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Evaluating the Feasibility of Visual Imagery for
an EEG-Based Brain–Computer Interface

Justin Kilmarx , Ivan Tashev , Fellow, IEEE, José del R. Millán , Fellow, IEEE,
James Sulzer , and Jarrod Lewis-Peacock

Abstract— Visual imagery, or the mental simulation of
visual information from memory, could serve as an effec-
tive control paradigm for a brain-computer interface (BCI)
due to its ability to directly convey the user’s intention
with many natural ways of envisioning an intended action.
However, multiple initial investigations into using visual
imagery as a BCI control strategies have been unable to
fully evaluate the capabilities of true spontaneous visual
mental imagery. One major limitation in these prior works
is that the target image is typically displayed immediately
preceding the imagery period. This paradigm does not cap-
ture spontaneous mental imagery as would be necessary
in an actual BCI application but something more akin to
short-term retention in visual working memory. Results
from the present study show that short-term visual imagery
following the presentation of a specific target image pro-
vides a stronger, more easily classifiable neural signature
in EEG than spontaneous visual imagery from long-term
memory following an auditory cue for the image. We also
show that short-term visual imagery and visual perception
share commonalities in the most predictive electrodes and
spectral features. However, visual imagery received greater
influence from frontal electrodes whereas perception was
mostly confined to occipital electrodes. This suggests that
visual perception is primarily driven by sensory informa-
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tion whereas visual imagery has greater contributions from
areas associated with memory and attention. This work
provides the first direct comparison of short-term and long-
term visual imagery tasks and provides greater insight into
the feasibility of using visual imagery as a BCI control
strategy.

Index Terms— Brain–computer interface, visual imagery,
visual perception, electroencephalography.

I. INTRODUCTION

THE concept of using brain signals recorded via elec-
troencephalography (EEG) to control external devices

has gained traction in recent years as a potential way to
provide patients with severe neuromuscular disorders a way
to communicate and interact with the world around them [1].
This technology, termed brain-computer interface (BCI), has
since grown to cover applications such as robotic control [2],
[3], [4], communication [5], [6], and even entertainment and
gaming [7], [8], [9]. Various control strategies exist for BCI
interaction, but each come with their own limitations that
prevent BCIs from obtaining widespread use outside the
lab [10]. The imagined movements of large body parts is
perhaps the most common control paradigm for EEG BCI
applications; however, it often suffers from lengthy training
times [10], with inconsistent and unstable performance [11],
and a restricted range of options for imagined movements [12].
Most attempts to address the limitations of this paradigm
focus on advancing EEG signal processing and classification
techniques [13]; however, an often overlooked solution is
investigating other imagery-based control strategies [14], [15].
Perhaps the ideal approach would be to utilize the unlimited
flexibility of visual imagery to provide a more ecological
connection between mental imagery and the intended action.
Therefore, the objective of this work is to investigate the
efficacy of using visual imagery for EEG BCI control.

A. Limitations of Current BCI Control Paradigms
When designing a BCI system, one major considera-

tion is the means of interaction used to perform the task.
These control paradigms can be divided into two method-
ologies: exogenous paradigms based on the brain’s response
to an external stimulus, and endogenous paradigms where
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participants learn to modulate their brain activity using mental
imagery [10]. The most popular exogenous paradigms in EEG
rely on measuring the brain’s response to visual stimuli such as
a flickering target [5], [16]. Most participants can learn to use
these paradigms with high accuracy and minimal training [10].
However, these procedures can be time intensive and require
a high level of sustained attention and visual focus which
can cause fatigue [17] and would not be suitable for indi-
viduals with visual impairments or photosensitivity [18], [19].
Furthermore, there is often large variability in performance
across individuals [20], [21], perhaps because the control
strategy is not intuitive, and this confusion can take focus
away from the desired application. For example, the user
would have to remember which flickering target corresponds
to the intended action instead of attending to the action
directly.

Endogenous control paradigms with mental imagery can be
used instead to overcome these challenges. Motor imagery of
the movements of large body parts (e.g., right vs. left hand) is
the most popular imagery-based paradigm [10]. Limitations for
this approach include lengthy training times (weeks to months)
[10], large inter- and intra-subject performance variations [11],
non-intuitive control schemes for certain applications [22], and
a limited variety of classes available for BCI control [12].
Furthermore, factors such as noise in the EEG signals, motiva-
tion, fatigue, and difficulty visualizing the intended action can
greatly impact a user’s ability to gain control of the BCI [23].
This leads to a challenge referred to as “BCI illiteracy” in
which a substantial percentage of participants (approximately
15-30%) remain unable to achieve proper control of a BCI
even after a standard training period [24]. Even for the
participants who can attain some control, performance often
falls short of the desired threshold rate for effective control
(often set at 60% or 70% accuracy in classification of the
intended action) [11], [13], [25]. These difficulties have been
observed across all BCI paradigms regardless of the neural
signal used [26]. Some studies have even seen that participants
who are deemed “BCI illiterate” using one paradigm can reach
proficiency with another that may be more matched to their
specialized expertise [27], [28], [29]. For example, a recent
study by Lee et al. [29] compared performance with a BCI
when participants attempted to use a motor imagery, event
related potential (ERP), and steady-state visual evoke potential
(SSVEP) control paradigm. They found that 72.2% of the
participants were deemed “BCI illiterate” on at least one of
the paradigms with the imagery-based paradigm showing the
highest rate at 53.7%. However, all participants were able to
control at least one of the systems. This indicates that for these
individuals that may have difficulty with one type of BCI, the
availability of an alternative, more intuitive mental imagery
paradigm such as visual imagery may be beneficial to achieve
proper BCI control.

B. Visual Imagery as an Alternative BCI Control Strategy

Visual imagery, or the spontaneous mental simulation of
visual information from long-term memory, could be a use-
ful BCI control strategy that has not yet been sufficiently

tested [30]. Several studies have shown that various categories
of images (e.g., faces, animals, and inanimate objects) can
be reliably distinguished using EEG when participants are
observing an image [30], [31], [32]. However, very few studies
have attempted to measure visual imagery using EEG, and
those that do have shown mixed success [12], [30], [33].
Bobrov et al. [33] provides the first investigation into the
use of visual imagery as a BCI control paradigm. In this
study, they were able to reliably distinguish between visual
imagery of faces, visual imagery of houses, and resting state
with an average of 56% classification accuracy (chance 33%).
However, this study was limited by the number of recruited
subjects (N=7), amount of data collected (four sessions each
approximately 5 min long), and the quality of data collected
(first three sessions used the 16 channel Emotiv Systems Inc.
Epoc headset). Lee et al. [12] was able to demonstrate a high
average classification accuracy of around 40% (chance was
7.69%; N=22 participants) during an offline analysis of a
single session of 13 visual imagery categories. This included
words used for patient communication with concrete properties
(e.g., ambulance, clock, or toilet) or abstract properties (e.g.,
hello, stop, or yes). In Kosmyna et al. [30], researchers
performed offline classification between two classes of flower
vs. hammer during visual observation and imagery. They were
unable to achieve above chance accuracy between the two
classes during visual imagery (average classification accuracy
52%, chance 50%), but they were able to distinguish trials
when participants performed visual imagery vs rest (77%
average classification accuracy; chance 50%) and between
visual observation vs imagery (71% classification accuracy;
chance 50%).

One shortcoming in the aforementioned studies is that
the two larger experiments by Kosmyna et al. [30] and
Lee et al. [12] displayed the target category in each trial imme-
diately before the imagery period. This could be considered
more of a test of holding the object categories in working
memory rather than spontaneous visual imagery [34]. This
leaves the question open about whether spontaneous visual
imagery can be decoded from EEG. To address this question,
this current study provides participants with both visual and
auditory cues of the intended mental imagery in separate
experimental blocks.

Furthermore, the addition of the actual image during the
cue period will allow a direct comparison between the neural
signals elicited during observation and imagery. A study by
Xie et al. [35] followed a similar procedure while looking
for similarities between the mental activity during visual
observation and imagery and found a correlation in the alpha
band (8-13 Hz) between the two conditions. This is supported
by the sensory recruitment hypothesis [36] which posits that
the neural representations activated during perception can also
be activated during short-term retention. However, the study
by Lee et al. [12] found that activity in the higher gamma band
(30-100 Hz) contained the most informative activity for visual
imagery. This study seeks to add to this ongoing investigation
for the most informative features for visual imagery decoding
and the similarities between the neural activity during percep-
tion and imagery.
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C. Identifying Neural Mechanisms Contributing
to BCI Performance

It is poorly understood why certain individuals are unable to
control a BCI after a standard training protocol [11]. Previous
literature from motor imagery has suggested many factors
could play a role in performance variability including the
user’s basic demographics [37] (e.g., lifestyle, gender, or age),
psychological traits [25], [38], [39] (motivation, confidence,
or frustration), physiological traits [40], [41] (e.g., recruitment
of motor imagery related brain networks), and anatomical
structure [42] (e.g., structural integrity and myelination qual-
ity). Previous work from our group has indicated that difficulty
learning to modulate desired brain activity in an fMRI neu-
rofeedback task could be due to greater similarity in the
brain activity patterns for each category [43] or overly rigid
activity patterns (i.e., insufficient variability) for each cate-
gory [44]. For this reason, we followed a similar approach as
Kaneshiro et al. [45] to quantify the representational similarity
between image categories using confusion matrices gener-
ated from multi-class classifications. We hypothesize that the
classification of spontaneous visual imagery from long-term
memory will reveal greater neural representation similarity
between the image categories compared to short-term visual
imagery from working memory. This work provides the first
direct comparison of short-term and long-term visual imagery
tasks measured by EEG in healthy adults and provides greater
insight into the feasibility of using visual imagery as a BCI
control paradigm.

We also administered a Vividness of Visual Imagery Ques-
tionnaire [46] (VVIQ) before the start of the experiment along
with questionnaires of perceived psychological traits such as
motivation, alertness, and frustration after each session. Par-
ticipants’ attention and engagement throughout the experiment
were also monitored using eye tracking and pupillometry.
Previous literature has shown that changes in the diameter
of the pupil can occur in response to psychophysical and
psychological stimuli [47]. Together, this information was col-
lected to allow a more thorough exploration into the conditions
contributing to successful decoding of visual imagery.

II. METHODS

A. Participants
A total of N=30 healthy young adults between the ages

of 18 and 40 years old were recruited from the Austin area
for participation in this study. However, only N=26 subjects
(18 female, average age 22 years, SD=4.17 years) were
included in the analysis due to issues encountered during data
collection. All methods were performed in accordance with
the relevant guidelines and regulations of the University of
Texas at Austin Institutional Review Board.

B. Inclusion Criteria
The experiment conducted in this study involved partici-

pants performing visual imagery of a cued stimulus presented
on a computer monitor. Each participant’s neural activity was
measured by EEG throughout the experiment. As such, all
participants were required to meet the following inclusion

Fig. 1. Sample images used during experimental procedure. Partici-
pants selected one familiar image for each category of animals, famous
faces, objects, or recognizable scenery and landmarks.

criteria: ability to provide informed consent, not be currently
using any medication for psychiatric reasons, not be currently
using any sedatives, no history of major psychotic disorders
(including schizophrenia and bipolar disorder), no history of
epilepsy or photosensitivity, no substance dependence, and
good vision or minimal correction with contacts or eyeglasses.
Participants were also asked to remove hair braids or any other
tight hair styles and have clean hair (no oils, hair spray, or any
other hair product) before participating in EEG recordings.
This study also incorporated eye tracking, for which case
individuals were excluded from participation in this study
if they have glasses with more than one power (such as
bifocals, trifocals, or progressive lenses), eye surgery (such as
corneal, cataract, or intraocular implants), or eye movement
or alignment abnormalities (such as amblyopia, strabismus,
or nystagmus).

C. Stimuli
Images for this experiment were obtained from an in-lab

dataset of famous faces, animals, objects, and scenes that were
chosen to be easily recognizable by the subject population
(Fig. 1). The image categories were selected to be consistent
with prior literature on representational similarity analysis
and for their potential to provide distinct patterns of brain
activity [45], [48]. Participants were instructed to select one
image per category to use throughout the experiment that they
were familiar with and could easily remember. All images
were presented at a similar size (viewing angle ≈ 3◦) with a
neutral gray background.

D. Task Protocol
This study involved a single session of data collection.

During the experiment, the participants were asked to per-
form mental visual imagery of four different categories of
human faces, animals, objects, and scene images. The task
included 5 blocks of visual imagery following either a visual
observation or an auditory cue (Fig. 2a and 2b, respectively).
During the observation cue blocks, the target image for each
category was displayed with a small fixation cross at the center
of the screen for 2.5 sec and the participant was instructed to
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Fig. 2. Task protocol. (a) Observation cue block protocol. (b) Auditory
cue block protocol.

passively view it while attempting to keep their gaze on the
center cross. The image was then removed from the screen for
3 sec. and the participant was instructed to picture the image
that they just saw in vivid detail while keeping their eyes open
and fixated on the center cross. The auditory cues followed a
similar procedure, except that a verbal cue of “face”, “scene”,
“animal”, or “object” was played over a speaker and the
participant was instructed to recall the associated image and
picture it as vividly as possible in their mind. The timings
for image presentation and visual imagery were chosen based
on prior literature of decoding visual perception and imagery
via EEG [12], [35] and to facilitate the cross-task analysis
described below in section H.

After each imagery period in both conditions, an image was
flashed on the screen for 200 ms. The displayed images were
randomly presented with a 70% chance of being the target
image and a 30% chance of being a non-target image. The
participant was then instructed to quickly respond with a left
or right button press if the presented image was the target
category or a non-target category for that trial, respectively.
If the response was correct, the fixation cross turned green.
If the response was incorrect, the fixation cross would turn
red. If the participant responded too slowly or did not provide
a response for the trial, the fixation cross turned yellow.
The primary purpose of this memory test was to ensure the
participant was actively engaged throughout the experiment
and to prevent mind wandering. This data could be used to
remove trials where the participants may have missed the cue
for that trial. Furthermore, this procedure was designed to
mimic a typical BCI scenario where feedback of the predicted
target is displayed at the end of each trial. The timing of
the memory test was chosen based on feedback from initial
pilot testing which found 200 ms made the task sufficiently
challenging.

The full experiment included 5 blocks of the observation
cues and 5 blocks of the auditory cues. Each of the observation
cue blocks consisted of 40 trials and lasted approximately
6 minutes. The auditory cue blocks had a shorter cue duration,
so 48 trials were included for each block and also lasted
approximately 6 minutes. After each block, the participants
were required to take a minimum of 1 min break before
continuing with the experiment, but they were allowed to take

additional time if needed. A 10 sec resting period preceded
each block in which the participants were asked to fixate their
gaze on the center cross and keep their mind blank. The entire
session lasted approximately 1 hour and 15 minutes.

E. Data Collection and Preprocessing
EEG data was collected from 32 channels in accordance

with the 10-20 standard via the Brain Products actiCAP system
with a sampling rate of 500 Hz. Eye movements and blinks
were captured by placing four bipolar electrodes around the
eyes with a reference placed on the mastoid. Data processing
was carried out using the MNE Python package. Data from
channels labeled as “bad” were removed and interpolated from
the surrounding electrodes. Then, the signal was re-referenced
to the common average to remove any background noise that
is common across all channels. Eye movement and blink
artifacts were removed from the signal using an independent
component analysis (ICA) [49]. Artifact removal via ICA was
carried out using the following procedure: implementing a
high-pass filter at 1 Hz to remove signal drift, implementing
notch filters at 60 Hz and its harmonics to remove powerline
interference, annotating the task and break periods, running the
ICA using MNE’s ICA algorithm with 32 components, man-
ually selecting components that contained artifacts, removing
these components, and applying the solution to the unfiltered
data.

F. Visual Perception Classification
Various feature extraction methods and classifiers were

evaluated for the prediction of the four visual perception
categories. We tested features in the delta (1-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma
(30-100 Hz) extracted via Morlet Wavelets, Fast Fourier
Transform (FFT), and Common Spatial Patterns (CSP). The
gamma band was also divided into low (30-60 Hz) and high
(60-100 Hz) gamma for evaluation. For features extracted from
the delta, theta, alpha, and beta bands, the data was first
bandpass filtered between 1-40 Hz to remove low frequency
signal drift and high frequency noise. For features including
the gamma band, the data was bandpass filtered between
1-100 Hz. A notch filter at 60 Hz was also implemented to
remove powerline interference. Only data from the 8 posterior
EEG channels (O1, O2, Oz, P3, P4, P7, P8, and Pz) were used
for feature selection.

Morlet Wavelets were employed in each desired frequency
range equally spaced every 1 Hz for delta and theta bands,
every 2 Hz for alpha and beta bands, and every 5 Hz for
gamma bands. The mean power in each frequency bin was
used as features for classification. For features extracted via
the FFT, the mean power in each band was used for classifi-
cation. CSP features were extracted using the CSP function
from the MNE Python package with 8 components in the
desired frequency range. After extraction, the features were
then normalized using the MinMaxScaler from the scikit-learn
Python package to scale the features between 0-1.

The classifiers tested in this analysis include Logistic
Regression (LR) with a newton-cg solver, Linear Discriminant
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analysis (LDA) with a shrinkage term of 0.1, and support vec-
tor machine (SVM) with a linear kernel. These classifiers are
known to be robust in EEG classification including the decod-
ing of visual imagery [12]. All classification approaches were
cross-validated using a leave-one-block-out (5-fold) cross-
validation approach.

G. Visual Imagery Classification
A similar method as described above was also applied to the

two visual imagery conditions to identify the optimal features
and classifiers for the prediction of the four imagery cate-
gories. Due to the inherently low signal-to-noise ratio involved
with visual imagery, an additional preprocessing stage of
removing trials with signal amplitude exceeding 100 mV was
implemented. This stage effectively removes trials where the
participant may have been moving. This stage removed less
than 5% of trials for each subject. In addition to the 8 EEG
channels used during the visual perception classification, some
frontal channels were found to carry information relevant
to imagery classification. A grid search analysis of the best
channels for imagery led us to include channels O1, O2, Oz,
P3, P4, P7, P8, Pz, TP10, F7, F8, and FC6.

H. Cross-Task Classification
Due to the similarities between the experimental conditions,

we were interested in seeing if the inclusion of data from
another condition can improve the classification accuracy. For
example, can the inclusion of the perception periods improve
the classification of the visual imagery periods? To test this
approach, we concatenated the data from two conditions and
performed a leave-one-block-out (10-fold) cross validation.
For this analysis, we used the mean power in the 1-15 Hz band
obtained by Morlet Wavelets over the 8 posterior channels used
during the perception classification.

I. Evaluation of Performance
The classifier’s performance is evaluated based on the

number of trials where the EEG classification output matches
the target category for that trial beyond the level of chance.
However, small sample sizes can lead to false positives,
and Combrisson and Jerbi [50] have suggested to address
this issue by adjusting the chance level as a function of
sample size (n) and number of classes (c) using a binomial
cumulative distribution. Using this method, the probability of
a classification model to predict the correct label at least z
times by chance is given by (1).

P (z) =

∑n

i=z

(
n
i

)
×

(
1
c

)i

×

(
c − 1

c

)n−1

(1)

In this study, the statistically significant threshold level was
calculated using the MATLAB (Mathworks Inc., MA, USA)
function St (α) = binoinv(1−α, n, 1/c)×100/n, where α is
the significance level given by α = z/n. For this study, each
session included a total sample size of n = 240 observations
for the observation period and visual imagery period following
the observation cue. There were n = 288 observations for
the visual imagery period following the auditory cue. The

experiment consisted of c = 4 classes which provided a sig-
nificance threshold of 29.58% at p = 0.05 for the observation
and visual imagery periods following the observation cue. The
imagery periods following the auditory cue had significance
threshold of 29.17%. In other words, the classification model
must achieve a classification accuracy above this threshold to
be considered statistically significant.

J. Pupillometry Data Analysis
Eye tracking data was captured throughout the experiment

using a Tobii Pro Nano device. This data consisted of the x and
y gaze positions along with the pupil diameters for each eye
recorded at a sampling rate of 60 Hz. The pupillometry data
was preprocessed using the methods outlined in Combrisson
and Jerbi [50] and Winn et al. [51]. First, the data was
segmented into trials starting from the onset of the cue to
one second after the start of the memory test. Then, eye
blink artifacts were corrected by identifying segments with
nan values, removing 5 datapoints from the beginning and
end of the nan segments, and interpolating the values from
the surrounding data points. Trials where over 30% of the data
was nan values were labeled as bad and were removed from
the analysis. The data was then filtered with a second order
Butterworth bandpass filter between 1 and 10 Hz to remove
low frequency drift and high frequency noise and standardized
using z-score. The trials were then baseline corrected by
subtracting out the mean pupil dilating from the 1 sec long
inter-trial period before the onset of each trial. Due to issues
encountered during data collection, only N=22 and N=15
participants were included in the analysis of the eye tracking
data for the observation and auditory blocks, respectively.

III. RESULTS

Our first test was to observe the classification accuracy
between the four imagery categories during the observation
period. Table I presents the classification accuracies when
using the Logistic Regression (LR), Linear Discriminant
Analysis (LDA), and Support Vector Machine (SVM) clas-
sifiers with various band power features extracted via Morlet
Wavelets, Fast Fourier Transform (FFT), or Common Spatial
Patterns (CSP). The right column presents the best combi-
nation of features combining the data in the Delta, Theta,
and Alpha bands of brain activity. The highest accuracy
was obtained by employing an LDA classifier trained on
the mean Morlet wavelets in the 1-15 Hz range equally
spaced every 2 Hz from the eight posterior EEG channels.
This yielded a mean classification accuracy of 42.11% across
all 26 subjects (Fig. 3a). This was significantly higher than
the significance threshold of 29.58% (p < 0.01 × 10−7).
To localize the most predictive channels for the prediction of
the observation trials, we also performed a searchlight analysis
where only the data of a single EEG channel was used to
perform the classification (Fig. 3b). As expected, this analysis
revealed that the posterior electrodes directly over the primary
visual cortex obtained the highest classification accuracy.

We next attempted to classify between the four visual
imagery classes from short-term working memory following
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TABLE I
CLASSIFICATION ACCURACY (%) OF VARIOUS CLASSIFIERS AND

FEATURES DURING VISUAL OBSERVATION

Fig. 3. Classification of observation periods. (a) Mean confusion matrix
obtained from classification of neural data during visual observation of
the four image categories. (b) Heatmap of accuracy obtained during
channel-wise classification of observation periods across all subjects.
Black arrows on color bar demarcate significance threshold at 29.58%
(p<0.05).

the observation cue. Similar preprocessing, feature extraction,
and classification methods as for the observation periods were
tested (Table II). We found that the LR classifier trained on
the mean Morlet wavelets in the 1-15 Hz provided the best
classification accuracy with a mean of 30.05% across all
subjects which was significantly higher than the significance
threshold of 29.58% (p < 0.05) (Fig. 4a). Fig. 4b presents
the average channel-wise heatmap across all subjects, which
shows a trend similar to the observation period where posterior
channels carry the most relevant information for classification.
However, individual analysis of the data shows that there
may be some greater contributions from some of the more
frontal channels. Due to the low accuracy in decoding the
visual imagery categories, no individual channels were found
to exceed the significance threshold during the exploratory
channel-wise searchlight analysis. Also included in Fig. 4c is
the channel-wise heatmap of a subject with high classification

TABLE II
CLASSIFICATION ACCURACY (%) OF VARIOUS CLASSIFIERS AND

FEATURES DURING SHORT-TERM VISUAL IMAGERY

TABLE III
CLASSIFICATION ACCURACY (%) OF VARIOUS CLASSIFIERS AND

FEATURES DURING LONG-TERM VISUAL IMAGERY

accuracy to highlight the channels relevant for short-term
visual imagery.

Finally, we tested the classification accuracy of the four
visual imagery classes from long-term memory following the
auditory cue (Table III). The best classification accuracy of
26.74% across all subjects was obtained by using 25 mean
Morlet Wavelets logarithmically spaced in the 1-100 Hz band
(Fig. 5a). However, this combination still did not pass the
significance threshold of 29.17% for this section. Similar
to the results from the short-term visual imagery analysis,
no significant channels were revealed during the exploratory
channel-wise searchlight analysis of the long-term imagery
categories (Fig. 5b). However, individual analysis of subjects
with higher accuracy also reveals significant contributions
from frontal channels during visual imagery (Fig. 5c). Fig. 6
presents the classification accuracies for each subject across
the tasks for comparison.

To improve the classification accuracy of the imagery peri-
ods, we were interested to see if the addition of data from
the observation periods would improve the prediction ability.
Contrary to our expectations, classification performance for
all trial periods suffered when training included data from
other periods. When the data from the observation periods
were combined with the short-term visual imagery periods,
the observation classification accuracy dropped to 38.47% and
the imagery classification accuracy dropped to 27.30%. The
observation periods and long-term imagery periods following
the auditory cue concatenated together dropped to 36.50%
and 26.42%, respectively. The classification accuracy of the
imagery periods following the observation cue and auditory
cue concatenated together dropped to 27.90% and 25.70%,
respectively.

The time course of the Morlet Wavelet features for each of
the tasks is presented in Fig. 7. All tasks exhibited primary
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Fig. 4. Classification of short-term imagery periods following observation cue. (a) Mean confusion matrix obtained from classification of neural data
during visual imagery of the four image categories following the observation cue demonstrates significantly above chance classification accuracy of
30.05%. (b) Heatmap of accuracy obtained during channel-wise classification of imagery periods following the observation cue across all subjects.
(c) Heatmap of accuracy obtained during channel-wise classification of imagery periods following the observation cue for a subject with high
classification accuracy. Black arrows on color bar demarcate significance threshold at 29.58% (p<0.05).

Fig. 5. Classification of long-term imagery periods following auditory cue. (a) Mean confusion matrix obtained from classification of neural data
during visual imagery of the four image categories following the auditory cue provides an average classification accuracy of 26.74%. (b) Heatmap
of accuracy obtained during channel-wise classification of imagery periods following the auditory cue across all subjects. (c) Heatmap of accuracy
obtained during channel-wise classification of imagery periods following the auditory cue for a subject with high classification accuracy. Black arrows
on color bar demarcate significance threshold at 29.17% (p<0.05).

activity within the alpha band of brain activity; however, the
timing for the appearance of the activity differed between
each task. Observation of the image produced activity in the
alpha band appearing almost immediately and dropping about
400 ms following the presentation of the image (Fig. 7a).
The two imagery tasks produced a more sustained activity
throughout the trial, which appeared approximately 500 ms
after the start of the imagery period. However, the short-term
visual imagery task peaks around 1500 ms after the start of
the imagery period whereas the long-term visual imagery task
peaks around 500 ms after the start and begins to decrease.

We also analyzed the pupillometry data to see if this could
be used to identify when a participant was engaged in the
visual imagery task. Fig. 8 presents the mean pupil dilation
across participants during the observation cue blocks and the
auditory cue blocks, respectively. During the observation cue
blocks, the pupil contracts with the onset of the stimulus
presentation. When the images are removed and the participant
is instructed to perform visual imagery, the pupil dilates back
to baseline. The pupil contracts again after the image is flashed

during the memory periods. During the auditory cue blocks,
the pupil begins to dilate immediately following the auditory
cue and peaks after approximately 1.5 sec before returning
to baseline. The pupil contracts during the memory periods
after the image is flashed. This dilation of the pupil during the
imagery periods provides a good indication that participants
were actively engaged in the task.

IV. DISCUSSION

This study demonstrates that decoding visual imagery
from EEG is a challenging task. From the early work of
Bobrov et al. [33], Kosmyna et al. [30], Lee et al. [12], [52],
and Xie et al. [35], one of the major points of contention
between the experimental procedures was the presentation of
the target image during the task directly before the imagery
period. It could be argued that this is not a true test of
spontaneous visual imagery from long-term memory but rather
holding the object in short-term working memory. Our study
presents the first direct comparison between the ability to
decode visual imagery following observation of the target
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Fig. 6. Overall classification accuracy during observation (42.11%),
short-term visual imagery (30.05%), and long-term visual imagery
(26.74%) periods. Individual participants are presented beside the mean
as circles with a black outline. Error bars indicate a 95% confidence
interval.

Fig. 7. Mean frequency vs time plots of Morlet Wavelet features across
the 8 posterior EEG channels for (a) visual observation, (b) short-term
visual imagery, and (c) long-term visual imagery periods.

image and following an auditory cue for the target image.
In accordance with our hypothesis, our classifier was able to
achieve greater accuracy in predicting between the four image
categories during the short-term visual imagery task following
the observation cue compared to the long-term imagery task
following the auditory cue. Also as expected, visual imagery
produced a more nuanced pattern of activity that is more

Fig. 8. Pupil diameter changes averaged across all trials. (a) Mean
pupil diameter during the observation cue blocks across all participants
(b) Mean pupil diameter during the auditory cue blocks across all
participants. The gray shaded region indicates the period used for
baseline correction. The blue shaded region around the pupil diameter
trace demarcates the 95% confidence interval.

difficult to untangle using multivariate decoding of EEG data
compared to actual visual observation of the images.

In an early study by Lee et al. [53], researchers exam-
ined the differences in brain areas activated during visual
perception and imagery. The results of this study showed a
considerable overlap in activity between the two conditions in
many areas of the brain; however, this overlap was neither
uniform nor complete. They saw nearly complete overlap
in frontal and parietal regions involved in various types of
cognitive control processes such as the retrieval of episodic
information, performing visual inspection, generation of visual
images, attention, spatial working memory, and visuospatial
processing. On the other hand, the activations in the occipital
cortex were stronger and more diffuse during perception than
during imagery. This exemplifies that the occipital regions
are more strongly driven by sensory information rather than
the information stored in memory. These regions are respon-
sible for facilitating object detection and identification that
are not necessarily required for the visualization of mental
images [53]. Similar results were shown in this current study.
The channel-wise searchlight results showed a large overlap
in areas that were most informative for prediction during
visual observation and imagery. The observation task was
mostly driven by the occipital electrodes which were receiving
the sensory information, but some of the frontal electrodes
also seemed to carry relevant information. The imagery task
showed much lower classification accuracies in the occipital
channels and a greater influence of the frontal electrodes.

We also saw that spectral power below 15 Hz, and
specifically alpha band power (8-13 Hz), provided the most
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informative feature for classification during the observation
periods and the short-term imagery periods. While this is
consistent with the results found by Xie at al. [35], the results
from Lee et al. [12] and Kosmyna et al. [30] indicates that
higher gamma activity (30-100 Hz) may also carry information
relevant for visual imagery. In our analysis, we also found
that inclusion of the higher gamma range of brain activity
may be beneficial for classification of the long-term visual
imagery task. Unfortunately, the results were not significant,
so a definitive conclusion cannot be made. Additionally, even
though we found similar features and channels between the
conditions, we were unable to utilize the data from the other
conditions to improve the classification accuracy. It is possible
that even though there is a significant overlap between the
activity associated with the different experimental conditions,
there is still too much variance or too little training data for
the classifier to make use of the additional information. For
example, the observation trials were mainly driven by activity
in the occipital cortex related to the sensory perception of
the presented image while the imagery trials received more
contributions from the frontal areas associated with memory.
Furthermore, our analyses revealed that the Morlet Wavelet
features used in these analyses exhibited differences in the
timing of activation across each of the tasks. It might also be
that the two imagery conditions are confounded by a difference
in the memory conditions used.

The imagery periods following the observation cue are
more of a short-term working memory task while the imagery
periods following the auditory cue are more of a long-term
memory retrieval task. In a study by Ganis et al [54],
researchers have shown a differential effect in the visual
responses generated during visual imagery of famous faces
generated from short-term memory and long-term memory.
They found that both tasks activated similar areas of the
brain, but the activity was greater during short-term memory
when the subjects were asked to memorize specific pictures of
celebrities. During the long-term task where they were asked
to imagine the famous person without the presentation of an
image, the neural activations were lower across all relevant
brain regions. However, focusing on specific features of the
imagined faces such as the eyes, lips or nose was shown to
increase activation regardless of memory type. These results
suggest that the type of cue and the instructions given to the
participants can play a large role in the neural processes used
and the activity evoked during mental visual imagery.

In the current experiment, retrieving a mental image from
long-term memory following an auditory cue rather than
retaining a visually presented image in working memory
produced weaker or more variable neural activity that was
more difficult to decode using common machine learning tech-
niques. For mental imagery, the participants in this study were
instructed to recreate the image in their mind and visualize the
details as clearly as possible. However, in the post-experiment
survey responses, multiple participants reported strategies of
repeating the objects’ name in their mind or thinking about the
colors of the images, which may not be an optimal imagery
strategy and introduces unsystematic variability in the neural
signals during the imagery periods. Future work may benefit

from providing more detailed instructions for how to visualize
the target category or providing feedback on the classifier’s
prediction in real-time to allow the participants to adapt their
strategy throughout the experiment.

The results of our pupillometry analysis demonstrated an
increase in pupil dilation during mental imagery in accordance
with previous literature [47]. In the observation cue blocks,
a decrease in the diameter when the stimulus was presented
and an increase in diameter when the stimulus was removed
is shown as expected. However, it is difficult to distinguish
whether this dilation was due to effortful mental imagery
or if the pupil was just returning to baseline after stimu-
lus presentation. One of the limitations of this study with
regards to pupillometry is that the trial periods were short
(8.75 secs for the observation cue trial and 7.05 secs for the
auditory cue trials) which may not be ideal for the analysis of
pupillometry data [50], [51]. A more appropriate eye tracking
experiment would provide longer resting periods between each
task element to allow the pupil to fully return to baseline.
Furthermore, our inter-trial period of 1 sec that was used for
baseline correction may not be an appropriate time to allow
the pupil diameter to fully return to baseline between trials.
The large variability during this period may be due to eye
blinks or movements which could interfere with the ability to
interpret the data from the remainder of the trial.

V. CONCLUSION

Visual imagery presents the possibility for an intuitive
paradigm for BCI applications that can directly convey the
user’s intentions with many natural ways of envisioning an
intended action. However, the work presented in this study
reveals that true, spontaneous visual imagery from long-term
memory is difficult to decode from EEG. This method of
spontaneous visual imagery produces a more variable neural
signal compared to short-term retention of a visual image in
working memory. One potential limitation of this study is that
participants were not given explicit instructions for how to per-
form the imagery and no feedback for successful imagery was
provided throughout the experiment. Future work in decoding
visual imagery from EEG may benefit from providing more
explicit visualization instructions as well as multiple sessions
with real-time feedback of visualization ability. This will allow
the users to hone their strategies over time and provide more
data to adapt to more advanced classification techniques.
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