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Abstract— Motor imagery (MI) is a high-level cognitive
process that has been widely applied to clinical rehabili-
tation and brain-computer interfaces (BCIs). However, the
decoding of MI tasks still faces challenges, and the neural
mechanisms underlying its application are unclear, which
seriously hinders the development of MI-based clinical
applications and BCIs. Here, we combined EEG source
reconstruction and Bayesian nonnegative matrix factor-
ization (NMF) methods to construct large-scale cortical
networks of left-hand and right-hand MI tasks. Compared
to right-hand MI, the results showed that the significantly
increased functional network connectivities (FNCs) mainly
located among the visual network (VN), sensorimotor net-
work (SMN), right temporal network, right central executive
network, and right parietal network in the left-hand MI at
the β (13-30Hz) and all (8-30Hz) frequency bands. For the
network properties analysis, we found that the clustering
coefficient, global efficiency, and local efficiency were sig-
nificantly increased and characteristic path length was sig-
nificantly decreased in left-hand MI compared to right-hand
MI at the β and all frequency bands. These network pattern
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differences indicated that the left-hand MI may need more
modulation of multiple large-scale networks (i.e., VN and
SMN) mainly located in the right hemisphere. Finally, based
on the spatial pattern network of FNC and network prop-
erties, we propose a classification model. The proposed
model achieves a top classification accuracy of 78.2% in
cross-subject two-class MI-BCI tasks. Overall, our findings
provide new insights into the neural mechanisms of MI and
a potential network biomarker to identify MI-BCI tasks.

Index Terms— Motor imagery, large-scale network,
Bayesian NMF, functional network connectivity, machine
learning.

I. INTRODUCTION

MOTOR imagery (MI) is a multidimensional high-level
cognitive simulation process [1]. It is a mental rehearsal

of specific motor acts without any motor output [2]. Over the
past two decades, MI has been widely used to control intelli-
gent devices, provide a quality life for disabled patients, and
improve brain-computer interface (BCI) systems [3]. Besides,
MI plays a key role in studying motor-related brain cognitive
functions. However, due to individual differences, the decoding
of MI tasks still faces challenges, and the large-scale brain net-
work neural mechanisms underlying its clinical application are
unclear, which seriously hinders the development of MI-based
clinical applications and BCI systems. Thus, it is necessary to
profoundly understand the brain network neural mechanism of
MI and explore new network biomarkers to identify MI tasks.

In recent years, large-scale brain network analysis meth-
ods [4], [5] based on electroencephalography (EEG) and
functional magnetic resonance imaging (fMRI) neuroimaging
data have provided a new way to understand the neural
mechanism of MI. For example, Zhang et al. [6] investi-
gated the reconfiguration patterns of large-scale networks in
distinct MI tasks using fMRI and revealed that somatomo-
tor network and dorsal attention network were important in
switching from resting-state to task state. Based on EEG
analysis, Li et al. [7] probed the large-scale functional net-
work connectivity (FNC) from resting to MI task states,
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and they reported that the connections between bilateral
motor areas (i.e., premotor cortex and supplemental motor
area, SMA) were increased in MI compared to resting-state.
Leeuwis et al. [8] found that MI-BCI participants performed
better when the network functional connectivity in the right
hemisphere was enhanced. These existing studies consistently
suggest that network connectivity analysis may provide a
valuable characteristic feature in understanding MI illiteracy
and MI classification. Thus, large-scale network analysis based
on EEG and fMRI data can help us better understand the neural
mechanism of MI.

In practical applications, EEG-based MI can be more
conveniently and economically used in clinical rehabilita-
tion and BCI control [9], [10]. However, EEG signal has
a drawback, that is, its low spatial resolution and is easily
contaminated [11], making it difficult to construct large-
scale networks. To overcome these shortcomings and perform
large-scale network analysis, some brain source localization
methods have been proposed to improve spatial resolution,
especially the standardized low-resolution electromagnetic
tomography (sLORETA) method which offers better local-
ization results [12]. In our study, the sLORETA method is
used for EEG source reconstruction. Based on the high spatial
resolution EEG source localization data, the group indepen-
dent component analysis (ICA) and Bayesian nonnegative
matrix factorization (NMF) methods were commonly used
for temporal-spatial decomposition to recognize large-scale
networks. ICA is widely used as a powerful and data-driven
tool for evaluating the underlying spatiotemporal structure
using brain imaging data [13]. Bayesian NMF is an unsu-
pervised learning method for improving the interpretability
of latent variable decompositions on brain imaging data [14].
According to a previous study, Sockeel et al. [15] combined
source localization and spatial ICA to identify large-scale
networks in resting-state and indicated that group ICA could
characterize temporally and spatially brain networks of EEG
due to its high temporal resolution. Moreover, Bayesian NMF
has the advantages of excellent identification capabilities and
soft-partitioning in overlapping community detection [16].
However, ICA employs a firm restriction of temporal and
spatial independence on the components and the negative com-
ponents provided by ICA are not physically interpretable [17].
Thus, we combined source reconstruction and Bayesian NMF
to investigate the large-scale network patterns of MI.

Furthermore, there are still many challenges in EEG-based
MI-BCI identification, especially cross-subject classification.
Therefore, deep learning methods are widely used in the
classification of MI. For example, Huang et al. [18] introduced
the local reparameterization trick into convolutional neural
networks (CNN) to decode four-class MI-BCI tasks resulting
in 92.41% classification accuracy. Although the above deep
learning study achieves relatively high classification accuracy,
it mainly concentrates on the subject-specific strategy and may
have high time costs. It is known that discriminative features
and appropriate classifiers can help improve model classifi-
cation accuracy and reduce calculation time. There has been

growing evidence suggesting that large-scale brain network
analysis methods can provide a new way to explore discrim-
inative network biomarkers to decode MI [6]. For example,
Gu et al. [19] extracted features from FNCs by phase locking
value (PLV) and graph theory indices using support vec-
tor machine (SVM) achieving 75% accuracy for discerning
left-hand MI and right-hand MI tasks. Ai et al. [20] extracted
features from network properties based on FNCs to distinguish
four-class MI tasks achieving 79.7% accuracy. Thus, we used
the large-scale network patterns as features to construct the
classification model of MI tasks, which may contribute to
identifying new biomarkers to distinguish multiple MI tasks
and developing efficient MI-BCI systems for engineering and
clinical applications.

In this study, we combined EEG data source reconstruction
and Bayesian NMF methods to construct large-scale networks
of MI-BCI tasks at different frequency bands. We first com-
pared the FNC and network property differences between
the left-hand MI and right-hand MI at the α (8-13Hz),
β (13-30Hz), and all (8-30Hz) frequency bands. Then,
we assessed the relationships between large-scale network
patterns and MI-BCI performance. Finally, based on the large-
scale networks, the spatial pattern of networks (SPN) was used
to extract the combined spatial patterns as features to construct
MI-BCI classification models, where three widely used classi-
fiers were selected, such as SVM, linear discriminant analysis
(LDA), and light gradient boosting machine (LightGBM). The
proposed method captures brain information with large-scale
network features, aiming to reduce the impact of individual
differences and to be available and effective for practical BCI
applications.

II. METHODS

A. Participants
The public Motor Movement/Imagery EEG dataset can

be downloaded at https://physionet.org. In the experiment,
109 healthy subjects participated in the multiple motor/
imagery tasks. S088, S092, S100, and S104 were excluded
due to their damaged recordings, so 105 subjects were used
in our study. The EEG dataset was recorded by 64-channel
(10-10 international system) with a sampling rate of 160 Hz
and the predefined bandpass filter was 0-80 Hz.

B. MI-BCI Experiment Procedure
The EEG experimental paradigm contains 14 runs, including

two one-minute baseline runs individually (eyes open and eyes
closed), and three two-minute runs individually (open and
close left or right fist, imagine opening and closing left or
right fist, open and close both fists or both feet, and imagine
opening and closing both fists or both feet). Our study used
the tasks of imaging opening and closing left or right fist tasks
(corresponding to runs 4, 8, and 12). For the MI tasks, each run
contains 15 trials, resulting in 45 trials for each subject. During
the experiment, a cue appeared and stayed on the left or right
side of the screen, and the subject imagined the corresponding
fist opening and closing. Then the subject could rest until the
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Fig. 1. The experimental paradigm.

next trial. In the experimental paradigm, -2-0s corresponds to
the pre-MI resting period, 0-4.1s corresponds to the MI tasks
period, and 4.1-6.1s corresponds to the after-MI resting period.
Fig. 1 shows the detailed experimental paradigm.

C. MI-EEG Data Preprocessing
The MI-EEG dataset of 105 subjects was processed with

a standard procedure. In this paper, we extracted frequency
bands the α (8-13Hz), β (13-30Hz), and all (8-30 Hz) from
the EEG signal using band-pass filtering in the finite impulse
response filter. Then, the average reference method was used
to eliminate the effects caused by variations in the original
reference electrodes. EEG signals were segmented into epochs
of 6s (from -2s to 4s) duration, and baseline correction was
performed by subtracting the average value on the pre-MI
200ms period (from -0.2s to 0s). Next, the artifact trail removal
set ±100µV as the threshold, where 18 subjects were removed
leaving 87 subjects. Eye movement and blink artifacts were
removed by ICA. Finally, we selected the 4s (from 0s to 4s)
data and averaged trials for each subject in each task. The
above processings are based on the MNE of Python software.

D. Analysis Procedure
Fig. 2 shows the analysis procedure. First, the raw EEG data

were preprocessed and concatenated. Then, we reconstructed
cortical sources from EEG scalp using the sLORETA software.
Bayesian NMF was utilized to identify large-scale networks
related to MI at group level. Furthermore, we construct FNC
and calculate the network properties for the left-hand and
right-hand MI tasks. We also compared the FNC and network
property differences between the two tasks and revealed the
relationships between the network features and BCI perfor-
mance. Finally, the obtained network properties and large-scale
FNC were used to construct a classification model to discern
the two tasks. The specifics of these steps are described in the
following sections.

E. Source Reconstruction of MI-EEG Data
Reconstructing deep cortical source activity of EEG accu-

rately is widely used to measure neural activity of scalp
potentials and decode cognitive processes [21]. The key to the
process is a solution to inverse problem, which can provide
significant information on the time course and brain function
localization [22]. In our study, we have 87 subjects (2 trials per
subject) and we concatenated the left-hand and right-hand MI

data along the time points to 87×2×640 = 111360, resulting
in a 2D matrix of 64 × 111360. Then, the LORETA software
(v20210701) was used to reconstruct brain sources from EEG
scalp. Three-shell spherical head model was used to estimate
brain activities in the sLORETA. The standardized boundary
element method was used for head modeling. Reconstructed
cortical brain activations matched to Montreal Neurological
Institute space. Finally, the 3D space contained 6239 voxels
at a 5mm spatial resolution. For the 64-electrode system, the
dimension of the lead field matrix was 64 × 3×6239. After
source reconstruction, the data was transformed into the matrix
of 6239 × 111360. Furthermore, we transposed the matrix to
111360 × 6239 before Bayesian NMF estimation.

F. Bayesian NMF
Bayesian NMF derived Gibbs sampler to approximate the

posterior density of the NMF factors, based on the normal
likelihood and exponential priors. The NMF problem [23] can
be formulated as X = AB + E, where X ∈ R I×J needs
to be decomposed into two nonnegative matrices A and B.
A ∈ R I×N

+ and B ∈ RN×J
+ with R+ indicating the nonnegative

real number. E ∈ R I×J represents the residual matrix. Based
on the Bayesian procedure, we assumed that the residuals Ei, j
are i.i.d. zero mean normal with variance σ 2, which yields the
likelihood as follows:

p (X |θ) =

∏
i, j

N
(

X i, j ; (AB)i, j , σ 2
)

(1)

where N
(
x; µ, σ 2)

= (2πσ 2)−1/2exp(-(x −µ)2/(2σ 2)) is the
normal density, and θ = {A,B,σ 2} are all parameters.

Matrices A and B are assumed to be exponentially dis-
tributed respectively, with scales αi,n and βn, j :

p (A) = 5i,nε
(

Ai,n; αi,n
)
, p (B) = 5n, jε

(
Bn, j ; βn, j

)
(2)

where ε(x; λ ) = λexp(-λ x)u(x) is the exponential density,
and u(x) is the unit step function. An inverse gamma density
with shape k and scale θ is selected as the prior for the noise
variance:

p
(
σ 2

)
= G−1(σ 2

; k, θ) (3)

Based on Gibbs sampling, an efficient Markov chain Monte
Carlo method was used to evaluate its posterior density. The
conditional densities were denoted by R(x; µ, σ 2, λ ) ∝

N(x;µ, σ 2)ε(x; λ ). The conditional density of Ai,n is as
follows:

p
(

Ai,n | X, A(i,n), B, σ 2
)

= R
(

Ai,n; µAi,n , σ
2
Ai,n

, αi,n

)
(4)

µAi,n =

∑
j

(
X i, j −

∑
n′ ̸=n Ai,n′ Bn′, j

)
Bn, j∑

j B2
n, j

,

σ 2
Ai,n

=
σ 2∑
j B2

n, j
(5)

where Ai,n indicates all elements of A without Ai,n , and the
expression for B follows from the symmetry. The conditional
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Fig. 2. The analysis procedure.

density of σ 2 is an inverse-gamma:

p
(
σ 2

|X, A, B
)

= G−1
(
σ 2

; kσ 2 , θσ 2

)
(6)

kσ 2 =
I J
2

+ k, θσ 2 =
1
2

∑
i, j

(X − AB)2
i, j + θ (7)

Then, the posterior is approximately estimated by sampling
in order from above conditional densities. In the study, it is
important to choose the number of the components N . Chib’s
method is used to estimate the marginal likelihood, based on
the relation p (X) =

p(X |θ)p(θ)
p(θ |X)

. Thus, the marginal likelihood
can be obtained by estimating the 2N runs of the Gibbs
sampler, which works well with few components for NMF
models.

G. Functional Subnetworks Identification With Bayesian
NMF

As mentioned above, the Bayesian NMF method can
decompose signals into nonnegative independent components
(ICs). Each IC contains an independent spatial activation map
(subnetwork) and corresponding time course (TC). In our
study, subject-specific spatial activation maps and TCs were
obtained for the left-hand MI and right-hand MI using the
Bayesian NMF and source reconstruction. For the parameters
of the model, we chose the flat prior αi,n=0, βn,i= 0,
and the prior of the noise variance was k = θ= 0. We took
20000 points from the posterior and discarded the first
10000 points to allow the sampler to burn in [24]. After
taking the parameters and data into the model, matrices A
and B were obtained. Each row of matrix B indicates the
functional activation IC (subnetwork), and each column of
matrix A indicates the TCs corresponding to each subnetwork.
Then, matrix B was matched to 3D MNI space to visualize
activation distributions of subnetworks via source localization
by source reconstruction. Before visualizing the subnetwork,
the z-score transform was performed on matrix B, where the
transformed values smaller than the µ + σ were zeroed. All
MI-related ICs were visually inspected to exclude the artificial
components. In addition, the selection of the IC number is
a key parameter. Inspired by previous studies [24], we set
N from 20 to 50 at intervals of 5, and the process was
repeated 5 times to find steady components. Finally, we set the
number of the IC to 35. We performed the NMF to construct

large-scale cortical networks at the α (8-13 Hz), β (13-30 Hz),
and all (8-30Hz) frequency bands, respectively. We identified
8, 9, and 10 subnetworks individually.

In order to verify the validity of Bayesian NMF, we also
obtained the subnetworks using Gift software (GroupI-
CATv4.0b; https://www.nitrc.org/projects/gift). The informa-
tion maximization algorithm was used to estimate the ICs.
Regular was selected as the stability analysis type. In order
to be unified with NMF method, we also determined the
number of components to be 35. Furthermore, we recon-
structed all components by sLORETA and selected the best-fit
networks.

H. Functional Networks Connectivity (FNC)
After the IC selection, we identified 8, 9, and 10 MI-related

subnetworks at the α(8-13 Hz), β(13-30 Hz), and all
(8-30Hz) frequency bands. Each subnetwork contains multiple
synchronously activated cortical regions. We extracted the TC
of the subnetwork for each subject across states and three
frequency bands. Then, the PLV was calculated to construct
the FNC matrix for the left-hand MI and right-hand MI. PLV
is formulated as follows:

P LV (t) =
1
T

∣∣∣∣∣
T∑

n=1

e( j(1ϕn(t)))

∣∣∣∣∣ (8)

PLV indicates the phase synchronization value of signals
x and y. 1ϕn(t) =

(
ϕx (t) − ϕy(t)

)
is the phase difference

corresponding to the signals x and y at the time point t . T is
the total time points of signals.

Finally, for each subject in each task, we obtained an
8 × 8 adjacency matrix for the α (8-13 Hz) frequency band,
a 9×9 adjacency matrix for the β (13-30 Hz) frequency band,
and a 10×10 adjacency matrix for the all (8-30Hz) frequency
band.

I. Networks Properties
To quantitatively characterize the large-scale brain networks,

we calculated four network properties based on FNC, includ-
ing clustering coefficient (CC), local efficiency (LE), global
efficiency (GE), and characteristic path length (CPL). The
brain connectivity toolbox was used to calculate the network
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properties (https://sites.google.com/site/bctnet/). In the defini-
tions, m is the number of nodes in the networks, K is the set
of all nodes, and (i, j) represents the link between the node i
and j(i,j∈ K ). wi j is the connection weight of (i, j) with the
range of [0,1]. di j is the shortest weighted path length of (i, j).

Clustering coefficient is formulated as follows:

CC =
1
m

∑
i∈K

∑
j,h∈K(wi jwihw jh)

1
3∑

j∈K wi j

(∑
j∈K wi j − 1

) (9)

Local efficiency is formulated as follows:

L E =
1
m

∑
i∈K

∑
j,h∈K, j ̸=i (wi jwih[di j (Ki )]

−1)
1
3∑

j∈K wi j

(∑
j∈K wi j − 1

) (10)

Global efficiency is formulated as follows:

G E =
1
m

∑
i∈K

∑
j∈K, j ̸=i (di j )

−1

m − 1
(11)

Characteristic path length is formulated as follows:

C P L =
1
m

∑
i∈K

∑
j∈K, j ̸=i di j

m − 1
(12)

J. Common Spatial Pattern of Large-Scale Networks
(SPN)

The network properties may not contain all information to
discern the MI tasks. Thus, we used the SPN approach to
extract implicit information contained in the spatial topology
of the large-scale networks. The key of SPN is to identify
spatial filters which minimize the variance of one class and
maximize another, extracting the features with significant
differences [25]. Let A1 and A2 be the adjacency matrices
for the FNC of left-hand and right-hand MI respectively.
In essence, the spatial filters are the projections, equal to
maximize the formulation:

F(γ ) =
γ T AT

1 A1γ

γ T AT
2 A2γ

= γ T M1γ /γ T M2γ (13)

where M1 and M2 are the covariance matrices of A1 and A2
for left-hand and right-hand MI individually.

Since the object value cannot be affected by the scaling of
the projection, the previous formulation can be translated into
the following restricted optimization problem:{

arg max γ T M1γ

γ T M2γ = 1
(14)

By adding the Lagrange multiplier, the goal function can be
expressed as follows:

L(γ ; λ ) = γ T M1γ − λ (γ T M2γ − 1) (15)

By using the derivative of (15) about λ while satisfying
the condition of ∂L/∂γ = 0, the goal value is estimated as
follows:

M1γ = λM2γ (16)

where γ and λ represent the eigenvector and eigenvalue.
Then, (16) can be solved with multiple m SPN filters as
follows:

M−1
2 M1V =

∑
V (17)

where V includes all the eigenvectors of M−1
2 M1.

For example, we used three pairs of SPN filters, and then
we get six-dimensional SPN features. In theory, the three pairs
of SPN filters form a matrix VS P N = [Filter1, Filter2, . . . ,
Filter6]. In this study, for a 10×10 matrix P , each SPN filter
is a 10-length vector, so the dimension of VS P N is 10 × 6.
Additionally, the SPN features are calculated by FS P N =

log(var(V T
S P N P)), which results in a vector of length 6.

K. Classification of Left-Hand MI and Right-Hand MI
In this study, we first defined the SPN features based on

the FNC matrices. Given that the number of SPN filters could
influence the classification performance, we set several pairs
of SPN filters, such as 2, 4, and 6. Then, we extracted the
SPN features for each SPN filter, resulting in 4-, 8-, and
12-dimensional SPN features. In addition to SPN features,
we also consider the joint features of SPN and network
properties. For classifiers, SVM (SVM with linear and radial
basis function (RBF) kernels), LDA, and LightGBM were
used. To evaluate the classification performance, leave-one-
subject-out cross-validation (LOSOCV) method was utilized.
In the study, we have 87 subjects and each subject includes one
left-hand MI trial and one right-hand MI trial. In LOSOCV,
one subject is used for evaluation and the remaining subjects
are used for model training. Finally, 87 times were contributed
to this process until all subjects had performed for model
evaluation and the results were averaged over all subjects.

Additionally, we used accuracy (ACC), sensitivity
(SEN), and specificity (SPE) to evaluate the classification
performance.

ACC =
nle f t + nright

Nle f t + Nright
× 100% (18)

SE N =
nright

Nright
× 100% (19)

S P E =
nle f t

Nle f t
× 100% (20)

where nle f t and nright are the correctly predicted number of
left-hand MI and right-hand MI tasks, and Nle f t and Nright
are the real number of left-hand MI and right-hand MI tasks.

L. BCI Performance
BCI performance represents the evaluation of individual MI

ability, which is associated with large-scale network patterns
(FNC and network property). Inspired by a recent study con-
ducted by Kang et al. [26], where they calculated individual MI
performance using four different deep learning methods. In our
study, we chose the results calculated by the DeepConvNet
method as the evaluation of individual BCI performance. Due
to the missing information of 4 subjects (subjects 34, 43,
78, and 102), only the information of 83 subjects was used
for correlation analysis. Detailed information about the BCI
performance is provided in Supplementary TABLE SI.
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M. Statistical Analysis
We used paired t-tests (two-tailed) to compare the FNCs and

network properties differences between left-hand MI and right-
hand MI tasks. For FNC differences, the significant difference
level was set at p < 0.01 (FDR corrected, p < 0.01). For
network properties differences, the significant difference level
was set at p < 0.01. We used Pearson’s correlation analysis to
evaluate the relationships between the MI-related indexes and
BCI performance at three different frequency bands, where the
significant correlation was set at p < 0.05. It is worth noting
that the BCI performance represents the individual overall
ability to identify left-hand and right-hand MI, so the sum of
the network pattern (FNC and network property) of left-hand
and right-hand MI was used to calculate the correlation.

III. RESULTS

A. Identification of Large-Scale Functional Networks
Using the Bayesian NMF method, we identified 8 ICs/

subnetworks at the α (8-13 Hz) frequency band, 9 ICs at the
β (13-30 Hz) frequency band, and 10 ICs at the all (8-30Hz)
frequency band. These large-scale networks are the sensorimo-
tor network (SMN), left central executive network (LCEN),
right central executive network (RCEN), visual network
(VN), primary visual network (PVN), left frontal network
(LFN), right temporal network (RTN), left parietal net-
work (LPN), and right parietal network (RPN). The VN and
PVN are the same type of networks with similar functions.
When defining the name of ICs, we define ICs as the same
name with the same functions. In the study, we refer to VN and
PVN collectively as VN. At the α (8-13 Hz) frequency band,
IC 11 and IC 14 are categorized into VN. At the β (13-30 Hz)
frequency band, IC 1, IC 10, and IC 21 are categorized into
VN. At the all (8-30Hz) frequency band, IC 18, IC 19, and
IC 25 are categorized into VN. The rest networks have one
component. Fig. 3 shows the spatial maps of ICs at three
frequency bands, where the activations were transformed to
z-scores and the values below µ + σ were zeroed.

To verify the utility of the Bayesian NMF method, group
ICA method was also performed to identify the large-scale
networks based on the same MI-EEG data. Compared to the
group ICA method, we found that the NMF method can
well deal with the negative activation generated by source
localization and can effectively characterize the patterns of the
networks. This is in line with previous studies [24]. The details
of these networks using the Bayesian NMF and group ICA
methods including activated regions, main Broadman areas,
MNI coordinates, peak activation values, and the number
of clustering voxels, are summarized in the supplementary
material (see Supplementary TABLE SII).

B. Differences in FNCs Between Left-Hand and
Right-Hand MI

Fig. 4 shows the mean FNC matrices across all subjects
and the FNC differences between left-hand MI and right-hand
MI tasks at the α (8-13Hz), β (13-30Hz), and all (8-30Hz)
frequency bands. The paired t-tests were used to assess the
significant difference (FDR corrected, p < 0.01) in FNCs.

Fig. 3. Spatial distribution of ICs at the α frequency band (a),
β frequency band (b), and all (8-30 Hz) frequency band (c) identified
by Bayesian NMF. ICs are z-scored and values > (µ+ σ).

Fig. 4. The mean FNC across all subjects for left-hand and right-hand
MI and FNC differences between the two groups at the α, β, and all
(8-30Hz) frequency bands. The star denotes a significant FNC differ-
ence in the left-hand compared to the right-hand MI. The red lines
represent that the FNCs are significantly increased in the left-hand
compared to the right-hand MI.

For the α (8-13 Hz) frequency band, we found that the FNC
was significantly increased in SMN-VN in the left-hand MI
compared to the right-hand MI task. For the β (13-30Hz)
frequency band, we found that the FNCs were significantly
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Fig. 5. The differences in four network properties (i.e., CC, CPL, GE,
and LE) between the left-hand MI and right-hand MI at the α frequency
band (a), β frequency band (b), and all (8-30 Hz) frequency band
(c). In the figures, the asterisk represented the significant difference
between the two MI tasks (p < 0.01), and the colored circles repre-
sented the subjects.

increased in the left-hand MI mainly located among the VN,
RTN, and RCEN compared to right-hand MI. For the all
(8-30Hz) frequency band, we found that the FNCs were
significantly increased in the left-hand MI mainly located
among the VN, RTN, and RPN compared to right-hand MI.

C. Differences in Network Properties Between Left-Hand
MI and Right-Hand MI

Compared to right-hand MI, we found that the CC, GE,
and LE were significantly increased (p < 0.01) and the CPL
was significantly decreased (p < 0.01) in left-hand MI at
the β (13-30Hz) and all (8-30Hz) frequency bands. There is
no significant difference at the α (8-13Hz) frequency band.
Fig. 5 shows the differences in network properties between
the left-hand MI and right-hand MI tasks at the α (8-13Hz),
β (13-30Hz), and all (8-30Hz) frequency bands.

D. FNC and BCI Performance

Fig. 6 shows the significant correlations between BCI
performance and FNCs and network properties. At the α

(8-13 Hz) frequency band, the SMN-VN connection was
significantly positively correlated with BCI performance
(r = 0.27, p = 0.015). At the all (8-30 Hz) frequency band,
the CPL was significantly negatively and GE was significantly
positively correlated with BCI performance (r = −0.22,
p = 0.048; r = 0.22, p = 0.046). The SMN-VN, RPN-LCEN,
and RTN-LCEN were significantly positively correlated with
BCI performance (r = 0.22, p = 0.045; r = 0.25, p = 0.024;
r = 0.23, p = 0.037). There is no significant correlation at
the β (13-30 Hz) frequency band.

Fig. 6. Significant correlations between BCI performance and FNCs
and network properties at different frequency bands (p < 0.05). The
black lines denoted the fitted curve, and the colored circles represented
the subjects.

E. Overall Classification Results and Comparison of
Left-Hand MI and Right-Hand MI

We take the SPN features and network properties to
construct classification models based on various classifiers,
such as LDA, SVM, and LightGBM at three frequency
bands. TABLE I shows the classification results of com-
bined network properties and SPN features using 2, 4, and
6 spatial filters in different classifiers at three frequency
bands. As shown in TABLE II, we compared the classification
accuracy results of our methods with some studies including
iterative multi-objective optimization for channel selection
with filter band CSP (FBCSP) [27], meta-learning [28], EEG-
Net [29], bilinear neural network with 3-D attention [30],
and CNN [31]. The results showed that our proposed method
got a high classification accuracy for cross-subject two-class
classification. The highest classification accuracy was obtained
by combining two pairs SPN features and network properties
at the all (8-30 Hz) frequency band using the LDA classifier
(ACC=78.2%, SEN=79.3%, SPE=77%).

IV. DISCUSSION

Exploring large-scale network patterns and finding
meaningful network markers are important for both neural
mechanisms understanding and practical application of MI.
In the current study, we combined source reconstruction
and the Bayesian NMF method to identify the large-scale
networks of left-hand and right-hand MI tasks at different
frequency bands. Based on the identified large-scale networks,
we compared the FNC and network properties differences
between left-hand and right-hand MI tasks at the α (8-13Hz),
β (13-30Hz), and all (8-30Hz) frequency bands. The results
showed that the left-hand MI task produced stronger FNC
(i.e., increased VN-SMN connectivity) and modulated more
network resources (i.e., higher CC and GE), specifically at
the β and all (8-30Hz) frequency bands. Moreover, the FNC
and network properties could be used as important features
to construct classification models to discern left-hand and
right-hand MI tasks. These findings highlight the utility of
the NMF method in construing robust EEG FNC and provide
fresh insights into the neural mechanisms of MI.
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TABLE I
CLASSIFICATION RESULTS BASED ON SPN FEATURES AND NETWORK PROPERTIES

TABLE II
CROSS-SUBJECT TWO-CLASS CLASSIFICATION RESULTS

OBTAINED FOR THE PHYSIONET MI DATASET

In terms of methodology, group ICA [13] and Bayesian
NMF [32] are both commonly used source separation meth-
ods in EEG and fMRI analysis. Group ICA can decompose
the aggregated signals into multiple ICs (subnetworks), each
IC contains positive and negative activations. However, the
negative activation of IC is usually not considered in previous
studies, which may ignore a part of important information and
violate the physiological source activations [24]. Compared
with group ICA, the Bayesian NMF method only captures the
non-negative spatial distribution of the networks, thus handling
the negative activation of components well. Besides, it has
unique ability to infer features compared with ICA [33]. For
these reasons, the Bayesian NMF method has been used in
source separation, latent factor extraction, and signal pro-
cessing [32]. For example, Yi et al. [24] applied Bayesian
NMF with EEG source imaging to construct a large-scale
network and investigated the neural mechanisms of decision-
making tasks. Thus, we utilized the Bayesian NMF with source
reconstruction to construct MI-related large-scale cortical brain
networks. Furthermore, we made a comparison with the group
ICA method as shown in Supplementary Fig. S1 to verify the
validity of the Bayesian NMF method. Our results suggest that
the Bayesian NMF method is available to identify MI-related
large-scale networks.

In our study, using the Bayesian NMF method, we identified
8, 9, and 10 components at three different frequency bands,
respectively. The RPN is absent at the α frequency band
and the LPN is absent at the β frequency band, while all
components are identified at the all (8-30 Hz) frequency
band. Although we identified different ICs, these large-scale
networks are highly correlated with MI. For example, the SMN
is a motor-related network including premotor cortex (PMC)
(see Supplementary TABLE SII), which is associated with MI
and motor execution (ME) [34]. The hand MI evoked strong
activation in the sensorimotor areas [35]. Additionally, MI and
ME consist of similar neural networks, including sensory and
motor-related networks [1]. The VN (i.e., IC11 and IC14
at the α frequency band) is a sensory network, involving
visual processing, motor-related functions, and high-level cog-
nition including motor planning [36]. The CEN specializes
in controlling interference and properly allocating cognitive
resources, playing an important role in MI [37]. The FN areas
contribute to motor and cognitive functions. The TN areas
were activated during action observation [38]. Moreover, the
PN areas could affect the motor performance, locating between
the sensory and motor cortex [39]. In addition, we found
that the identified networks were mostly related to motor
performance and visual information processing, which were
highly correlated with MI. Thus, our results suggest that
identification-based large-scale networks are meaningful for
studying MI.

Based on these large-scale cortical networks, we further
investigate the large-scale FNC differences at three different
frequency bands. For the α frequency band, we observed that
the FNC between the SMN and VN was significantly increased
in the left-hand MI compared to the right-hand MI. The neural
underpinnings of MI is related to mu rhythm [40]. The mu
rhythm in the α frequency range was measured over senso-
rimotor and occipital areas during MI [41]. Ding et al. [42]
found that the reduced SMN-VN functional connectivity was
highly correlated with the decline of motor functions in
patients with white matter lesions. In addition, the SMN-VN
connection was also significantly increased at the β and all
frequency bands. We also found that the SMN-VN connection
was significantly positively correlated with BCI performance
at the α and all (8-30Hz) frequency bands. These results
implied that the SMN-VN connection played a key role in
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the performance of MI. In the β and all (8-30Hz) frequency
bands, we found that the FNCs were significantly increased
for left-hand MI compared to right-hand MI, and these
increased network interactions were mainly located in the
right hemisphere, such as SMN-VN, RPN-VN, RPN-RTN,
and RTN-RCEN. These results are consistent with previous
MI-related reports [43], [44]. For instance, Dentico et al. [43]
revealed that the VN-PN (from occipital to parietal) connection
was increased in mental imagery compared to visual percep-
tion, using dynamic causal modeling and Granger causality
analysis. Moreover, the correlation analysis showed that the
SMN-VN, LCEN-RPN, and LCEN-RTN were significantly
positively correlated with BCI performance. These indicated
that the increased FNCs might promote individual MI perfor-
mance. By comprehensively comparing the different frequency
bands, we found that the number of FNC differences was
larger at the β and all frequency bands, and the FNC dif-
ferences mainly concentrated on the right hemisphere and the
connections between VN and other networks in the left-hand
MI compared to right-hand MI. Previous studies have shown
that left-hand MI exhibits right hemispheric laterality, while
right-hand MI exhibits left hemispheric laterality [45], [46].
Thus, we also suggest that the left-hand MI produces stronger
FNC and requires modulation of more right hemispheric
network resources than right-hand MI at the large-scale level.

In addition to the FNC, the network property was another
important index to investigate the pattern of large-scale net-
works in MI. Consistent with previous studies [7], we found no
significant differences in network properties between left-hand
MI and right-hand MI at the α frequency band. To our
best knowledge, few studies have explored differences in
large-scale network patterns between left-hand MI and right-
hand MI at the high frequency bands. Previous studies have
indicated that the MI-related information at the β frequency
band served as a coordinative role during the sensorimotor
process [47], while the information at the α frequency band
involved in local information processing at higher connection
costs [48]. In our study, the results showed that CC, GE, and
LE were significantly increased and CPL was significantly
decreased in the left-hand MI compared to the right-hand MI
at the β and all (8-30 Hz) frequency bands. Considering that
the FNC difference is also mainly shown in the high frequency
bands, we speculate that the coupling of network information
at the α frequency band is the basis of MI, whereas the
coupling pattern of network information at the high frequency
band is an important specificity indicator for distinguishing
left-hand and right-hand MI tasks. Moreover, the network
properties reflect the transfer efficiency of information globally
and locally [49]. For example, the LE and GE indicate the
efficiency of the information transmission via the networks,
and the higher values indicate the stronger ability of infor-
mation integration [50]. Our findings show that the left-hand
MI has better network information transfer efficiency than the
right-hand MI in the high frequency band. Similar results were
also reported that the CC, GE, and LE during left-hand MI was
higher than right-hand MI [51]. We also found that the GE was
significantly positively and CPL was significantly negatively
correlated with BCI performance at the all (8-30 Hz) frequency

band, which were consistent with Zhang et al. [52]. These
results indicated that an efficient network facilitates MI per-
formance. Indeed, for right-handed subjects, we have reason
to believe that imagining right-handed movements is easier
and requires fewer brain resources than imagining left-handed
movements. In addition, Li et al. [7] revealed that the left-hand
MI needs more brain resources of information processing
than the right-hand MI. Similar to that of Zhang et al. [6],
who revealed that functional connectivities were significantly
increased during left-hand MI compared to right-hand MI.
These are consistent with our findings. Thus, we suggest that
left-hand MI provided more network efficiency of information
transfer and modulated more network resources compared to
right-hand MI.

In addition, large-scale brain FNCs and network properties
not only help us understand MI but can also be used
as discriminative features to build MI-BCI classification
models [53]. Cross-subject and within-subject MI-BCI
classification are the two most concerning issues in current
MI-BCI applications. Among them, cross-subject MI
classification is challenging and it is difficult to achieve a
high classification accuracy. The classification model we
proposed based on FNC and network properties achieved a
high classification accuracy (see TABLE II and TABLE SIII).
We also compare with several state-of-the-art methods that
work on the same MI-BCI dataset. The results show that the
classification accuracy of our proposed method is 0.2%-14.6%
higher than other methods, indicating that the large-scale
network feature is also effective for MI-BCI classification.
The proposed method has some advantages for classification.
In the study, we extracted spatial features by converting EEG
signals from sensor domain to source domain which may be
possible to reduce the effect caused by individual differences
and provide more valuable information. Then, our proposed
NMF-based model can deal well with the community detection
problem in complex networks and may reduce the loss of
useful information caused by negative activation. Moreover,
we employed the SPN filters to retain the effective features.
The proposed technique can improve discriminant ability,
tackling the multi-classification in MI-BCI tasks well. The
results indicated that our proposed model based on large-scale
network features can effectively recognize MI-BCI tasks.

V. LIMITATIONS

There are some considerations and methodological limita-
tions in this study. First, the ICs are manually selected by
prior MI-related information, which may be subjective. Future
work needs to find a valid way to select MI-related ICs
automatically. Although large-scale FNC analysis can provide
fresh sight into the cortical network patterns of MI, such static
patterns of FNC cannot capture the dynamic network patterns
of interactions among the networks. In future work, the
dynamic FNC should be considered to investigate the dynamic
patterns of large-scale networks during MI. Moreover, we only
explored the neural mechanism in the task state. We should
combine resting and task data to comprehensively consider the
potential neural mechanism of MI in future work.
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VI. CONCLUSION

In this study, we combined the EEG source localization
and Bayesian NMF methods to examine the FNC patterns
of MI and identify discriminative network biomarkers for
MI-BCI control. Source localization method can improve the
spatial resolution of EEG signals, and the NMF method can
well identify MI-related brain network components, which
provides us with good technical support for studying large-
scale networks. The results show that the FNCs and network
efficiency of information transfer were significantly increased
in the left-hand MI compared to the right-hand MI, specifically
at the β (13-30Hz) and all (8-30Hz) frequency bands. In par-
ticular, we also found that the stronger the FNC of VN-SMN,
LCEN-RPN, and LCEN-RTN, the better the participants’
MI-BCI performance. In the study, our large-scale FNC pattern
analysis is conducive to understanding the underlying neural
mechanism of MI illiteracy and provides new theoretical
support for clinical rehabilitation applications. In addition,
the cross-subject classification model based on the FNCs and
network properties proposed in our study can find meaningful
network connections suitable for recognizing the individual’s
left-hand and right-hand MI process, which is conducive to
the development of personalized training methods for different
clinical rehabilitation patients and BCI operators. They can
improve the understanding of the network mechanism of
MI-based rehabilitation and the development of MI-BCI.
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