent to the channel-independent Transformer, which captured
local information while benefiting from a longer historical
window. Cheng et al. [25] proposed a new time series
self-supervised paradigm, TimeMAE, which implemented
mask recovery through two pretext tasks: masked codeword
classification task and masked representations regression task.
Ti-MAE [26] utilized mask modeling as an auxiliary task
to train autoencoders with strong representation capabilities
at the point level. This resulted in improved performance
in prediction and classification tasks. SimMTM [27] also
followed the mask modeling self-supervised pre-training

framework, and jointly restored mask time points through
multiple other mask sequences to simplify the reconstruction
task and reveal the local structure of the manifold. Another
self-supervised paradigm is contrastive learning. TS-TCC
[28] performed weak enhancement and strong enhancement
on the original data, and sent them to the time contrast
module and context comparison module respectively to learn
robust representation from the time series. These methods
are primarily focused on single physiological signals, with
limited exploration of self-supervision methods for multimodal
physiological signals. Our work aims to provide strong
performance by leveraging multimodal physiological signals
for pre-training.

[1l. METHOD

Our proposed framework constitutes a comprehensive
multimodal mask self-supervised framework. The decoder
is responsible for executing the reconstruction task, thereby
completing the learning process of the encoder. Among
these components, the MSE evoked attention activates
and transforms the original data, the cascaded attention
integrates multimodal patches in a cascading manner with low
computational complexity, and multimodal uncertainty-aware
module enhances the generalization of the model. Fig. 3 shows
our proposed method in detail. In this section, we elaborate
on the specific structure of each module.

A. MSE Evoked Attention

Brain-computer interface establishes a direct interactive
channel between patients and computers. Recently, there has
been an increased focus on the SSVEP signal generated
by visual stimulation with a specific flashing frequency.
By acquiring and analyzing SSVEP, brain-computer interfaces
can convert the patient’s intentions into commands for
controlling external devices without the need for muscle
activity [29]. Inspired by this, we sought to explore potential
stimulation methods, considering the complexity of biological
systems characterized by variability across various time scales.
We adopt MSE as a mediator for the natural activation of
physiological signals. MSE characterizes the development
and changes of complex systems by measuring entropy
across multiple time scales. It quantifies the complexity of
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Fig. 4. The detailed structure of the MSE evoked attention module.

physiological signals and reveals essential states hidden within
the signal. Formally, assume a physiological signal sample,
U¢ = {u"[, ug, - ,uf\,}. First, construct an m dimensional
sequence vector along the time axis as follows:

U = {uf uf, o oufy, 1} i=1,2,--N-m+1 (1)

where N is the length of the time series, and c is the number
of channels. The distance between two vectors is defined as
follows:

AU, U5 = max { gy = 5.

Lk=0,1--m—1 (2

where for each 1 <i,j < N—m + 1, i # j, and then count
the number n of d less than the threshold r, the probability
of lying within the pre-defined threshold as follows:

B"(r)=n/(N-m +1) 3)
Furthermore, the average of B;"(r) can be obtained by:
N—-m+1
“4)

1
m m
B; (r)—ﬁ -El B," (r)
1=

After the dimension of m is increased by 1, repeat Egs. (1)-(4).
to obtain B;"H(r). When N is a finite value, the sample
entropy can be expressed as:

SampEn (m,r, N) = —In[B™ "1 (r)/B™ ()] 4)

MSE involves calculating the sample entropy of time series
samples at each scale. A coarse-grained new time series as
follows:
Jjs

c
2.

i=(—1)s+1

o _ 1

Yj —; (6)

where s is the time scale. The length of the time series
after coarse-graining is N /s. After the coarse-graining process,
calculate the sample entropy for each y*) and MSE result is
obtained.

Unlike the SSVEP signal, which is directly generated
by brain electrical activity, MSE, representing an essential
change in data, lacks a direct connection with the original
physiological signal. Therefore, in order to guide the data
to highlight more reliable information, we design an evoked
attention module using a simplified inverted bottleneck block,
as shown in Fig. 4. Due to the small number of channels
in physiological signal data, the overall structure adopts an
Expansion-Projection design. Specifically, we calculate the
multi-scale entropy of the original data and perform an entropy
transformation by multiplying the obtained entropy values with
the original data. Then, we apply a convolution operation
with a kernel size of 1 to transform the low-dimensional
space into a high-dimensional space, setting the expansion
coefficient of the channels to 4. Subsequently, a convolution
with a kernel size of 3 is applied while keeping the number
of channels constant, followed by another convolution with a
kernel size of 1 to map back to the low-dimensional space,
resulting in an output consistent with the input size. Finally,
this output is connected to the original input through a dot
product operation. In this way, a new perspective is given to
the global awareness of the data to complete operations similar
to the brain-computer interface.

B. Multimodal Uncertainty-Aware Module

Physiological signals provide real-time and sensitive
insights into neurological changes induced by the cognitive
workload in diverse driving environments. Influenced by an
array of subjective factors, physiological signals exhibit con-
siderable variations, particularly in the context of individual
distinctions among diverse samples and subjects engaged in
the same driving task. These differences cannot be dismissed
or eliminated, thus we introduce uncertainty learning into
multimodal physiological signals to increase the diversity of
samples. During the training process, a batch of data is defined
as B ={(x;, yi)}le, where y; indicates the class label of x;.
When B is fed into a module M, the output features can
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2., =752 —Elo) (10)
b=1

where [E[-] is the average of all w, in a batch. ZM and
Zi represent the uncertainty estimation of u s and o in each

feature channel [30], [31]. Finally, the reparameterization trick
is employed to facilitate the data transformation:

F - E[Mb])

MUA(f) = (Elopl + 05 > ) ( oy

+ (E[Mb] + o, ZM )

where w, and w, follow the standard gaussian distribution,
further modeling uncertainty through random sampling. The
resampled feature will be further forwarded to the next
module. It is worth noting that this module can only be flexibly
applied to various positions during the training phase.

Pre-training on physiological signal data presents unique
challenges due to the potential mismatch between pre-training
and target, compounded by the unique differences inherent
in physiological signals. The intricate nature of physiological
signals frequently constrains the effectiveness of pre-training
transfer to downstream tasks. As there are no rules for
handling complex differences, we start from the data itself to
mine the distribution of samples and calculate the uncertainty
distribution from it. This approach significantly enhances the
model’s generalization ability to novel samples within the
target domain. The newly sampled instances are derived from
a batch size distribution, and the introduction of uncertainty
does not yield additional distinctions.

an

C. Multimodal Cascaded Attention

The self-attention mechanism facilitates interactions at
the patch level, thereby enabling the model to achieve
notable performance improvements. However, as the number
of patches increases, high computational costs are incurred.
In particular, multimodal data are severely limited. With
the increase in the number of modalities, employing the
pairwise attention interactive fusion strategy will lead to more
combinations of data. Consequently, when multiple modal

different color patches represent four modalities.

fusions are executed, a substantial amount of redundancy
is generated. In order to enhance the efficiency of fusion
between multimodal, we introduce the multimodal cascaded
attention module, a module that utilizes a cascaded structure
to sequentially fuse information from different modalities,
as illustrated in Fig. 5. Subsequently, the original attention
mechanism is sequentially employed, with the primary
objective of augmenting comprehensive interactions among
multimodal fusion features.

Specifically, the entirety of multimodal features is cat-
egorized into distinct groups based on modality types
Xoutri = {X1,Xp, - -+, Xy}, where N represents the number
of modalities. At the initial stage, the patches from the first
modality are sent to a self-attention mechanism to complete
the patch-level interaction within the modality. Formally, the
self-attention can be formulated as:

®{4(X1) = Self Attention (Q, K, V) (12)

where Q, K, V are linear projections by multiplying the input
patches with the transformation matrix. The sizes of the
obtained <D15A (X1) and X are consistent. And the length of
each modality in the sample is also the same. <I>i5A (X1) and the
patch of the next modality are directly combined by addition.
The formula for calculating fusion is as follows:

Xpp = O§4(X)) + X, (13)

similarly, Xj> undergoes a self-attention mechanism to
interact with dual-modal patches, resulting in the generation of
dezA (X12). Following this, the third modality is also integrated
with the dual-modal fusion patch @fg‘ (X12) through addition
to obtain a three-modal fusion Xj73. By analogy, Xj»3 is sent
to self-attention and then merged with the fourth modality.
In conclusion, the output from each level constitutes the
final output, encompassing single-modal, dual-modal fusion,
three-modal fusion and four-modal fusion ®&4 (X2 )
{OPXD), 34 (X12), P34 (Xi123), D% (X1234) ) This
approach diminishes the number of pairwise fusion
combinations, enhances the diversity of multimodal fusion,
and streamlines the overall model structure.
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The resulting output is further subjected to a subsequent
self-attention mechanism to accomplish the entirety of the
attention operation. According to the standard transformer
framework, each attention is followed by the feed-forward
layer. The computation can be formulated as:

Iti F’ SA F CA Iti
it = of (o3 (o6 (05" (x5)))

where @g and @gl are feed-forword layers, and D denotes
the quantity of attention layers implemented in the model.
It is noteworthy that the cascaded attention is executed at the
patch level to guarantee interaction among patches. Moreover,
this operation is readily extendable to accommodate a greater
number of modalities.

In contrast to the original attention mechanism, the cascade
attention also yields significant computational complexity. For
a modality X € R"*? with n patches of length d passing
through the self-attention mechanism, the computational
complexity is expressed as O (n’d), when four modalities
are concated together and sent to a self-attention mechanism,
the computational complexity is O (16n2d). Nevertheless, the
cascade attention reduces the computational complexity to
O (4n*d), representing a quarter of the original.

(14)

IV. EXPERIMENTAL DESIGN
A. Datasets

1) DriveDB: DriveDB [8] is derived from the stress
recognition in automobile drivers database. This dataset
comprises comprehensive physiological recordings obtained
from 16 drivers during real-world open-road driving scenarios.
To ensure uniform and consistent processing of all physi-
ological signals, we performed downsampling, reducing the
sampling rate of all signals to a common rate of 15.5Hz. Each
driver participated in identical and consecutive driving tasks,
encompassing Rest, City, and Highway driving conditions.
According to the MIT Media Laboratory rating criteria,
category labels were assigned to define the stress levels
experienced by car drivers under different traffic conditions.
Specifically, the Resting phase (comprising Initial Rest and
Final Rest) of the driving segment was categorized as Low-
Stress. The Highway phase (Highway 1 and Highway 2)
was classified as Neutral-Stress, while driving within city
environments was labeled as High-Stress. For our analysis,
we focused on the physiological data of 10 drivers from
the dataset, as this subset included complete ECG, EMG,
GSR, and RESP signals, the number of channels for each
modality is 1. To suppress unreasonable samples during
pressure accumulation and pressure transitions, we began
sampling five minutes after the start of each driving segment.
Each sample had a non-overlapping duration of 10 seconds
and we assigned corresponding labels to each segment.

2) CogPilot: CogPilot [32], a dataset focusing on multi-
modal physiological monitoring during virtual reality driving
tasks. This dataset was meticulously gathered while par-
ticipants engaged in a series of virtual flight tasks, each
characterized by varying levels of difficulty. The participants
encountered four distinct levels of difficulty, with these
variations introduced through adjustments in wind speed,

turbulence, and visibility conditions. To maintain consistency,
we opted to utilize only ECG, EMG, GSR and RESP
for our research with channel numbers of 3, 5, 2, and
1 respectively. Furthermore, we standardized the sampling
rate for all modalities to 15.5Hz by downsampling from their
original rates. Our analysis included data from a total of
30 subjects in the dataset. Each subject actively participated in
the experiment in all scenarios. The United States Air Force
and MIT Artificial Intelligence Accelerator divide stress labels
into four levels based on the difficulty of scenarios, including
three different active tasks and one resting state. We conducted
non-overlapping 10 seconds segmentations for each type of
scene experiment.

B. Implementation Details, Baseline and Evaluation
Metrics

In this paper, all the experiments are implemented in
PyTorch and conducted on a single NVIDIA 3080Ti 12GB
GPU. In the pre-training stage, the batch size of all models
is set to 128 and the training epochs are configured to 200.
The AdamW optimizer is employed with a base learning rate
of le-4 and weight decay of 0.05. We warm up training for
40 epochs, starting from learning rate le-6, and decay it to
0 throughout training using cosine decay. Different from the
training stage, in the fine-tuning stage, the learning rate is
increased to le-3. Warm up epochs are reduced to 5 and
training epochs are set to 100.

To conduct a comprehensive evaluation, we compare our
method with 10 baseline methods. In full-supervised learning,
InceptionTime [16], SCINet [17] and DSN [18] are models
based on CNN, Vit Arjun [19], Crossformer [20] and Ours
(Random Init) is implemented based on Transformer. Random
Init refers to the utilization of randomly initialized weights,
initiating the training process from scratch. In self-supervised
learning, TimeMAE [25] and MultiMAE [14] employ the
mask paradigm, and TS-TCC [28], TF-C [33], TS2Vec [34]
and CPC [35] are derived from the contrastive learning
paradigm.

In all our experiments, we demonstrate the efficacy of
the pre-trained model through two widely adopted evaluation
protocols: linear probing and fine-tuning evaluation. The
linear probing evaluation freezes all parameters of the entire
model and exclusively updates the weights of the final
classification layer to adapt to downstream tasks. The fine-
tuning evaluation adapts all parameters of the model in
accordance with downstream tasks without enforcing freezing
operations. We utilize the Accuracy(Acc), Recall(Rec) and
F1 score as metrics to assess the model’s performance
in classification tasks. The best results are highlighted in
boldface. Reported experimental results are mean and standard
deviation values across five independent trials.

V. EXPERIMENTAL RESULTS
A. Comparison Among Previous Methods

In this section, the performance of the model is thoroughly
evaluated through subject-dependent setting, where both the
training and test sets include samples from all subjects.
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TABLE |
COMPARISON AMONG OURS MODEL AND BASELINEMETHODS
Training strategy Methods DriveDB CogPilot
Acc Rec F1 Acc Rec F1
InceptionTime [16]  82.69£0.34  81.33+0.37 81.33+0.42 89.17+£0.31  89.461+0.27  89.52+0.28
ViT_Arjun [19] 77.56£0.67 77.68+£0.76  75.87£0.65 78.13£0.65  78.78+£0.58  78.29+0.53
Full-supervised Crossformer [20] 79.06+£0.45  78.11+0.41  78.19£0.37  83.92+0.38  84.364+0.44  84.49+0.34
Scinet [17] 75.64+0.32 74224029 74154035 77.42+0.16 78.01+0.26  77.84£0.21
DSN [18] 81.84+0.27 80.71£0.36  80.98+0.31  86.42+0.44  86.77£0.47  87.01+£0.35
Ours (Random.Init)  83.97+0.39  82.794+0.37  82.93+£0.33  84.76+0.43  85.56+0.38  85.66+0.47
MultiMAE [14] 79.98+0.42  80.614+0.39  80.20+£0.43  75.35+0.41 76.894+0.44  76.72+0.39
TF-C [33] 83.33+0.10  82.68+0.14  82.79+0.11 85.4240.15 85.63£0.15  86.12+0.11
Full-supervised: TimeMAE [25] 75.21+£0.58  71.78+0.65  71.95£0.52  83.68+0.58  84.20+0.53  84.35+0.52
Fine:tuning ’ TS-TCC [28] 81.83+0.23  80.53£0.25 80.22+0.28  74.10+0.22  75.06+£0.25  75.3440.26
TS2Vec [34] 78.63£0.37  76.94+0.33  77.15£0.37  85.17£0.36  85.36+£0.35  85.69+0.38
CPC [35] 79.27+£0.46  77.65+0.38  77.31£0.48 91.92+0.48  91.93+0.34  91.82+0.42
Ours 88.46+0.41 87.271+0.35 87.59+£0.28 92.00+0.22 92.444+0.39 92.43+0.36
MultiMAE [14] 60.89+£0.69  59.514+0.58  58.19£0.57 62.13+0.67 63.484+0.55 62.06+£0.49
TF-C [33] 63.67+£0.32  63.87+£0.41 64.15£0.19 74.93+0.35 75494035 75.19+0.34
Full-supervised: TimeMAE [25] 58.97+0.78  57.684+0.56  50.38+£0.61  74.02+0.58  74.70+0.64  74.41+£0.55
Linear probing. TS-TCC [28] 60.68+0.43  61.444+0.28 59.55£0.39 61.62+0.45 61944048 61.92+0.43
TS2Vec [34] 60.68+0.31  62.36+0.25 59.03£0.33  71.60+0.32  72.324+0.31  72.32+0.31
CPC [35] 61.47+0.35 60.89+042 60.45+£0.34 78.41+0.33  78.934+0.37  78.86+0.35
Ours 65.59+0.33  65.10+0.47 64.72+0.34 79.18+-0.42  80.30+0.51  80.21+0.39
TABLE Il

Specifically, the entire experiment is divided into two training
strategies: fully-supervised and self-supervised. The datasets
are divided into Dyrgin: Dressr = 8: 2. We first conduct
self-supervised pre-training on the D;.,i, without using
labels, followed by the fine-tuning phase on the Dyrgiy.
Finally, the model’s performance is evaluated on the Dy.y;.
To ensure consistent data distribution between the training
set and the test set, we use stratified sampling on the
divided dataset. The experimental results are presented in
Table I. All fully supervised methods are trained from
scratch using the Dy.4i, without self-supervised pre-training.
In comparison to other fully supervised methods, our fully
supervised method has certain competitiveness. However, it is
imperative to acknowledge that it has yet to attain the
best results on CogPilot. In the fine-tuning evaluation, our
model demonstrates substantial performance enhancements
compared to various fully supervised methods, especially for
Ours(Random Init). Overall, in the fine-tuning evaluation,
our model achieves on average 6.26%, 6.64%, and 7.75%
improvements in Acc, Rec, and F1. On the DriveDB dataset,
two self-supervised comparative learning methods, TF-C and
TS-TCC, yielded suboptimal results. Within the CogPilot
dataset, CPC achieves higher results, which are less than 1%
away from the best result. Additionally, various other methods
demonstrate commendable performance in this dataset. The
results of the linear probing are understandably inferior
to that of the fine-tuning evaluation. This is a rational
expectation since the linear probing evaluation only adjusts the
classification head. Overall, in the linear probing evaluation,
our model achieves on average 7.96%, 9.13%, and 9.2%
improvements in Acc, Rec, and F1. On the DriveDB dataset,
TF-C produces less than 1% of the best performance.
It is noteworthy that, exclusively employing Transformer-
based structures, MultiMAE and TimeMAE exhibit less than
satisfactory performance.

COMPARISON FOR DIFFERENT PROPORTIONS OF
MASK RATIO IN THE DRIVEDB DATASET

Linear probing Fine-tuning
Mask ratio
Acc Rec Fl Acc Rec Fl
5% 63.5240.53 63.8310.62 63.084+0.54 86.531+0.45 85.56+0.62 85.70+0.48
15% 65594035  63.98+0.48  64.23+£0.69  88.03+£0.45  86.79+0.42  87.1840.39
25% 64.53+0.34  62.65+£0.47  63.02+£0.39  87.39£0.33  86.30+0.46  86.5240.10
35% 65.384+0.53  63.70+0.55  64.15+£0.52  86.53+£0.53  84.51+0.52  85.1840.55
45% 63.03+0.12  62.85+0.24  63.18+0.19  85.68+0.12  85.50+0.28  85.0240.22
55% 654514038  64.18+0.48  64.68+0.29  87.60+£0.24  86.40+0.26  86.7740.42
65% 65.59+£0.33  65.10+£0.47  64.72+0.34  88.461+0.41  87.27+0.35  87.59+0.28
75% 64.744031 63424051 64294041  87.60£0.14  86.24+0.43  86.6610.28
85% 64.95+0.42  63.66+0.54  64.15+£0.34  85.68+£0.38  84.85+0.37  84.701+0.43
TABLE Ill

COMPARISON FOR DIFFERENT PROPORTIONS OF MASK
RATIO IN THE COGPILOT DATASET

Linear probing Fine-tuning
Mask ratio
Acc Rec F1 Acc Rec F1
5% 75934045 76974049  77.13£0.62  89.4240.25  90.391+0.38  90.4110.31
15% 78.26+0.29  78.96+0.35  79.23+£0.18  90.09£0.34  90.641+0.28  90.6910.31
25% 73.77+0.48  74.79+0.39  7475+0.53  91.00£0.49  91.48+0.35  91.5140.33
35% 71194026 71.82+0.34  72.02+£048  90.50+0.81  91.03+0.55  91.08+0.41
45% 75.60+0.31  76.00+0.64  76.48+£0.67  91.67+£0.48  92.17+0.45  92.1340.66
55% 79.18+£0.42  80.30+£0.51  80.21+0.39  92.004+0.34 92444045  92.43+0.38
65% 74.85+0.61  76.17+0.42 7551048  92.07£0.21 92454037  92.4440.22
75% 75.1840.37  76.03+£0.51  76.19+£0.27  92.25+£0.22  92.64+0.39  92.6110.36
85% 74.5240.49  752940.67  75.50+0.35  90.08+£0.54  90.47+0.55  90.5740.46

B. The Influence of the Masking Ratio

The mask self-supervision paradigm involves selectively
masking a specific proportion of the input patch. Determining
an appropriate mask ratio during the training phase is crucial
for enhancing the capabilities of the encoder. Experiments
are conducted by adjusting only the masking rate, which
ranges from 10% to 90%, as indicated in Tables II and III.
On the DriveDB dataset, the best results for both the linear
probing and the fine-tuning evaluation are achieved with a
mask rate of 65%. As the mask rate decreases, the model
performs worse. However, it attained the second-best result
at a 15% mask rate, a small number of masks coupled
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TABLE IV TABLE VI
PERFORMANCE ANALYSIS FOR DIFFERENT PROPORTIONS OF MODEL ARCHITECTURE ABLATIONS. W/O MEANS WITHOUT
TRAINING SET IN THE DRIVERDB DATASET
DriveDB CogPilot
Method
Linear probing Fine-tuning Acc Rec Fl Acc Rec Fl
Training Ratio < . o - N o Linear probing
had had had had w/o MSE Evoked Attention ~ 63.01£0.76  63.01£0.65 63574062  73.10£043 74062061  73.614053
10% 57064028 52694042 51284035 67734046 65524036  65.69-0.18 wlo Cascaded Attention  63.38+£0.56 63374042 63.54£047 73524042  73.56+041  73.88+039
20% 60041027 552010053 53434051 769240.62 75331037  75.66.L043 wio Uncertainty-Aware 61532031 61974059  60.00£041 71354024 72532039  72.93+0.18
40% 65‘17:{:0'26 56‘02:{:0‘1’9 54.78:{:0-26 83‘12:{:0‘57 81'66:{:0-36 82‘07:{:0‘3’2 Ours 65.59+0.33 65.10+£0.47 64.72+£0.34 79.18+0.42 80.30+0.51 80.21+0.39
60% 64742019 60.014029 58914037 86324025 84741064  85.1340.39 Fine-tuning
80% 65.231+0.13 63.2940.46 62.751+0.43 86.9640.38 85.92+0.56 86.0040.33 w/o MSE Evoked Attention 86.114+0.72 84.234+0.62 84.904+0.70 90.75+0.55 91.274+0.49 91.2840.67
100% 65591033 65104047 64724034 88461041  87.27+0.35  87.59+0.28 Wwio Cascaded Attention 85254053 83904061 84114054 91774046 92244031 92214023
wlo U i ar 84.4040.55 82.60+0.33 82.98+0.58 82.26+0.47 87.05+0.49 87.194+0.35
Ours 88.4610.41  87.27+4035 87594028 92004022 9244039  92.4310.36
TABLE V

PERFORMANCE ANALYSIS FOR DIFFERENT PROPORTIONS OF
TRAINING SET IN THE COGPILOT DATASET

Linear probing Fine-tuning
Training ratio
Acc Rec F1 Acc Rec Fl1
10% 57.11£0.37  57.5440.41 58254043  60.88+0.67  61.624+0.57  61.21£0.42
20% 69.52+0.55  70.814+0.37  69.774+0.35  78.78+0.29  79.094+0.38  78.88+0.47
40% 70.85+£0.22  71.394+0.39  71.89£0.17  87.26+0.24  87.76+0.57  87.79+0.31
60% 71.77£0.12  72.804£0.17  73.01£0.23  89.59+0.33  90.214£0.28  90.16£0.15
80% 74.35+£049 75264046  74.5240.63  90.84+0.41  91.284:0.43  91.36+0.47
100% 79.18+£0.42  80.30+0.51  80.21+£0.39  92.00+£0.22  92.4440.39  92.4310.36

with a specific quantity of patches enabled the model to
extract more informative features. At high masking rates,
specifically above 65%, the model’s performance progressively
diminishes. The CogPilot dataset exhibits distinct optimal
masking rates for the two evaluation methods, resulting in the
attainment of the best results. In the fine-tuning evaluation,
the model’s overall performance exhibits an incremental trend
with increasing mask rates, reaching a peak at 75%. In the
linear probing evaluation, optimal results are attained at
a mask rate of 55%. In general, a larger masking ratio
poses a sufficiently challenging task, fostering enhanced
representational capabilities in the model during the recovery
process, and significant disparities between datasets necessitate
models to employ varying masking rates.

C. Tuning With Different Proportions of Training Data

The self-supervised pre-trained model necessitates height-
ened generalization capabilities, particularly when confronted
with sparsely labeled datasets. Therefore, we undertake
an investigation into the model’s efficacy by varying the
proportion of Dy.,i, during the fine-tuning phase. In the
experimental protocol, the proportion of Dy.4i, is adjusted
across intervals of (10%, 20%, 40%, 60%, 80%, 100%),
while keeping all other parameters constant. The experimental
results are shown in Tables IV and V. Consistently, as the
proportion of Dy, increases, the performance of the model
continues to improve. When the ratio of D;,4i, is only 10%
and 20%, a notable deviation in the model’s performance
deviates significantly from the best outcome. When utilizing
40% of Dyrqin, the model attains a better performance, with a
deviation of only 5% from the best result. In the face of regions
characterized by limited sample sizes and sparse labels, the
construction of a robust self-supervised pre-training model
assumes paramount importance.

D. Analysis About Model Size

In the realm of self-supervision, the potential of the encoder
arises not only from its innovative structure but also from

its size. We conduct experiments aimed at investigating
the influence of encoders of varying sizes on the model.
We employ incremental adjustments to frequently used
parameters, namely /y (number of layers), eb (embedding
size), and ep (number of epochs). The controlled ranges are
set to (8, 12), (64, 128, 256) and (200, 300) for Iy, eb and
ep. We configure a total of 6 different sets of parameters,
and the experimental results are shown in Fig. 6. In the
linear probing evaluation, with the expansion of encoder
dimensions, there is a discernible enhancement in model
performance. Simultaneously, this progression is accompanied
by a concomitant necessity for an increased number of training
epochs. Intriguingly, even with a reduction in dimensions
(ly and eb set to 8 and 128, respectively), superior results
are attainable, notably evidenced in Fig. 6 (c). In contrast,
the larger model demonstrates substantial performance gains
when assessed on the DriveDB dataset, a phenomenon that
may be attributed to the comparatively diminished sample size
within this dataset. Throughout the fine-tuning evaluation, with
the exception of (8, 64, 200) and (8, 64, 300), the model’s
performance exhibited notable proximity across various other
parameter configurations. In light of the aforementioned
observations, a judicious balance between model performance
and computational efficiency led us to the definitive selection
of the parameter configuration (8, 128, 200).

E. Ablation Studies and Parameter Analysis

1) Influence of Each Component Module: We conduct
ablation studies to investigate the contribution of each essential
component of our model. The results are shown in Table VI.
When the MSE evoked attention is ablated, multimodal
physiological signals are fed directly into the CNN. For each
metric in the fine-tuning evaluation, the minimum reduction
in the DriveDB dataset is 2%, and the reduction in the
CogPilot dataset is generally less than 2%. Surprisingly, the
experimental results drop even more dramatically in the linear
probing evaluation. The maximum reduction is only 2% in the
DriveDB dataset, and the minimum reduction in the CogPilot
dataset is 6%. These results indicate that the activation and
transformation data are important for the model. Furthermore,
when cascade attention is ablated, the attention is set to
the original self-attention. Each metric decreases slightly in
the fine-tuning evaluation. However, a notable discrepancy
of up to 6% is observed in the linear probing evaluation,
specifically for the CogPilot dataset. This shows that the
cascaded attention improves the performance of the model.
Additionally, due consideration is warranted for the strategy
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Fig. 6. Performance of encoder with different sizes (ly, eb, ep). Here, ly denotes the number of layers in the Transformer within the encoder, eb
represents the embedding size, and ep denotes the number of training epochs.

TABLE VII
PERFORMANCE OF DIFFERENT INSERTED POSITIONS.
W/0 MEANS WITHOUT

DriverDB CogPilot

Evaluate Pattern Position

Acc Rec Fl1 Acc Rec F1
w/o Uncertainty-Aware ~ 61.53+£0.31  61.97+£0.59  60.00+£0.41  71.35£024  72.53+£0.39  72.9340.18
After CNN 62824071 62.15£0.65  60.37£0.63  7235+0.35  73.06+042  73.23£0.65
Linear probing After Embedding 64.10£047  64.442059  63.58+0.87  70.60£0.62  71.62+£0.46  71.871+0.46
After Encoder 62.60£0.77  62.09+£042  60.78+0.58  71.10£0.31 72.48+0.24  72.1510.36
All 65.59+£0.33  65.10:047  64.72+0.34  79.18+0.42  80.30+£0.51  80.21+0.39
w/o Uncertainty-Aware  84.40+0.55 82.6040.33 82.98+0.58  86.26+0.47  87.05+0.49  87.19+0.35
After CNN 84.61+£0.19  83.63+0.27  83.6840.32  90.34+0.28  90.944+0.29  90.9040.35
Fine-tuning After Embedding 86.53+0.41 85.04+0.61 85.39+0.68  90.2540.51 90.724£0.24  90.78:£0.38
After Encoder 83.33+£046  83.16+0.16 83224044  86.34+023  87.16+£048  87.15+0.25
All 88.46:£0.41 87.274£035  87.59+0.28  92.00£0.22  92.4440.39  92.43:+0.36

of attention stacking. A detailed exploration of this strategy
is presented in section V-E. 3). Finally, the removal of the
multimodal uncertainty-aware module results in the model
achieving its poorest performance, with a reduction of at
least 4%. Particularly noteworthy, the difference observed in
the linear probing evaluation for the CogPilot dataset is a
remarkable 8%. The observed phenomena may be ascribed
to the insertion of this module at diverse locations, and a
comprehensive exploration of these effects will be discussed in
detail in the next section. In summary, each module is essential
for the model.

2) Influence of The Multimodal Uncertainty-Aware Module:
The Multimodal uncertainty-aware module is deemed a plug-
and-play module that can be easily integrated at any position.
Table VII presents the experimental results obtained from the
two datasets. Here, we integrate this module after each module,
namely CNN, Embedding and Encoder. After the insertion
of this module at various positions, the majority exhibit
improvements when compared to the original module without
the uncertainty-aware module. Only a limited number of
positions demonstrate performance close to or inferior to that
of the original model after insertion. In the DriveDB dataset
and the CogPilot dataset, the model demonstrates the most
significant improvement after the insertion of uncertainty-
aware module into the Embedding and CNN, respectively.
Overall, the performance improvement of the model after
the uncertainty-aware module is inserted into the Encoder
is not that obvious. This phenomenon may be because the
uncertainty changes closest to the output layer and the model is
no longer training, which exerts a direct impact on the results.

3) Influence of the Multimodal Cascaded Attention: To
substantiate the efficacy of the cascade structure, we also
investigated various strategies for stacking attention. Specif-
ically, we assume that the encoder consists of D layers. The

TABLE VIII
PERFORMANCE OF THE MULTIMODAL CASCADED ATTENTION

Evaluate Pattern  Stacking Strategy DriverDB CogPilot

Acc Rec F1 Acc Rec F1
Self-Cascaded 62.82+0.29 61.42+0.43 60.60+0.45 70.024+0.65 70.31+0.39 71.23£0.15
All-Self 65.38+0.32  63.37+£048  63.544+0.26  73.5240.57  73.56+0.52  73.884+0.23
Linear probing All-Cascaded 6545+0.18  62.07+£023  62.0940.35  74.5240.41 75.78+0.55  75.8440.85
Alternate 65.59+0.33  65.10+0.47  64.72+0.34  79.18+0.42  80.30+0.51 80.21+0.39
Self-Cascaded 85.68+0.14  83.81+£0.41 84274026  91.754+0.41 92194042 92.1740.18
All-Self 85.25+0.44  83.904+0.43 84.11+0.32 91.774£0.46  92.24+40.13 92.2140.21
Fine-tuning All-Cascaded 86.75+0.75 85.07+0.61 85.63+0.34  90.0940.39 90.59+0.13 90.56+0.45

Alternate 88.46+0.41  87.27+0.35  87.59+0.28  92.00+0.22  92.44+0.39  92.43+0.36

Self-Cascaded is defined such that the first D/2 layer employs
the cascaded attention, while the last D/2 layer utilizes
self-attention. The designations All-Self and All-Cascaded
denote configurations where all D layers are exclusively
the self-attention or the cascaded attention, respectively. The
Alternate refers to the alternating stacking strategy: (Self 4
Cascaded) x D/2. Table VIII presents the experimental
results obtained from the two datasets. Relying on a single
attention mechanism fails to yield optimal results. The
DriveDB dataset demonstrates a preference for cascaded
attention, emphasizing its focus on inter-modality fusion.
Conversely, the CogPilot dataset prioritizes intra-modality
interactions and prefers using the self-attention. In the linear
probing evaluation, Self-Cascaded achieved the worst results
on both datasets. In the fine-tuning evaluation, the alternating
method achieves the best results. The alternating attention
stacking strategy exhibits enhanced adaptability to various
datasets. The inclusion of cascaded attention ensures effective
fusion among multimodal patches, while the self-attention
further enhances the interaction within multimodal fusion
patches.

4) Influence of MSE Scales Factor: As the primary tool for
stimulating physiological signals, MSE necessitates detailed
experimental research on the critical parameter—scale factors.
Fig. 7 depicts the results for the two datasets with scale
factors in the range of 1 to 10. Collectively, as the
scale factor increases, the model’s performance exhibits
gradual improvement, reaching its best results at a scale
factor of 4. As the scale factor continues to increase, the
model’s performance experiences a gradual decline, eventually
stabilizing with minor fluctuations. In the linear probing
evaluation, as the scale factor continues to increase, the
model’s performance undergoes a sharp decline until it
stabilizes, suggesting that the evaluation method of frozen
parameters is more sensitive to changes in the scale factor.
Crucially, we also found that when the scale factor is 8§,
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Fig. 7.  Effects of the scales factor of MSE on both datasets. Two

evaluation protocols are used, with scales factor ranging from 1-10.

the model still has a better performance. As depicted in
Figs. 7 (a) and (d), various evaluation metrics approach
optimal results. While noticeable changes are not evident in
Figs. 7 (b) and (c), a discernible fluctuation in performance
improvement is observable. As the scale factor increases,
the computation time also exhibits an increment. Ultimately,
we opt for a scale factor of 4.

5) Visualization of Reconstruction Effects: The results of
the reconstruction task are depicted in Fig. 8. We visualized
all four physiological signals of a sample. The pre-training
task is conducted on the DriveDB dataset, with the mask
rate set at 65%. We observe that when confronted with
this more challenging reconstruction task, our model excels
in reconstructing multimodal physiological signals, thereby
contributing to the enhancement of the encoder’s represen-
tation learning. Specifically, while accurately reconstructing
the overall trends of each modality, significant disparities
emerge in certain details, such as fluctuations in amplitude
and localized trend offsets.

F. Subject-Independent Experiments

To better reflect real-world scenarios, we further explore
a more challenging task: subject-independent. In subject-
independent experiments, one subject from the dataset is
selected as the test subject in turn for testing the model, and the
rest subjects are used for training the model. In the pre-training
stage, only the rest subjects’ data are used to train the model.
The experimental results are presented in Table IX. This table
displays the classification accuracy for all 10 subjects (S1-
S10) in the DriveDB dataset. Additionally, we calculate the
average accuracy and standard deviation for these 10 subjects.
Due to space constraints, we are unable to present the detailed
results for all 30 subjects in the CogPilot dataset. Instead,
we report the average accuracy and standard deviation across
all subjects. We observe a significant reduction in model
accuracy compared to subject-dependent experimental setting,
with the maximum difference reaching 21%. This finding is

not surprising, as physiological data vary greatly between
individuals. As shown in the table, accuracy varies widely
between subjects. Our approach achieves the best results
in the majority of subjects. However, for certain individual
subjects, our self-supervised method does not outperform the
best fully supervised method, and the best fully supervised
results are highlighted in bold. Compared with other self-
supervised methods, our approach achieves the best results.
Overall, our method has a statistically significant superiority,
achieving the best results for the average between subjects in
both datasets.

VI. DISCUSSION

Utilizing multimodal physiological data, our objective is
to devise a multimodal self-supervised model for detecting
driving cognitive alertness. When the dataset contains a large
number of samples with high-quality labels, fully supervised
learning can achieve better results compared to self-supervised
learning models. The collection process of physiological
data is cumbersome and costly, and the labeling of samples
is highly susceptible to subjective factors. Our model is
constructed within a comprehensive self-supervised framework
of mask modeling. The MSE evoked attention mechanism
offers guidance on the underlying nature of the data, while
the multimodal cascaded attention module enhances the
fusion of multimodal physiological signals. Additionally, the
multimodal uncertainty module improves the robustness of
the model. We assessed the effectiveness of our model using
the DriveDB and CogPilot datasets, employing two tuning
methods. Our experimental results demonstrate that our model
surpasses other methods in terms of performance. Ablation
experiments further reveal that each module significantly
contributes to the overall model’s efficacy.

In fully supervised experiments, our method achieved the
best results on the DriveDB dataset, ranking second only to
Inceptiontime [16] and DSN [18] on the CogPilot dataset.
Importantly, self-supervised methods have demonstrated the
ability to enhance model performance when compared to
fully supervised approaches. On the DriveDB dataset, self-
supervised methods such as TF-C [33], TS-TCC [28], and
CPC [35], which are based on contrastive learning, yielded
suboptimal results. On the CogPilot dataset, CPC [35]
achieved better performance. The transformer mask modeling
self-supervised frameworks, MultiMAE and TimeMAE, per-
formed worse than self-supervised models based on contrastive
learning. In general, the linear probing evaluation method
demonstrated inferior performance compared to the fine-
tuning evaluation method. This is because the linear probing
evaluation method only trains the classification head. Ablation
experiments demonstrated the significance of the multimodal
uncertainty-aware module, which effectively mitigates individ-
ual differences between subjects by introducing randomness,
thereby enhancing the model’s robustness. The remaining
two components make equal contributions to the overall
performance.

We also explored the effect of several key parameters on
the model. The first aspect concerns the influence of the
masking rate on model performance. Both datasets yielded
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Fig. 8. Reconstructions of EEG, EMG, GSR and RESP from the DriveDB dataset.
TABLE IX
COMPARISON AMONG OURS MODEL AND BASELINE METHODS IN SUBJECT-INDEPENDENT
Training strategy Methods DriverDB ‘ CogPilot
S1 S2 S3 S4 Ss S6 S7 S8 S9 S10 Average Average
TnceptionTime [16]  75.83+1.12  71.25£0.66 62912091 78331085 71.90£184 6558+136 8250£1.65 52.58£159 74.58+£0.85 49.04£0.66 69.15£9.98 | 46.868.14
VAT Arjun [19] 74162107 60.00+1.15 6583134 77.91£1.22 72.85+1.69 55.83+£2.34 76.66+091 51.66+0.75 76.72+1.86 62381122 67.40+9.56 | 44.44+10.6
Full ieq  Crossformer [20] 37514191 36484168 3832144 37504161 42855172 37084149 3784198 3763169 37574149 4SSTEIS] 30144374 | 26644507
Hi-supervise Scinet [17] 70.8340.79  66.66+£0.92  69.16+0.86 78.33+£0.56 70.47+0.61 60414073 75414137 53834064 T458+1.28 58.09+1.02 68.47+6.89 | 49.76:+9.28
DSN [18] 67914050 74584042 65414084 80254030 72384071 58334025 80414035 53334095 76.25+0.88 64.28+0.53 6931+9.11 | 54.76:£10.4
Ours (Random.Init) ~ 65.08+153 7151130 6416112  80.00+£059 73.80+£0.77 60.19£0.32  79.58+041 50004026 77.50+0.73 63.09+1.79  68.99+9.50 | 55.71+8.93
MuliMAE [14] 61355148 66324143 5625+1.93 70.83%£1.77 68574072 55414049 7291132 45414263 69.58£0.78 49.85+1.88 61.6419.52 | 53.60=11.6
TE-C [33] 67.06:1.44 70584195 6333+1.72 79444141 71294122 59.614055 7375£1.61 52194029 77914179  6335+143  67.85+£8.46 | 56.03+£9.37
Fall-supervised: TimeMAE [25]  52.08+1.57 61.29+1.74 57.40£1.55 69.03+151 6645+£1.66 5135124 73.27+149 53284135 71.66+1.82 59.72+1.15 61.55+8.18 | 51.61+7.42
Finempervised: TS-TCC [28] 60745172 71485194 61444145 78394153  69.64£148 60.831238 78394158 50.19+£1.59 76254175 59254128  66.69+9.57 | 56.52£9.97
ine-tuning TS2Vec [34] 59254192 67224146 62344129  69.93+1.88 7037+£1.69 56.66+197 7041171 48284137 7585+127 60.23+1.62 64054822 | 50.45+11.2
CPC [35] 6037138  6750£0.62 65664042 79254143  T1.60£194 56.85k1.70 75.85+059 4166177 72404148 61114083 65231109 | 46.88+6.61
Ours 67.67+1.35  75.18+£1.29  68.33+092 80.95:+0.85 74284072 66.96+1.54 8291049 54374031 78331126 6285+1.77 71.18+8.82 | 57.98:+9.28
MuliMAE [14] 41255113 37.50+135 38005159 58074126 39.14%151 47224197 65834187 41374129 5548+152 42851147 46.6749.79 | 4038£9.11
TF-C [33] 50.83+£1.62 46.85+£1.67 44441175 67.93+1.81 43.18+142 48431133  6111£158 41294176 54454127 44624159 5031+8.56 | 43.70+8.77
Full-supervised: TimeMAE [25]  4333+1.62 51.66+153 41.59+1.84 61494137 37.2241.26 43531165 66674143 36824166 49.82+£1.91 4887+1.37 48.1049.84 | 39324645
L?‘ *“P“V;Pe g TS-TCC [28] 46294187  S11S+1.44 45924134 6944112 42174157 49.16£138 66.25+1.92 41254156 57.75+1.79 50.61+133  51.99+9.62 | 42.54+122
inear probing TS2Vec [34] 45.1841.69  40.66:1.94 37924134  6033£1.82  31.90+1.61 3625179 66.48+1.44 37254188 53.07+1.32 43214066 45.23+113 | 37.74+8.52
CPC [35] 42684056 44014079  37.18+1.85  69.03£1.79 43274177 43.53k147 62454048 3625181 5287137 41724212 4730108 | 41.29+9.94
Ours 49.58+0.79 52914159 46.66+1.64 69.58+1.76 45.71+0.62 49.92+137 67.08+1.47 4291+0.85 5871+159  49.04+031 53.16+9.02 | 45.21+9.27
optimal results at masking rates of 55% and 65%, respectively. To delve into the intrinsic state of physiological signals,

A higher masking rate compels the model to enhance the
encoder’s capabilities during the reconstruction process. It is
important to note that the optimal masking rate cannot
be determined empirically, as it varies depending on the
dataset. Secondly, we also investigated the ratio of Dy4ip
during the fine-tuning phase. We found that using 40%
of the Dyp4in leads to better results. This demonstrated
that our self-supervised pre-training model is well-suited for
datasets with small sample sizes and sparse labels. Thirdly,
we conducted experiments to assess the impact of encoders
of different sizes on the model. While overall performance
significantly improves as the model becomes larger and the
number of layers increases, it’s essential to strike a balance
between model performance and computational efficiency
when selecting the optimal configuration. Finally, we explored
the generalization performance of the model in a subject-
independent setting. While our method achieved the best
results for most patients, there remains significant room for
improvement.

Even though the proposed study has introduced a novel
framework that surpasses the performance of previous
methods, it still exhibits specific limitations. Firstly, finding
an optimal set of parameters for the model is a complex task
as these parameters are interrelated. Secondly, each modality
does not fully exploit its unique advantages, instead, there
is a dynamic balance and interaction among them, which is
achieved during the training process. Third, the model has not
yet achieved optimal results in a subject-independent setting
and requires further improvement and optimization.

VIlI. CONCLUSION

In this paper, we introduce a multimodal self-supervised
model designed for the detection of driver cognitive alertness.

we innovatively introduce MSE and integrated it with an
evoked attention. This approach serves to emphasize the
effective information within the original data. In the process
of multimodal fusion, we design a novel cascade attention
mechanism. This mechanism not only accomplishes informa-
tion interaction within each modality through self-attention
but also sequentially integrates information across modalities.
Importantly, the computational complexity of this attention
is significantly reduced, being only 1/4 of the original self-
attention. Furthermore, we introduce multimodal uncertainty
sensing to effectively address the intricate variations in
physiological signals within the target domain. We conduct
extensive exploratory and comparative experiments on datasets
related to both drivers and pilots. The experimental results
unequivocally demonstrate that our model achieves superior
performance, surpassing multiple self-supervised baselines.
Our model has great potential for research and application in
resource-limited scenarios. In our future endeavors, we aim
to achieve two objectives: 1) Enhance the efficient fusion
of multimodal physiological signals. 2) Develop an excellent
pre-training model to improve the model’s performance in
linear probing evaluation. 3) Improve the model to enhance
its generalization ability across subjects.
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