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Estimation of Gait Parameters in Huntington’s
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Abstract— In Huntington’s disease (HD), wearable iner-
tial sensors could capture subtle changes in motor
function. However, disease-specific validation of meth-
ods is necessary. This study presents an algorithm for
walking bout and gait event detection in HD using a
leg-worn accelerometer, validated only in the clinic and
deployed in free-living conditions. Seventeen HD partici-
pants wore shank- and thigh-worn tri-axial accelerometers,
and a wrist-worn device during two-minute walk tests
in the clinic, with video reference data for validation.
Thirteen participants wore one of the thigh-worn tri-axial
accelerometers (AP: ActivPAL4) and the wrist-worn device
for 7 days under free-living conditions, with proprietary
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AP data used as reference. Gait events were detected
from shank and thigh acceleration using the Teager-Kaiser
energy operator combined with unsupervised clustering.
Estimated step count (SC) and temporal gait parameters
were compared with reference data. In the clinic, low
mean absolute percentage errors were observed for stride
(shank/thigh: 0.6/0.9%) and stance (shank/thigh: 3.3/7.1%)
times, and SC (shank/thigh: 3.1%). Similar errors were
observed for proprietary AP SC (3.2%), with higher errors
observed for the wrist-worn device (10.9%). At home,
excellent agreement was observed between the proposed
algorithm and AP software for SC and time spent walking
(ICC2,1 >0.975). The wrist-worn device overestimated SC
by 34.2%. The presented algorithm additionally allowed
stride and stance time estimation, whose variability corre-
lated significantly with clinical motor scores. The results
demonstrate a new method for accurate estimation of HD
gait parameters in the clinic and free-living conditions,
using a single accelerometer worn on either the thigh or
shank.

Index Terms— ActivPAL, gait event detection, Fitbit,
free-living monitoring, Huntington’s disease, validation,
wearable inertial sensors.

I. INTRODUCTION

HUNTINGTON’S disease (HD) is an autosomal dominant
neurodegenerative disease, characterized by progressive

decline across cognitive, behavioral and motor functions [1].
Gait impairment progressively worsens throughout the course
of HD, and is thus an important marker of disease progression
and endpoint in intervention studies [2].

The Unified Huntington’s Disease Rating Scale (UHDRS)
total motor score (TMS) is the current gold standard for
assessing motor function in HD [3]. However, it is a composite
score not specifically developed to evaluate gait. Moreover,
UHDRS-TMS is affected by inter-rater and intra-rater variabil-
ity [4], and may have limited sensitivity for detecting subtle
changes in motor symptoms over time [5]. Objective measures
of HD gait in the clinic have been reported using video
motion systems [6] or computerized walkway systems [7],
[8]. In recent years, the use of wearable sensors to assess
motor impairment in neurological disorders has increased,
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offering the potential for real-world monitoring of patients
to assess disease progression and the efficacy of therapeutic
interventions [9], [10].

Wearable sensors have been applied in HD to assess
sleep [11], chorea [12], postural control [13], disease sever-
ity [14], and to classify pathological gait patterns [15].
While consumer devices typically provide measures of step
count (SC), spatiotemporal gait analysis in neuromuscular
diseases [9] requires precise detection of initial (IC) and
final (FC) contact events, which can be derived from inertial
data using appropriate gait event detection (GED) algorithms.
Increased variability in spatiotemporal parameters is consis-
tently reported in HD, with increased variability of temporal
gait parameters associated with higher UHDRS-TMS val-
ues [7], [16], [17], [18]. Most previous algorithms for detecting
gait events in HD have been based on acceleration recorded
by trunk- or wrist-worn devices [16], [18], [19], [20], [21],
[22], with few deployed under free-living conditions [16], [20],
[22], and some lacking disease-specific validation [16], [17],
[18], [20]. Although GED algorithms based on leg acceleration
have been found to perform better than those based on trunk
or wrist acceleration in other pathologies, such as Parkinson’s
disease, spinal cord injury, or stroke, and healthy subjects [23],
[24], no previous studies have compared the accuracy of GED
algorithms for sensors at different locations in HD.

Here we present a new GED algorithm for use with
either shank or thigh acceleration in individuals with HD.
The algorithm was adapted from a method based on the
Teager-Kaiser energy (TKE) operator previously validated for
use on the shank in healthy individuals in the clinic [25]. Unsu-
pervised clustering techniques were incorporated to adapt the
algorithm for both shank and thigh acceleration, and for patho-
logical gait patterns. The proposed algorithm, together with
the gait parameters provided by the proprietary software of
the wrist- and thigh-worn sensors, were first validated against
video reference data in individuals with HD in the clinic.
Once validated in the clinic, the proposed GED algorithm
was then applied during free-living conditions, and estimates
of SC and time spent walking were compared with those
provided by proprietary software of the wrist- and thigh-worn
sensors, the latter used as reference data. We hypothesized
that the proposed GED algorithm would provide accurate
estimates of SC and temporal gait parameters in patients
with HD in the clinic, using either shank- or thigh-worn
sensors. We also hypothesized that the proposed algorithm
would provide estimates of daily SC and time spent walking
similar to those provided by proprietary AP software in HD
patients, using a single leg-worn accelerometer under free-
living conditions.

II. METHODS

A. Ethics Statement
Participants were recruited and data was collected at Cardiff

University. Full ethical approval was obtained from an NHS
research ethics committee (Wales REC 3, United Kingdom,
19/WA/0329, 13 Jan 2020), with the University College
Dublin approved to analyze the data. A second local ethical

approval for data analysis only was obtained as required
by the local ethics committee at University College Dublin
(HREC-LS, University College Dublin, Ireland, LS-LR-22-
178-Garcia-Lowery, 05 Sep 2022). All participants provided
written informed consent.

B. Study Participants
Participants were identified from registered Enroll-HD par-

ticipants from the Cardiff HD clinic. Enroll-HD is a global
research platform that acts as worldwide observational study
for HD families, monitoring the onset of the disease and its
progression with annual assessments. Inclusion criteria were
adults with a diagnosis of HD confirmed by genetic screening,
a diagnostic confidence level >2, who were self-ambulatory
and participants in Enroll-HD. Exclusion criteria included the
following components: diagnosis of juvenile onset HD, history
of co-morbid neurological conditions, acute orthopedic condi-
tions, severe medical conditions, acute or unstable psychiatric
condition, inability to tolerate long-term wear of physical
activity monitors, and inability or unwillingness to provide
written informed consent. Individuals meeting the criteria were
invited to participate in the study coinciding with their annual
Enroll-HD clinical assessments.

Seventeen individuals with HD (5 female) participated
in the gait assessment in the clinic. Ten of these partici-
pants (2 female), together with three additional participants
(1 female) participated in the free-living study. Anthropometric
and clinical data for study participants are summarized in
Table I.

C. Protocol and Data Acquisition
The study involved two components: a gait assessment in

the clinic and 7-day physical activity at home monitoring
during free-living conditions.

In the clinic, all participants performed two two-minute
walk tests (2MWTs) wearing five tri-axial accelerometers:
a Fitbit Charge 4 (FB, Fitbit, San Francisco, CA, USA,
3.58 × 2.27 × 1.25 cm, 24 g) on their non-dominant wrist, two
ActiGraph GT9X Link (ActiGraph Corporation, Pensacola,
Florida, USA, 3.5 × 3.5 × 1 cm, 14 g, 100 Hz, +/−16 g)
on the left and right shanks, and two ActivPAL4 (AP, PAL
Technologies, Glasgow, UK, 2.35 × 4.3 × 0.5 cm, 9.5 g,
40 Hz, +/−4 g) on the left and right thighs. Leg-worn devices
were placed 10 cm below the infrapatellar region on the
anterior tibial midline, and 10 cm above the suprapatellar
region on the anterior surface of the vastus intermedius
muscle (Fig. 1a). First, participants performed a 2MWT with
instructions to walk continuously and cover as much distance
as possible in two minutes, slowing down or stopping to
rest if needed. They walked in an anticlockwise direction
on a circuit consisting of 10 m lengths and 1 m turning
transitions on both ends marked with two cones (Fig. 1b).
After two minutes, participants stopped walking and sat qui-
etly for another two minutes. A second 2MWT was then
performed to increase the number of steps for the analysis
while avoiding fatigue. Video data were recorded to provide
reference data. Video recordings were obtained from inside the
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TABLE I
DEMOGRAPHICS AND CLINICAL SCORES FOR STUDY PARTICIPANTS

Fig. 1. (a) Sensor location. (b) Study design.

circuit path, following and recording participants with a side
view during the entire 2MWTs, with the focus on participants’
feet.

For the free-living study, participants wore a FB on their
non-dominant wrist to minimize the impact of arm movements
typically conducted with the dominant arm during everyday
activities, and an AP on their right thigh, following manufac-
turer’s recommendations, for seven days during their normal
home routine, starting the same day as in-clinic assessments.
Both devices were waterproof and only removed at the end
of the seven days, therefore requiring minimal interaction and
charging. Participants downloaded the FB mobile app to their
personal phone, were assigned an account linked to their study
identifier, and used their phone to sync their FB data after each
night. Participants were able to see their daily SC in their FB
device and through the FB app.

The following clinical scores were directly obtained (via a
specific data request) for each participant from the Enroll-HD
study data, within a time frame of 23 days (median value,
interquartile range 9-49) from the in-clinic and free-living
assessments: length of CAG trinucleotide repeat expansion

(CAG repeats), UHDRS-TMS, total functional capacity (TFC),
and UHDRS gait score. Additionally, the following clinical
scores were calculated for each participant from the obtained
clinical scores: composite UHDRS score (c-UHDRS) [26],
disease burden score [27], total maxima dystonia, and total
maxima chorea [28].

D. Physical Activity Data Extraction
Raw shank and thigh acceleration data were downloaded

for each participant after the 2MWTs in the clinic and at the
end of the free-living study, to be used by the proposed GED
algorithm.

SC provided by FB software was recorded in the clinic at
the beginning and the end of each 2MWT and a total SC
value (SCFB−wrist) was calculated for each participant for the
two 2MWTs together. For the free-living study, a bespoke
platform (AthenaCX, AthenaCV.com, In the Wild Research
Ltd., Dublin, Ireland) was used to integrate FB data for
all participants. FB step and heart rate data (60-s epochs)
were extracted from this platform as JSON files. FB heart
rate data was used to distinguish FB wear periods (with
available heart rate data) from non-wear periods (with heart
rate data unavailable). Daily SCFB−wrist was obtained for each
participant by summing step events detected only during FB
wear periods.

For comparison with the proposed GED algorithm, SC and
walking bout (WB) data were extracted from the AP software
(ActivPAL PALbatch v8.11.1.63 software) after the 2MWTs
and after the free-living study. These data were used to
calculate a total SC value (SCAP−thigh) for each participant
for the two 2MWTs and for the left and right thighs together.
For the free-living study, periods of consecutive step events
were considered as WBs. WBs of less than 4 s were removed
and WBs separated by 2 s or less were combined. Daily time
spent walking (Wt−AP−thigh) was calculated as the sum of the
duration of all WBs on each day. Daily SCAP−thigh values were
calculated as the sum of steps during all WBs of each day and
only for FB wear periods, and the resulting single leg values
were doubled.



2242 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Video recordings of the two 2MWTs performed in the clinic
were visually inspected frame by frame for manual annotation
of IC and FC event times, using a graphical user interface
developed in MATLAB and the Video Viewer app of the Image
Processing Toolbox. This procedure was performed for each
foot. The resulting IC and FC events were used to estimate SC,
as the number of IC events, and the following temporal gait
parameters: stride time (STR), as time between consecutive
IC events, stance time (STA), as time between consecutive
IC and FC events, and swing time (SWI), as time between
consecutive FC and IC events. Temporal gait parameters were
estimated for the first three straight sections of each 2MWT,
totaling 60 m. With IC and FC events annotated during turning
transitions excluded, this yielded over 30 gait cycles per
participant [29]. Estimates of SC were summed, and mean
and coefficient of variation of temporal gait parameters were
calculated for the two 2MWTs and both legs together to
obtain the final gait parameters for each participant (SCVideo,
STRMean−video, STAMean−video, SWIMean−video, STRCV−video,
STACV−video and SWICV−video).

E. Automatic Detection of WBs From Thigh Raw
Acceleration

An automatic algorithm was developed to detect WBs
from thigh acceleration recorded during the free-living study,
using a method similar to a previous study which used
wrist acceleration in HD patients [22]. The norm of the raw
acceleration signal was computed and the resulting signal was
band-pass filtered 0.5-15 Hz using a 4th-order Butterworth
filter (Fig. 2a). Mean and standard deviation of the absolute
value of the filtered acceleration signal were calculated over
a 6-s moving window with 5-s overlap (Fig. 2b). Windows
with means and standard deviations above a predefined activity
threshold of 0.1 g [22] were further analyzed to confirm the
presence of gait using normalized autocorrelation. A window
was determined to contain periods of gait if the highest abso-
lute value of the normalized autocorrelation with a minimum
time lag of 0.5 s and a maximum time lag of 3 s was greater
than 0.2 (Fig. 2d). WBs were then identified as consecutive
1-s periods that were included in windows containing gait
(Fig. 2c). WBs shorter than 4 s [30] were removed and those
separated by 2 s or less were combined. Daily time spent
walking (Wt−thigh−acc) was calculated as the sum of all WB
durations on each day.

F. GED Algorithm for Thigh and Shank Raw Acceleration
The proposed GED algorithm is based on a previous

algorithm developed to detect potential gait events from shank
acceleration in healthy individuals [25]. The algorithm has
been extended here to be applied to both thigh and shank
raw acceleration signals in HD participants. The proposed
algorithm includes the following steps:

1) Filtering: The z-Axis Acceleration, Which Corresponds
to the Acceleration Recorded in the Antero-Posterior Direction
of Either Shanks or Thighs When Participants Were Standing
Upright, Was High-Pass Filtered at 0.5 Hz Using a 4th-Order
Butterworth Filter, to Obtain az (Fig. 2e)

Fig. 2. (a) Filtered norm of the acceleration (|a|) recorded on the right
thigh of a HD participant during 2 hours of free-living conditions. (b) Mov-
ing mean (ā) (purple) and moving standard deviation (σa) (green) of
|a|. Red line indicates the gait activity threshold of 0.1 g. (c) Walking
bouts obtained using the proposed algorithm (WBAcc). (d) Normalized
autocorrelation (ρaa) of |a| during a 6-s time window containing gait.
Red line indicates the gait activity threshold of 0.2. Blue dashed line
is the estimated stride time (STR) of 1.125 s. (e) Filtered acceleration
recorded in the antero-posterior direction (az) of the right thigh of a HD
participant during a 15-s time period of gait activity under free-living
conditions. (f) Teager-Kaiser energy (TKE) signal estimated from az.
(g and h) Smoothed TKE signals calculated from the TKE signal in
(f). White dots indicate peaks detected as candidate FC or IC events.
(i) az with FC (blue dots) and IC (red dots) events detected after peak
characterization, classification, and post-processing.

2) TKE Estimation: TKE Was Estimated From az as in (1)
(Fig. 2f)

T K En = 2a2
zn + (azn+1 − azn−1)

2
− azn (azn+2 + azn−2)

(1)

where n represents the sample number.
3) Smoothing: A 75-Ms Moving Maximum Window Was

Applied to the Half-Way Rectified TKE Signal, Followed by a
125-Ms Moving Average Window to Smooth Adjacent Peaks,
to Obtain TKE’ (Fig. 2g)

4) Stride Time Estimation: Stride Time Was Estimated for
Each WB and Participant. Normalized Autocorrelation of az
Was Calculated Over a 6-s Moving Window With 3-s Step.
The Two Highest Peaks With a Minimum Time Lag of 0.5 s
and a Maximum Time Lag of 3 s Were Identified for Each
Window. If the Time Lag of One Peak Was Approximately
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Twice (±10%) the Time Lag of the Other Peak, Stride Time
Was Estimated as the Time Lag of the First Peak Above
0.75 s (Fig. 2d). If Not, the Time Lag of the Highest Peak
Was Considered as the Estimated Stride Time. The Histogram
of Estimated Stride Times Over All Windows Was Then
Calculated and the Highest Bin Identified. The Median of the
Stride Time Estimates in the Identified Bin Was Taken as the
Stride Time Estimation (ST R)

5) Peak Finding: Peaks Higher Than 0.4 Times the Mean
Value of TKE’ and Separated by a Minimum of 0.6ST R
s Were Identified (Fig. 2g). TKE’ Values Within a Region
of ±0.3ST R About Each Detected Peak Were Set at Zero,
Obtaining TKE” (Fig. 2h). Peaks Higher Than 0.4 Times the
Mean Value of TKE” and Separated by a Minimum of 0.4ST R
s Were Then Detected

6) Peak Characterization: All Peaks Detected in
Step 5 Were Characterized by Six Features, Including
Time Since Previous Peak (p1), Time to the Next Peak (p2),
the Ratio of the Two Previous Parameters (p3), and the
Following Features of az Within a Region of ±0.25 s About
the Peak: Range (maximum Minus minimum) (p4), Number
of Zero-Crossings (p5), and Number of Peaks Higher Than
0.5 (p6). Parameters p3-p6 Were Normalized to the Maximum
Values Across All Peaks and Were Used as Peak Coordinates
for Unsupervised Peak Clustering

7) Centroid Initialization: Only Peaks With p1 and p2 Lower
Than or Equal to 1.25ST R Were Used to Initialize the Cluster
Centroids. After Calculating Histograms of Parameters p3-p6
Using 0.1-Width Bins, Otsu’s Method [31] Was Applied to
Each Histogram to Distinguish Two Classes, Minimizing Intra-
Class Variance. The Parameter That Provided the Minimum
Intra-Class Variance Was Used to Divide Peaks Into Two
Clusters, and Centroid Starting Locations Were Calculated as
the Mean of the Peaks in Each Cluster

8) Peak Classification: Using the Centroid Starting Loca-
tions, All Peaks Were Classified Using the Squared Euclidean
Distance. Peaks Included in the Cluster With the Lowest p3
Median Value Were Labelled FC Events, and the Remaining
Peaks Were Labelled IC Events

9) Peak Post-Processing: An Iterative Process Was Then
Initiated to Remove Peaks Which Were Too Distant (p1 and
p2 ≥ 0.65ST R) or Too Close (p1 and p2 < 0.35ST R), and
Relabel Peaks When Two Consecutive Peaks Had the Same
Label. Finally, the Series of IC and FC Events Was Forced
to Start With an FC Event and End With an IC Event, and
Events With the Same Label as Its Preceding Event Were
Removed (Fig. 2i) The proposed GED algorithm was applied
to raw acceleration from the thighs and shanks during each
2MWT in the clinic and from the thigh for each WB detected
during the free-living study. The resulting IC and FC events
were used to calculate SC and temporal gait parameters,
as explained above for the video data, thus obtaining overall
gait parameters for each participant (SCThigh−acc, SCShank−acc,
STRMean−thigh, STRMean−shank, STAMean−thigh, STAMean−shank,
SWIMean−thigh, SWIMean−shank, STRCV−thigh, STRCV−shank,
STACV−thigh, STACV−shank, SWICV−thigh and SWICV−shank).

For the free-living study, daily SCThigh−acc values were
calculated as the sum of SC estimates during all WBs of each

day and only for FB wear periods, and the resulting single
leg values were doubled. Mean and coefficient of variation of
temporal gait parameters were also calculated for all WBs
during the seven days. To avoid abnormally high or low
values of STRCV, STACV, and SWICV due to inaccuracies
in GED, values with a difference of more than 25% from the
corresponding median value were rejected.

G. Statistical Analysis
In the clinic, video data were used as reference for validation

of the proposed GED algorithm as well as the gait param-
eters provided by proprietary AP and FB software. Scatter
and Bland-Altman plots, Pearson’s correlation coefficient (r),
intra-class correlation coefficient (ICC2,1), and mean absolute
percentage error (MAPE), were used to assess the level of
association and agreement for SC between video data, the
proposed GED algorithm, and AP and FB software, and
for temporal gait parameters between video data and the
proposed GED algorithm. ICC2,1 values less than 0.5, between
0.5 and 0.75, between 0.75 and 0.9, and greater than 0.9 were
considered as poor, moderate, good, and excellent agreement,
respectively [32]. In the free-living study, proprietary AP data
were used as reference for assessing the performance of the
proposed GED algorithm and the gait parameters provided
by proprietary FB software. Scatter and Bland-Altman plots,
and r and ICC2,1 coefficients, were used to assess the level
of association and agreement for SC between AP software,
the proposed GED algorithm, and FB software, and for Wt
between AP software and the proposed GED algorithm.

Comparisons of temporal gait parameters between UHDRS
gait score levels were made using Kruskal-Wallis tests, fol-
lowed by multiple pairwise comparisons. Bonferroni’s method
was used to obtain adjusted p-values. Correlations between
temporal gait parameters and UHDRS-TMS were analyzed,
using Benjamini & Hochberg method to adjust for multiple
correlation tests. In this case, Bonferroni’s method was deemed
too conservative due the large number of correlation tests,
whereas the false discovery rate method provided a good bal-
ance between discovery of statistically significant correlations
and limitation of false positive occurrences.

III. RESULTS

A. Estimation of Gait Parameters in the Clinic
The GED algorithm provided accurate estimates of

SCShank−acc and SCThigh−acc, showing very strong positive
correlations (r = 0.989 and 0.988) and excellent agreement
(ICC2,1 = 0.975, MAPE = 3.1 ± 3.2% and 3.1 ± 3.1%) with
SCVideo (Fig. 3a-3d). Similarly, SC provided by the AP soft-
ware (SCAP−thigh) yielded a very strong correlation (r = 0.989)
and excellent agreement (ICC2,1 = 0.974, MAPE = 3.2 ±

3.0%) with SCVideo (Fig. 3e, 3f). Compared to the leg-worn
sensors, the wrist-worn FB provided less accurate estimates
of SC (SCFB−wrist), with a lower correlation (r = 0.677)
and moderate agreement (ICC2,1 = 0.656, MAPE = 10.9 ±

12.4%) with SCVideo (Fig. 3g, 3h).
The proposed algorithm provided very accurate esti-

mates of STRMean from both shank and thigh acceleration
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Fig. 3. Scatter (left) and Bland-Altman (right) plots for step count
obtained in HD participants during two 2MWTs from video annotations
(SCVideo) against those obtained from (a, b) shanks (SCShank-acc) and
(c, d) thighs (SCThigh-acc) using the proposed GED algorithm, and from
(e, f) thighs (SCAP-thigh) and (g, h) wrists (SCFB-wrist) using ActivPAL
and Fitbit software, respectively. Solid and dashed lines in the left panels
represent linear regressions and lines of equality, respectively. Solid and
dashed lines in the right panels represent mean and mean ± 1.96 times
the standard deviation of step count differences, respectively. Pear-
son’s correlation coefficients (r) and intra-class correlation coefficients
(ICC2,1) are shown in the left and right panels, respectively.

(MAPE = 0.6 ± 0.5% and 0.9 ± 0.9%), with a very
strong correlation (r = 0.998 and 0.993) and excellent
agreement (ICC2,1 = 0.997 and 0.992) obtained against
STRMean estimated from the video data (Fig. 4a-4d). The
algorithm consistently underestimated STAMean (Fig. 4e-4h)
and overestimated SWIMean (Fig. 4i-4l) with respect to the
video annotations. A systematic bias was obtained for the
shank (55 ms) and thigh (81 ms) estimates of STAMean and
SWIMean, obtaining poor-to-good agreement and moderate-to-
very strong correlations with STAMean (ICC2,1 = 0.839 and
0.551, r = 0.971 and 0.824) and SWIMean (ICC2,1 =

0.313 and 0.253, r = 0.727 and 0.687) obtained from the video
data. These systematic biases were removed by subtracting
55 ms and 81 ms from SWIMean−shank and SWIMean−thigh
estimates, respectively, and by adding 55 ms and 81 ms
to STAMean−shank and STAMean−thigh estimates, respectively.
After that, MAPE values of 3.3 ± 2.3% (STAMean−shank),
6.0 ± 3.7% (SWIMean−shank), 7.1 ± 3.4% (STAMean−thigh),
and 13.6 ± 7.1% (SWIMean−thigh) were obtained.

B. Estimation of Gait Parameters at Home
Detected WBs and cumulative SC obtained from a rep-

resentative HD participant during free-living conditions are
presented in Fig. 5a and 5b.

Wt and SC estimated from the thigh-worn AP sensor using
the proposed algorithm and AP software were first com-
pared in the 13 HD participants during free-living conditions
(Fig. 6a-6d). Similar to our findings in the clinic, there was
a very strong correlation and excellent agreement for SC
estimated using the proposed GED algorithm and AP software
(r = 0.989, ICC2,1 = 0.976). Excellent agreement was also
observed between the two algorithms for Wt (r = 0.991,
ICC2,1 = 0.981).

The wrist-worn FB device overestimated daily SC during
free-living conditions by 1897 steps (median value, interquar-
tile range 723-4155) or 34.2% (11.9-86.0%), when compared
to SC obtained from the thigh-worn AP sensor (Fig. 6e-6h).
Despite this overestimation, a very strong correlation for SC
was maintained between FB and both AP software (r = 0.901)
and the proposed GED algorithm (r = 0.904).

C. Temporal Gait Parameters and Clinical Scores
Variability of swing time (SWICV), obtained from video

data and shank acceleration in the clinic, was moderately
correlated with UHDRS-TMS (r = 0.69, p = 0.018 and
r = 0.62, p = 0.044 respectively). In free-living conditions,
strong correlations were observed between UHDRS-TMS and
variability of both stride (STRCV) (r = 0.83, p = 0.01)
and stance (STACV) (r = 0.76, p = 0.018) times estimated
from the thigh acceleration. No significant correlations were
observed between UHDRS-TMS and mean value of temporal
gait parameters.

When estimated from video data in the clinic, STRMean,
STAMean, STRCV, STACV and SWICV were significantly
higher in HD participants with a UHDRS gait score of 2 than
in those with a UHDRS gait score of 0 (Fig. 7a, 7b). Shank and
thigh estimates of STRMean also differed significantly between
these two groups. However, there was no significant effect of
UHDRS gait score on other temporal gait parameters estimated
from shank or thigh acceleration. No significant differences
in temporal gait parameters across UHDRS gait scores were
observed during free-living conditions.

IV. DISCUSSION

The accuracy of physical activity metrics provided by
wearable devices varies with device type and placement site,
protocol, or population [33]. Disease-specific validation of
GED algorithms is required to provide confidence in gait
parameters derived using wearable sensors for remote moni-
toring in neurodegenerative diseases. Towards this goal, a new
algorithm to detect gait events from either shank or thigh
acceleration in individuals with HD, validated in the clinic
and applied under free-living conditions, has been presented.

A. Gait Event Detection Algorithm
The proposed GED algorithm is adapted from a method

previously developed for acceleration recorded from the
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Fig. 4. Scatter and Bland-Altman plots for (a-d) stride (STR), (e-h) stance (STA), and (i-l) swing (SWI) time mean values obtained in HD
participants during two 2MWTs from video annotations (STRMean-video, STAMean-video, and SWIMean-video) against those obtained from shanks
(STRMean-shank, STAMean-shank, and SWIMean-shank) and thighs (STRMean-thigh, STAMean-thigh and SWIMean-thigh) using the proposed GED
algorithm. Solid and dashed lines in the scatter plots represent linear regressions and lines of equality, respectively. Solid and dashed lines in the
Bland-Altman plots represent mean and mean ± 1.96 times the standard deviation of differences, respectively. Pearson’s correlation coefficients
(r) and intra-class correlation coefficients (ICC2,1) are shown in the scatter and Bland-Altman plots, respectively.

Fig. 5. (a) Walking bouts obtained from the thigh acceleration of a
HD patient during 7 days of free-living conditions using the proposed
algorithm (WBAcc) and ActivPAL software (WBAP). Mean value of daily
time spent walking (Wt), walking bout duration (WBdur), and steps
per day are shown in the shaded box. (b) Walking bouts obtained
during 24 hours of free-living conditions (day 5) and the corresponding
cumulative step count obtained using the proposed GED algorithm
(SCAcc) and ActivPAL software (SCAP).

shanks [25]. The approach offers the advantage that it can be
implemented with relative computational efficiency. The use

of a single acceleration component and the sensitivity of the
TKE operator to identify potential gait events minimize signal
pre-processing, offering potential for real-time gait analysis.
However, the original algorithm was validated only in healthy
individuals under supervised conditions, and was dependent on
a specific signal profile. The GED algorithm proposed here has
been extended to accommodate the higher gait variability in
HD, especially under free-living conditions. The main features
of the proposed algorithm are the following:

1) Stride Time Estimation: Stride Time Was Estimated for
Each WB and Participant From the Raw Acceleration Signal,
Without a Priori Assumptions About Subject Cadence. The
Original Algorithm Assumed an Average Stride Time of 1.1 s
for Healthy Individuals, and Estimated Stride Time as the
Time Lag of the First Positive Peak in the Autocovariance
of the Smoothed TKE Signal, Within a Maximum Time Lag
of 1.65 s. However, HD Participants Usually Have a Lower
Cadence. Stride Time Was Estimated More Robustly in This
Study Based on the Two Highest Peaks of the Normalized
Autocorrelation of Raw Acceleration, Calculated in 6-s Mov-
ing Windows With a Maximum Time Lag of 3 s. In This Way,
Estimated Stride Time for a Certain WB Was Based on the
Median of Multiple Stride Time Estimates

2) Peak Finding and Classification: Amplitude and Temporal
Constraints for Gait Event Detection Were Relaxed in Com-
parison With the Original Algorithm, Making Peak Detection
More Flexible. The Amplitude Threshold Was Lowered From
0.5 (only for TKE’) to 0.4 (for TKE’ and TKE”) Times the
Mean Value of the Corresponding TKE Signal. The Lower
Threshold Was Used as Acceleration Peaks Are Usually
Shorter Than, and Not as Evident As, Those in Healthy
Subjects, Due to the Smoother Movements of HD Partici-
pants During IC and FC Events. Furthermore, the Original
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Fig. 6. Scatter (left) and Bland-Altman (right) plots for (a, b) Wt and
(c-h) SC obtained in HD participants during free-living from thighs using
the proposed GED algorithm (Wt-thigh-acc and SCThigh-acc) and AP
software (Wt-AP-thigh and SCAP-thigh), and from wrists using FB software
(SCFB-wrist). Participants are color-coded and each point represents
a day. Solid and dashed lines in the scatter plots represent linear
regressions and lines of equality, respectively. Solid and dashed lines
in the Bland-Altman plots represent mean and mean ± 1.96 times
the standard deviation of differences, respectively. Pearson’s correla-
tion coefficients (r) and intra-class correlation coefficients (ICC2,1) are
shown in the left and right panels, respectively.

Algorithm Assumed That All Peaks Detected From TKE’
Signals Directly Corresponded to IC Events, With All Peaks
Detected From TKE” Signals Corresponding to FC Events.
This Assumption Might Be True for Shank Acceleration in
Healthy Participants, and Thus a Peak Separation Threshold
of 0.7 Times the Estimated Stride Time Ensured Proper Sep-
aration of Peaks of the Same Type. However, the Assumption
May Not Work When Applied to Thigh Data or in Altered
Walking Patterns, as in HD. The Proposed Algorithm Detected
Peaks From Either TKE’ or TKE” Signals Irrespective of Their
Type, and the Peak Separation Threshold Was Lowered to 0.6
(TKE’) and 0.4 (TKE”) to Allow for Detection of Adjacent
Peaks That Might Be of Different Type. Moreover, Charac-
terization of All Peaks Detected, Using a Set of Temporal
and Acceleration Parameters, and Classification Into IC or FC
Events, Using an Unsupervised Clustering Method, Are Major
Advantages of the Proposed GED Algorithm, Which Does Not
Require Any External Labelling or Model Training Process.

Fig. 7. Swarm scatter plots for (a) mean and (b) coefficient of variation
of stride (STRMean and STRCV), stance (STAMean and STACV) and
swing (SWIMean and SWICV) times obtained in HD participants during
two 2MWTs from video annotations and both shank and thigh acceler-
ation, using the proposed GED algorithm, against UHDRS gait score.
Solid lines represent significant differences. Dotted lines represent
linear regressions. Adjusted p-values were obtained using Bonferroni’s
method. ∗: p < 0.05, ∗∗: p < 0.01.

Several different algorithms for GED using wearable sen-
sors have been proposed [23], [24]. Despite differences in
sensor sampling rate, range, and location, targeted popula-
tions, and evaluation criteria, some general conclusions can
be drawn. Most previous algorithms for GED in HD have
used trunk- or wrist-worn inertial sensors [16], [18], [19],
[20], [21], [22]. While these are convenient and unobtrusive,
lower limb-based algorithms generally perform better than
lower trunk- or wrist-based algorithms. Regarding the compu-
tational approach, rule-based algorithms have been the most
widely used due to their simplicity and lower computational
complexity. These methods use either heuristically defined
thresholds or peak detection techniques on the acceleration
or angular velocity signal to detect gait events [23]. However,
rule-based algorithms can be less accurate when applied to
highly variable gait patterns, such as in pathological gait or
real-world data. Accordingly, gait algorithms should be evalu-
ated in specific clinical populations, and not only in the clinic
but also under free-living conditions [23]. Few previous studies
have been conducted in HD under free-living conditions [16],
[20], [22], with the majority of gait analysis algorithms applied
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in the clinic, and some lacking disease-specific validation [16],
[17], [18], [20]. A machine learning approach, based on a
support vector machine classifier, has been used for gait
analysis in HD, but validated only in the clinic [15]. Support
vector machine classifiers, however, require labelled data for
model training. Unsupervised algorithms, such as the k-means
clustering used in this study, are capable of classifying data
without prior knowledge. Although unsupervised approaches
for GED have been proposed previously [34], [35], [36], they
have not been used in HD. The proposed GED algorithm takes
advantage of rule-based techniques and unsupervised cluster-
ing techniques to detect and classify gait events independent
of any underlying signal pattern, accommodating the higher
variability in HD.

B. Accuracy of Step Counts

The proposed algorithm accurately estimated SC from
shank and thigh acceleration when validated against video
annotations (Fig. 3). However, the wrist-worn FB underes-
timated SC, with a relative error of 10.9 ± 12.4% and
moderate agreement (ICC2,1 = 0.656) with video data. Visual
inspection of video recordings revealed reduced arm swing
in two participants during the 2MWTs in the clinic, causing
an underestimation of SC using the FB device in those
participants (Fig. 3g, 3h). Similar results for SC derived from
wrist-worn wearable devices in laboratory conditions have
been reported in other neurological diseases [37], [38], [39].
Previous studies in Parkinson’s disease have reported SC errors
of 4.7-11% for an ActiGraph GT3X+ [37], or a relative error
of 4.8% and poor agreement (ICC2,1 = 0.47) for SC obtained
from a Fitbit Charge 2 [38]. In multiple sclerosis, an ICC2,1 of
0.69 was reported for SC obtained from the Fitbit Flex [39].
In healthy participants, similar accuracies have been reported
for wrist-worn FB devices in the clinic, with SC errors of
−4.8 ± 12.2% [40] and -21.2 (-13.0, -29.4)% [41].

In free-living conditions, there was also an excellent agree-
ment for Wt and SC estimated using the proposed GED
algorithm and provided by the AP software (Fig. 6a-6d).
Wrist-worn FB, however, overestimated daily SC while main-
taining strong correlations with SC estimated from the thigh
data. These results are in accordance with previous studies
which evaluated gait algorithms under free-living conditions
in other clinical populations [39], [42], [43]. Compared with
a thigh-worn AP device in healthy participants, FB devices
overestimated SC by 30% during a week of normal activi-
ties [42] and by 3.7% during one working day of free-living
conditions [43]. In patients with multiple sclerosis, a Fitbit
Flex device detected more steps than an ActiGraph device
during 7-day home monitoring, but good agreement was
reported between the two devices [39]. The overestimation of
SC by wrist-worn devices under free-living conditions found
in this and previous studies is likely due to more complex, less
rhythmic, arm movements which occur during everyday life,
together with involuntary movements in HD, resulting in false
step event detection. It should also be noted that participants
could track their daily SC during the free-living study, which
may have influenced their activity levels, and free-living SC

estimates may therefore not be fully representative of patients
with HD in daily life.

C. Accuracy of Temporal Gait Parameters
The proposed GED algorithm estimated STRMean with high

accuracy from both shank and thigh acceleration, whereas
STAMean and SWIMean tended to be systematically underesti-
mated and overestimated, respectively, compared to video data,
with shank acceleration yielding lower MAPE values (3.3 ±

2.3% and 6.0 ± 3.7% respectively) than thigh acceleration
(7.1 ± 3.4% and 13.6 ± 7.1% respectively) (Fig. 4e-4l).
These results are in line with a previous analysis of the
performance of 17 algorithms to detect gait events, showing
that STA was consistently underestimated, increasingly as
the sensor position moved proximally from the foot to the
trunk [24]. Stance duration errors between 6-14% and swing
duration errors between 10-32% were reported in another
study comparing different temporal gait analysis methods in
different pathological populations, including HD [21].

D. Temporal Gait Parameters and Clinical Scores
Variability of temporal gait parameters tended to increase

with motor function impairment in HD, as suggested by
moderate-to-strong positive correlations observed between
UHDRS-TMS and STRCV, STACV, and SWICV estimated
using video annotations and shank acceleration in the clinic,
and using thigh acceleration during free-living conditions.
Consistent with this, estimates of STRCV, STACV, and SWICV
increased with UHDRS gait score (Fig. 7b). These results
reflect the difficulty in maintaining consistent gait with increas-
ing motor impairment in HD [7], [16], [17], [18]. Step time
variability has been reported to increase in the presymptomatic
stage of HD and to continue increasing in the symptomatic
stages [7], being higher in those with UHDRS-TMS≥50
than in those with UHDRS-TMS<50 [16]. Similar to the
results of this study, moderate-to-strong positive correlations
between UHDRS-TMS and variability in step (r = 0.55),
stride (r = 0.676), stance (r = 0.690), and swing (r = 0.595)
times in HD have been previously reported [17], [18]. Lack of
significant correlations between UHDRS-TMS and mean tem-
poral gait parameters is consistent with previous studies [8],
[18], [44], [45]. However, the increasing trend of STRMean
estimates with increasing UHDRS gait score indicates that
mean temporal gait parameters reflect gait alterations in HD,
as previously described [8], [17], [20].

E. Limitations of the Study
Biases obtained for shank (55 ms) and thigh (81 ms)

estimates of STAMean and SWIMean were of 1-3 video frames
(at 30 frames/s), which could be assumed as a reason-
able error for the manual annotation of IC and FC events.
However, the biases observed for STAMean and SWIMean
estimates, which depend on FC event detection, but not for
STRMean estimates, which only depends on IC events, suggest
systematic early detection of FC events by the proposed
algorithm with respect to video annotations. The smoother
movement occurring during FC events makes them more
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difficult to detect by GED algorithms. Previous studies have
reported better performance of GED algorithms for detecting
IC than FC events [46], [47], [48], [49], with FC events
being consistently early predicted as compared to reference
data [47], [49], [50]. Machine learning techniques could be
used for the automatic detection of FC events, instead of
rule-based and peak finding methods, which are more sensitive
to signal amplitude. Moreover, FC times annotated from
video recordings may not directly correspond to FC points
detected using shank or thigh acceleration due to the distance
between the sensor location and the toe. This is consistent
with the observed greater bias in the thigh estimates than
in the shank estimates, indicating that the leg starts to move
before the foot leaves the ground. It should be noted that sen-
sors were synchronized using a universal timestamp, and the
estimated temporal gait parameters were calculated for each
single sensor and were therefore insensitive to synchronization
issues.

Despite the limited sample size, the proposed GED
algorithm has been validated in the clinic and deployed during
free-living conditions, with high agreement against reference
data in both settings, thus offering potential for analysis of
real-world gait data. Due to differences in gait during in-clinic
assessments and free-living conditions, further validation of
GED algorithms in HD patients in uncontrolled, real-world
settings is required and remains a challenge. Application
of the proposed algorithm in a larger HD cohort and in
healthy controls would improve our understanding of gait
impairments associated with motor dysfunction in HD, and
would allow for more accurate estimation of systematic bias
between actual FC events and FC events detected from
shank-worn or thigh-worn sensors, which seems to be the
main source of error for STAMean and SWIMean estimation.
In light of the results in this study, a single shank-worn
sensor would be recommended for accurate and practical
assessment of gait in HD patients. Experiences and pref-
erences of HD patients regarding the adoption of wearable
activity trackers were previously explored [51], with positive
opinions on wearable activity trackers reported, such as the
devices being easy to use and compatible with lifestyle.
Although the wrist was reported as the preferred location,
HD patients also showed interest in devices that could be worn
comfortably and discreetly under clothes, with need and poten-
tial benefit being more important than appearance in device
adoption.

V. CONCLUSION

This study presents a new algorithm to estimate SC and
temporal gait parameters using a single leg-worn accelerom-
eter in individuals with HD, validated in the clinic and
applied under free-living conditions. The algorithm provided
accurate estimates of SC, STR and STA in the clinic, along
with estimation of WBs and daily Wt in free-living condi-
tions. Excellent agreement was observed between SC and
Wt estimated using the proposed algorithm and proprietary
software under free-living conditions, with SC overestimated
using a wrist-worn sensor. The results support the use

of a single leg-worn accelerometer together with the pro-
posed GED algorithm for objective free-living gait analysis
in HD.
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