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Abstract— Deep-brain Magnetic Stimulation (DMS) can
improve the symptoms caused by Alzheimer’s disease by
inducing rhythmic electric field in the deep brain, and
the induced electric field is rhythm-dependent. However,
calculating the induced electric field requires building
a voxel model of the brain for the stimulated object,
which usually takes several hours. In order to obtain the
rhythm-dependent electric field induced by DMS in real
time, we adopt a CNN-Transformer model to predict it.
A data set with a sample size of 7350 is established for
the training and testing of the model. 10-fold cross vali-
dation is used to determine the optimal hyperparameters
for training CNN-Transformer. The combination of 5-layer
CNN and 6-layer Transformer is verified as the optimal
combination of CNN-Transformer model. The experimental
results show that the CNN-Transformer model can complete
the prediction in 0.731s (CPU) or 0.042s (GPU), and the
overall performance metrics of prediction can reach: MAE =

0.0269, RMSE = 0.0420, MAPE = 4.61% and R2 =0.9627.
The prediction performance of the CNN-Transformer model
for the hippocampal electric field is better than that of the
brain grey matter electric field, and the stimulation rhythm
has less influence on the model performance than the coil
configuration. Taking the same dataset to train and test the
separate CNN model and Transformer model, it is found that
CNN-Transformer has better prediction performance than
the separate CNN model and Transformer model in the task
of predicting electric field induced by DMS.

Index Terms— Deep-brain magnetic stimulation, rhythm-
dependent, electric field, CNN-transformer.

I. INTRODUCTION

THE hippocampus is responsible for long-term memory
storage, transformation, and orientation. Animal studies

have shown that magnetic stimulation of the hippocampus
can improve symptoms caused by Alzheimer’s disease and
depression [1], [2], [3], [4], [5]. Deep-brain Magnetic Stimu-
lation (DMS) is derived from transcranial magnetic stimulation
(TMS), which adopts a pair of large coils to induce a rhythmic
electric field deep in the brain to modulate electrical activity of
neurons [6], [7], [8]. The intensity of the induced electric field
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is important to reflect the effect of DMS. The current loaded
by the DMS stimulator generally does not exceed 20A, and its
induced electric field intensity in the brain is usually within
5V/m, which is much lower than the intensity of TMS, which
generally exceeds 100 V/m [9] As a result, there are no reports
of side effects at present [10].

The head tissues have different conductivity and relative
permittivity in the magnetic field environment with different
frequencies, which lead to the rhythm-dependent electric field
induced by DMS [11]. The anatomical structure of different
human brains are different, which lead to the individual
difference in the induced brain electric field intensity under the
same magnetic field stimulation [9], [12], [13], [14], [15], [16].
In order to obtain the individual effect of DMS, it is generally
necessary to establish the brain voxel model and calculate the
induced electric field by finite element method (FEM) [17],
[18]. However, this process is time-consuming. It usually takes
several hours to build a head voxel model and several minutes
to perform FEM [19], [20], [21]. Therefore, the effect of DMS
on individuals cannot be obtained in real time, which limits
its future clinical application. Previous studies have shown that
convolutional neural network (CNN) can be used to predict the
electric field induced by TMS [22], [23], [24], [25], [26]. The
U-net model based on CNN can predict the spatial distribution
of the electric field induced by TMS [22]. The electric field
induced by TMS is predicted by two factors: the subject’s head
MRI and the coil configuration [22], [23], [24]. However, the
DMS-induced electric field is rhythm-dependent [10], which
leads us to consider not only the subject’s head MRI and coil
configuration, but also the stimulation rhythm.

CNN has excellent performance in extracting data features,
but it cannot capture remote features due to the limitation
of the size of the receptive field [27]. The Transformer
model is originally proposed for Natural Language Processing
(NLP) [28], [29], [30], which takes advantage of the self-
attention mechanism. To adapt to computational vision tasks,
Transformer has been improved as a model of Vision Trans-
former (VIT) [31]. The VIT compensates for the deficiency
of CNN by its excellent long-distance feature capture and
modeling ability. However, for small datasets, CNN models
often perform better than Transformer models [32], [33].
Therefore, recent studies have attempted to combine CNN
and Transformer [34], [35], [36], so that the model structure
can inherit the advantages of CNN and Transformer, and
retain global and local features to the greatest extent. In this

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9805-4829
https://orcid.org/0000-0002-8094-8656
https://orcid.org/0000-0002-2189-8003
https://orcid.org/0000-0002-9362-6605


2144 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Fig. 1. The stimulation paradigm of DMS. (a) The standard coil configuration of the DMS stimulator. (b) The current waveform loaded in the coil.

paper, a model of CNN-Transformer that combines CNN and
Transformer is adopted to obtain induced electric field with a
small data set.

We train CNN-Transformer as a predictor to predict
rhythm-dependent electric field induced by DMS. First,
a dataset is built for training and testing the model,
which inputs are MRI, coil configuration and stimulation
rhythm, and the outputs are hippocampal electric field and
brain grey matter electric field. Then, the best combina-
tion of CNN and Transformer layers is obtained and the
performance of CNN-Transformer model under this com-
bination is tested. Finally, the prediction performance of
CNN-Transformer model, CNN model and Transformer model
on rhythm-dependent electric field are compared. Thus, it is
verified whether the CNN-Transformer model is suitable for
predicting the rhythm-dependent electric field induced by
DMS.

II. MATERIALS AND METHODS
A. The Stimulation Paradigm of DMS

The standard coil configuration of the DMS stimulator
is shown in Fig. 1(a), where two stimulation coils with a
diameter of 360mm are placed on the left and right sides
of the head, 300mm apart. The current waveform loaded in
the coil is shown in Fig. 1(b). The fundamental wave is a
bipolar trapezoidal wave with a frequency of 1000Hz and an
extreme intensity of ±20A. The rhythm is formed by periodic
switching stimulation, and the stimulation rhythm is generally
in the range of 10Hz to 100Hz.

B. Computation Model
The calculation of the rhythm-dependent electric field

induced by DMS is based on Maxwell’s equations as
follows [37]:

∇ × H⃗ = J⃗ +
∂ D⃗
∂t

(1)

∇ × E⃗ = −
∂ B⃗
∂t

(2)

∇ · B⃗ = 0 (3)

∇ · D⃗ = ρ (4)

where H⃗ is the magnetic field intensity, J⃗ is the conduction
current density, ∂ D⃗

/
∂t is the displacement current density, E⃗

is the electric field intensity, B⃗ is the magnetic flux density,
and ρ is the free charge body density. Equation (1) shows
that displacement current and conduction current can generate
magnetic field. Equation (2) shows that the vortex source of
the electric field is the time rate of change of the magnetic flux
density. Equation (3) states that the divergence of B is zero,
that is, the B line has no beginning and no end. Equation (4)
shows that under time-varying conditions, the divergence of D
is still equal to the free charge density of the point. In addition,
there are three constitutive relations as follows [37]:

D⃗ = ε E⃗ (5)

B⃗ = µH⃗ (6)

J⃗ = σ E⃗ (7)

where equation (5) shows the relationship between D⃗ and E⃗
through the relative permittivity ε. Equation (6) shows the
relationship between B⃗ and H⃗ through the permeability µ.

Equation (7) shows the relationship between J⃗ and E⃗ through
the conductivity σ . By simplifying and deducing Maxwell’s
equations, we obtain the electric field E induced by DMS as
follows [11] and [12]:

E⃗ = −
∂ A⃗
∂t

− ∇ϕ (8)

where E⃗ is the induced electric field, ϕ is the scalar potential,
A⃗ is the magnetic vector potential of the applied magnetic
field, and ∇ is the Hamiltonian operator. The induced elec-
tric field E⃗ consists of two parts, −∂ A⃗

/
∂t is the primary

electric field generated by the changing magnetic field, which
is determined by the characteristics of the coil and the rate of
change of the magnetic field; −∇ϕ is the secondary electric
field, induced by the charge in the medium. As the scalar
potential ϕ does not have an analytical solution, it needs to be
approximated by FEM. According to Ampere circuital theorem
and Gauss’s law, the magnetic field partial differential equation
and the EF partial differential equation in the electromagnetic
field can be derived [37]: ∇

2 A⃗ − µε ∂2 A⃗
∂t2 + µσ E⃗ = 0

∇
2ϕ − µε

∂2ϕ

∂t2 = −
ρ
ε

(9)

where µ is the relative permeability of each tissue, ε is the
permittivity of each tissue, and ∇

2 is the Laplace operator.
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Fig. 2. Procedure for calculating induced electric field.

TABLE I
THE CONDUCTIVITY AND RELATIVE PERMITTIVITY OF HEAD TISSUES

It can be seen from the equations (9) that the induced electric
field is not only determined by the applied magnetic field,
but also related to the electrical conductivity and relative
permittivity of the head tissues.

In this paper, FEM is used to calculate the induced electric
field, and the process is shown in Fig. 2: (1) Mimics software
(Materialise, Belgium) is used to segment and reconstruct
the MRI data of 35 subjects. For each subject, the head
structure is divided into six parts: scalp, skull, cerebrospinal
fluid (CSF), grey matter, white matter and hippocampus.
The conductivity and relative permittivity of the individ-
ual head tissues are shown in Table I, with reference to
the online database of Italian National Research Council
(http://niremf.ifac.cnr.it/tissprop/). Hypermesh 2019 software
(Altair Engineering, United States) is adopted to mesh the
3D head model, and all the head models are divided into
tetrahedral grid with side lengths less than 1mm. (2) ANSYS
2020R2 software (ANSYS, United States) is adopted for finite
element calculation of the induced electric field. In the process
of finite element calculation, the scalar potential between
the scalp, the air and the adjacent head tissue satisfies the
Neumann boundary condition [11], [12]:

n⃗(
∂ A⃗
∂t

+ ∇ϕ) = 0 (10)

where n⃗ is the normal vector.

C. Data Preparation

The MRI data in this study are obtained from Shanghai
Ruijin Hospital. There are 35 subjects aged from 33 to 76,
including 21 males and 14 females. Twenty patients with AD
and 15 healthy volunteers are included. MRI data from 30 of
these individuals are randomly selected for the training set,
and MRI data from the remaining 5 individuals are used for
the test set.

We select 10 stimulation rhythms (10Hz, 20Hz, 30Hz,
40Hz, 50Hz, 60Hz, 70Hz, 80Hz, 90Hz and 100Hz) in the
range of 10Hz to 100Hz at intervals of 10Hz. From 200mm
to 300mm, 21 coil spacing of 5mm are selected (200mm,
205mm, 210mm, 215mm, 220mm, 225mm, 230mm, 235mm,
240mm, 245mm, 250mm, 255mm, 260mm, 265mm, 270mm,
275mm, 280mm, 285mm, 290mm, 295mm and 300mm). As a
result, a total of 210 combinations of stimulation rhythms and
coil configurations are obtained.

We build head models of 35 persons based on MRI data
and calculate the electric fields induced by 210 stimulation
combinations based on FEM. The information of the dataset
is shown in Table II. We obtain all samples by the process
shown in Fig. 3(a). The inputs of the dataset are: (1) central
slices from coronal view, sagittal view and horizontal view
of MRI; (2) coil configuration; (3) stimulation rhythm. The
outputs of the constructed dataset are: (4) the maximum
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Fig. 3. FEM model and CNN-Transformer model. (a) FEM model. (b) CNN-Transformer model.

TABLE II
DATASET INFORMATION

and mean intensity of the brain grey matter electric field;
(5) The maximum intensity and mean intensity of hippocampal
electric field. The total number of samples is 7350. Of these,
6300 samples (training set of 30 persons) were used for
training and 1050 samples were used for testing (test set of
5 persons).

D. CNN-Transformer Model

The framework of the CNN-Transformer model we adopted
is shown in Fig. 3(b). It is a hybrid of multi-layer CNN and
Transformer. The feature extraction of individual MRI data is
the key to predict the electric field induced by DMS for any
individual. Referring to the TransUNet model for MRI image
segmentation [27], we put the CNN before the Transformer,
and actually utilize the CNN as the feature extractor of the
Transformer. Treating local and global features separately
makes the model design more flexible. The number of layers of
CNN and Transformer can be individually adjusted as needed
to adapt to predict the electric field of different brain regions.

The part of Transformer adopts the structure of VIT [31].
Since the original Transformer cannot directly process image
data, the image needs to be preprocessed. Take image x ∈

RH×W×C as an example, where H × W is the resolution and
C is the number of channels. First, we split the image x into N
two-dimensional patches:

{
x i

p ∈ RP×P×C |i = 1, 2, · · · , N
}

.
The size of each patch is P × P and the number of patches is
N = H × W

/
(P × P). Then patch embedding and position

encoding are processed. Patch embedding flattens each patch
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and makes a linear transformation to map the x p to the
D-dimensional vector. At the same time, in order to preserve
the spatial position information between the input image
patches, a position encoding vector E posi ton is also needed
to be added to the image patch embedding, which is shown
as follow:

z0 = [xclass; x1
p E; x2

p E; · · · ; x N
p E] + E posi ton (11)

where E ∈ R(P·P·C)×D denotes patch embedding
and E posi ton ∈ R(N+1)×D denotes position encoding.
In equation (9), a classification vector xclass is added to
the vector of length N , which is used to learn the category
information in the training process. The Transformer encoder
consists of several layers of multi-head Self-attention (MSA)
blocks and multi-layer Perceptron (MLP) blocks. The
MSA block of Transformer adopts the Softmax function
to calculate the attention weights, and the MLP adopts the
GELU activation function. The output of the lth layer can be
expressed as follows:

zl = M L P(L N (M S A(L N (zl−1)) + zl−1))

+ M S A(L N (zl−1)) + zl−1 (12)

where L N refers to Layer Normalization. L N is added before
each block and residual join is used after each block.

The CNN-Transformer model uses a multi-layer CNN as the
feature extractor of the Transformer to generate the feature
map of the input. The patch embedding is applied to the
patches extracted from the CNN feature map instead of the
patches extracted from the original image. Each layer of
CNN is composed of three parts: two-dimensional convolution,
regularization and RELU activation.

The hidden layer consists of three parts: fully connection,
Dropout, and RELU activation, which is able to prevent
overfitting. The output layer consists of four neurons and is
used to fit four sets of outputs.

For the CNN-Transformer model, we set the inputs as MRI,
coil configuration, and stimulation rhythm, and the outputs
as the maximum and mean intensity of the hippocampal and
brain grey matter electric fields. Firstly, the features of the
MRI central slices from three different views are extracted
through the CNN layer to generate feature maps. After patch
embedding and position encoding, the feature maps are input
into the Transformer layer for processing. It is then concate-
nated with coil configuration and stimulation rhythms to form
feature sequences, which are then passed through the hidden
and output layers to output the maximum and mean intensity of
the hippocampal electric field and the brain grey matter electric
field. Both types of data, coil configuration and stimulation
rhythm, are single numbers rather than sequences, so using
advanced models for feature extraction on them may reduce
training efficiency. Referring to the CNN model for predicting
the electric field induced by TMS [23], we concatenate the two
separate values into the feature map processed by CNN and
Transformer to improve the learning efficiency of the model.

E. Experimental Settings
The model in this study is designed based on Pytorch 1.12.0,

the Adam optimizer is adopted to optimize the training, and

the Mean Square Error (MSE) function is used as the loss
function.

We adopt four indicators to evaluate the performance of
the model in predicting the frequency dependent electric field
induced by DMS: mean Absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE),
and coefficient of determination (R2). The four metrics are
calculated as follows:

M AE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (13)

RM SE =

√√√√1
n

n∑
i=1

(yi − ŷi )2 (14)

M AP E =
1
n

n∑
i=1

∣∣∣∣1 −
ŷi

yi

∣∣∣∣ (15)

R2
= 1 −

n∑
i=1

(yi − ŷi )
2

n∑
i=1

(yi − ȳ)2
(16)

where yi is the intensity of the induced electric field obtained
by FEM, ŷi is the intensity of the induced electric field
predicted by the model, and ȳ is the mean of the intensity
of n sets of electric fields. MAE and RMSE can intuitively
reflect the error of the results predicted by the model. MAE
reflects the true error, while RMSE takes the square of the
error and then takes the square root, which magnifies the
difference of large errors. Therefore, RMSE can reflect the size
of its maximum error. MAPE is a combination of absolute and
relative values, so it can reflect both the degree of deviation
from the predicted value and the relative error of the predicted
value. R2 is a statistical measure used to evaluate the goodness
of fit of a regression model. The meaning is the proportion of
variance explained by the model to the total variance, and the
value ranges from 0 to 1. As R2 gets closer to 1, the model has
a better fit to the data, meaning that the independent variable
explains more variation in the dependent variable.

In order to keep the performance of the model unbiased,
we adopt the method of 10-fold cross-validation. The dataset
is equally divided into 10 subsets after shuffling the order.
Training is performed 10 times for each combination of
hyperparameters. Each time, 9 of the 10 subsets are used
as the training set and the remaining one is used as the
validation set until all subsets have been used as the validation
set. The RMSE of the validation set is calculated after each
training. The mean RMSE of 10 times is taken as the RMSE of
this hyperparameter combination. Finally, the hyperparameter
combination with the minimum RMSE is selected to train the
data of all 10 subsets to obtain the optimal model. The data of
the test set is independent of all the data of the training set and
the validation set, avoiding the overlap of the data. The test
set is used to evaluate the performance of the optimal model
to prove its generalization.

Through the 10-fold cross validation method, we determined
the training scheme of CNN-Transformer model as follows:
the learning rate is set to 0.001, the Batch size is 256, the total
number of iterations is 200, and the optimization algorithm
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Fig. 4. R2 with different combinations of CNN layers and transformer
layers.

is Adam. The hardware platform we used to perform our
experiments is as follows. CPU: Intel(R) Xeon®Silver 4114;
GPU: NVIDIA GeForce RTX 3070; Memory: 384GB.

III. RESULTS AND DISCUSSIONS

A. Optimal Combination of CNN and Transformer Layers
In the CNN-Transformer model, the depth of both CNN

and Transformer parts has a great impact on the performance
of the model. Since deeper networks can learn more abstract
and complex features, increasing the depth of the CNN can
improve the performance of the model. However, the boost is
not linear. As depth increases, the performance gains saturate,
and too deep networks may also cause performance degra-
dation. Similar properties hold for the depth of Transformer,
increasing depth may improve performance but can also lead
to overfitting or training instability. Therefore, choosing the
optimal combination of CNN and Transformer layers is very
important to improve the prediction performance of this model.

We test CNN layers ranging from 1 to 6 and Transformers
layers ranging from 1 to 7, resulting in 42 combinations.
Each combination of models is trained for 200 epochs with
the training set data, and the R2 of the model’s prediction
results on the test set is adopted as the evaluation metric,
which are shown in Fig. 4. We find that R2 tends to decrease
after the number of CNN layers exceeds 5 and the number of
Transformer layers exceeds 6, and the combination of 5 CNN
layers and 6 Transformer layers achieves the largest R2. As a
result, we confirm that 5-layer CNN and 6-layer Transformer
are the optimal combination.

B. Prediction Results and Error Analysis
In order to obtain the predictor, we train the

CNN-Transformer model of the optimal combination of
5-layer CNN and 6-layer Transformer with the training set.
The change of training loss with the number of iterations
is shown in the Fig. 5, which loss function of MSE finally
converges to the lowest value of 0.0012.

Fig. 5. The change of training loss with the number of epochs.

The comparison of one prediction result of the predictor
with the actual data is shown in Table III as an example.
For any individual, the maximum and mean values of the
induced electric field in the brain grey matter and hippocampus
can be predicted by inputting the MRI, coil distance and
stimulation rhythm. The results of 35 persons are shown in
Fig. 6, where the X-axis represents the calculated value of
FEM, the Y-axis represents the predicted value obtained by
the model, and the red line represents the reference of X=

Y. The prediction results of the predictor for the brain grey
matter electric field and the hippocampal electric field of the
training set are compared with the FEM calculation results
in Fig. 6(a) and Fig. 6(b), respectively. The prediction results
of the predictor for the brain grey matter electric field and
the hippocampal electric field of the test set are compared
with the FEM calculation results in Fig. 6(c) and Fig. 6(d),
respectively.

The MAE, RMSE, MAPE, and R2 of the prediction results of
the predictor for the training set and the test set are shown
in the Table IV. For both training and test sets, the MAE,
RMSE and MAPE of the hippocampal electric field prediction
results are lower than those of the brain grey matter electric
field, indicating that the prediction error for the hippocampal
electric field is lower. The R2 of the prediction results for
the hippocampal electric field are 0.9773 and 0.9690 in the
training set and test set, which indicates that the predictor can
predict 97.73% and 96.90% of the variation in the training set
and test sets. And R2 of the prediction results for the brain
grey matter electric field are 0.9577 and 0.9402 in the training
set and test set, which indicates that the predictor can predict
95.77% and 94.02% of the variation in the training and test
sets. The results of MAE, RMSE, MAPE and R2 prove that the
prediction performance of the predictor for the hippocampal
electric field is better than that of the brain grey matter electric
field. Comparison of the results on the training and test sets
confirms that the model generalizes well. Since the dielectric
parameters of the hippocampus are the same as those of the
brain grey matter, the difference in prediction performance
for brain grey matter and hippocampus mainly depends on
their volume differences. The volume of the whole brain grey
matter is much larger than that of the hippocampus, which
leads to the fact that the number of data features that need to



XU et al.: INDIVIDUAL PREDICTION OF ELECTRIC FIELD INDUCED 2149

Fig. 6. Comparison of prediction and FEM results. (a) Brain grey matter electric field in training set. (b) Hippocampal electric field in training set.
(c) Brain grey matter electric field in test set. (b) Hippocampal electric field in test set.

TABLE III
COMPARISON OF ACTUAL AND PREDICTED RESULTS

TABLE IV
PERFORMANCE COMPARISON ON DIFFERENT DATASETS

be considered to predict the hippocampal electrical field alone
is much smaller than that of the brain grey matter. Therefore,
the prediction performance of hippocampus is better under the
same training intensity.

Table V shows the comparison of time cost of FEM and
CNN-Transformer model to obtain a set of induced electric
fields. In order to calculate the induced electric field of a new
individual, FEM needs to first build the head model of the
individual, which takes several hours. The CNN-Transformer
model takes 0.731s to predict the induced electric field of a

TABLE V
TIME COST COMPARISON

new individual based on CPU, and only 0.042s to predict
the induced electric field based on GPU. It indicates that
adopting the CNN-Transformer model is able to obtain the
rhythm-dependent electric field induced by DMS in close to
real time.

C. Effect of Input Parameters on Model Performance
For the same individual, the stimulation rhythm and coil

configuration determine the output of the induced electric field.
In the test set, we test the predictor to predict hippocampal

electric field and brain grey matter electric field for all
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Fig. 7. Effect of input parameters on performance metrics. (a) Effect of stimulation rhythm on MAE. (b) Effect of stimulation rhythm on RMSE.
(c) Effect of stimulation rhythm on MAPE. (d) Effect of stimulation rhythm on R2. (e) Effect of coil configuration on MAE. (f) Effect of coil configuration
on RMSE. (g) Effect of coil configuration on MAPE. (h) Effect of coil configuration on R2.

combinations of subject with coil configuration under the same
stimulation rhythm. The MAE, RMSE, MAPE and R2 are then
calculated as metrics of the performance of the predictor in that
stimulation rhythm. Then we obtain the performance metrics
of all stimulation rhythms, as shown in the Fig. 7(a)-(d).
Similarly, in order to obtain the performance metrics of the
predictor at different coil configuration, the predictor is tested
to predict hippocampal electric fields and brain grey matter
electric fields for all combinations of subject with stimulation
rhythm at the same coil configuration. The MAE, RMSE,
MAPE and R2 are then calculated as the performance metrics
of the predictor for this coil configuration. The performance
metrics of the predictor for all coil configuration are shown
in the Fig. 7(e)-(h). Comparing Fig. 7(a)-(h), we find that the
performance metrics of MAE, RMSE, MAPE and R2 of the
predictor all fluctuate significantly with the change of coil
configuration, and fluctuate less with the change of stimulus
rhythm. The stimulation rhythm, as an input parameter, has
significantly less influence on the predictor’s performance than
the coil configuration. It can be seen from Fig. 7(a)-(d) that
as the stimulation rhythm changes, the fluctuation degree of
the predictor’s performance metrics of the brain grey matter
electric field is close to that of the hippocampal electric field.
However, it can be seen from Fig. 7(e)-(h), with the change
of coil configuration, the fluctuation degree of the predictor’s
performance metrics of the brain grey matter electric field is
far more drastic than that of the hippocampal electric field.

D. Effect of Different Tissues on Model Performance
The hippocampus has the same dielectric parameters as the

brain grey matter and can be considered as the same type of
brain tissue during the calculation of the induced electric field.
The difference in prediction performance is likely to depend
on the volume difference between the tissues.

In order to verify whether the difference in prediction per-
formance of the model is determined by the volume difference

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT TISSUES

of brain tissue, we take this model to train the different tissues
as grey matter electric field of the left and right hemispheres
of the brain separately. By adopting the same hyperparameters
for training, we obtained the prediction performance for the
grey matter electric field in the left and right hemispheres
of the brain compared with the hippocampus and the whole
brain grey matter, as shown in Table VI, including MAE,
RMSE, MAPE and R2. The prediction performance of the
grey matter electric field in the left and right hemispheres
of the model brain is very similar, and both of them are
between the prediction performance of the whole brain grey
matter electric field and the hippocampal electric field. The
grey matter volume of the left and right hemispheres is about
the same, only half the volume of the whole brain grey matter,
and larger than the volume of the hippocampus. It proves that
the difference in the prediction performance of different brain
regions mainly depends on the difference of volume.

E. Performance Comparison With Other Models
Further, we contrast the prediction performance of

CNN-Transformer with CNN model and Transformer model
for rhythm-dependent electric field induced by DMS. To make
a contrast with CNN-Transformer, we set the CNN model to
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Fig. 8. Comparison of other models. (a) CNN model. (b) Transformer
model.

Fig. 9. Comparison of the performance metrics of the models as the
number of iterations changes. (a) Comparison of MAE. (b) Comparison
of RMSE. (c) Comparison of MAPE. (d) Comparison of R2.

5 layers and the Transformer model to 6 layers, which are
shown in Fig. 8(a) and Fig. 8(b), respectively.

The above dataset is used to train the CNN model and the
Transformer model separately. The hyperparameters used for
training are the same as CNN-Transformer: the MSE function

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT MODELS

is used as the loss function of the training, the learning rate is
0.001, the batch size is 256, the number of iterations is 200,
and the optimization algorithm is Adam. In the training pro-
cess, the performance metrics (MAE, RMSE, MAPE and R2)

of the three models to the training set with the number of iter-
ations are shown in Fig. 9(a)-(d). As can be seen from Fig. 9,
the amplitudes of MAE, RMSE, MAPE, and R2 fluctuations
with the increase of iterations are all much larger for CNN
model than for CNN-Transformer model and Transformer
model. This indicates that the CNN model converges slower
than CNN-Transformer model and Transformer model in this
task. After the number of iterations exceeds 150, all three
models gradually tend to converge. We can find from Fig. 9
that for the three metrics of MAE, RMSE and MAPE: CNN >

Transformer > CNN-Transformer. While for the metric of R2:
CNN-Transformer > Transformer > CNN. It indicates that
for the performance of the three models under the training
set, CNN-Transformer model is better than Transformer model
and CNN model. Then we test the performance of the three
models with test set, and the results are shown in the Table VII.
Through the comparison of MAE, RMSE, MAPE and R2 in the
Table VII, we find that the prediction performance for the test
set is: CNN-Transformer > Transformer > CNN. It proves that
the CNN-Transformer model also has the best generalization
performance among the three models in this task.

IV. CONCLUSION

In this paper, a CNN-Transformer model is adopted to
predict the rhythm-dependent electric field induced by DMS.
Compared to FEM, which takes hours to complete head
modeling and calculation, CNN-Transformer model only takes
0.731s (CPU) or 0.042s (GPU). It greatly reduces the time cost
and approximates being able to obtain the rhythm-dependent
electric field induced by DMS in real time.

We build a dataset with a sample size of 7350 for training
and testing the CNN-Transformer model. Using 10-fold cross
validation, we obtain the optimal combination of hyperpa-
rameters: training loss function is MSE, learning rate is
0.001, batch size is 256, number of iterations is 200, and
optimization algorithm is Adam. We use the test set to test
the different combinations of CNN and Transformer layers,
and then we find that the combination of 5-layer CNN and
6-layer Transformer is optimal.

We choose the hippocampal electric field and the brain grey
matter electric field as the prediction targets. By comparing
the metrics of MAE, RMSE, MAPE and R2, we find that
the CNN-Transformer model has better prediction perfor-
mance for the hippocampal electric field than the brain grey
matter electric field. In addition, we find that the change
of stimulation rhythm has a significantly lower impact on
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the model performance than the coil configuration. For pre-
dicting rhythm-dependent electric field, this property of the
CNN-Transformer model is a great advantage.

The CNN-Transformer model is built with the CNN model
as the feature extractor of the Transformer model. In order
to verify whether the CNN-Transformer model is better
than the CNN model or the Transformer model, we take
the same dataset to train the CNN model and the Trans-
former model respectively. For both training and test sets,
we find that the CNN-Transformer model performs better than
both the CNN model and the Transformer model. It proves
that CNN-Transformer is more suitable for predicting the
rhythm-dependent electric field induced by DMS.

In future research, the prediction ability of the model for
coil configuration should be improved. We will also increase
the number of predicted targets to contrast more brain regions.
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