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Abstract—Obstacle avoidance and lane-change functionalities
are crucial requirements for automated driving that are usually
developed to excel in specific road scenarios and therefore, to some
extent, lack agility and versatility. This work proposes a versatile
vehicle motion controller for connected and autonomous vehicles
(CAVs) that, independently of the encountered traffic scenario,
realizes safe and efficient lane-change and overtaking maneuvers
while implicitly guaranteeing precise obstacle avoidance at all
times. This is achieved by introducing a two-layer model predictive
control architecture that utilizes mixed-integer-based obstacle
avoidance and lane selection formulations. The linear time-
invariant optimal control problems are efficiently formulated
in Frenet coordinates, incorporate the position predictions of
surrounding traffic participants, and guarantee globally optimal
solutions. The proposed architecture combines two structurally
distinct policies, namely velocity and time-gap tracking, to
achieve efficient and safe maneuvering. A method to reduce
the computational complexity of the implemented mixed-integer
quadratic programming (MIQP) problems is developed. The
controller’s agility and robustness with respect to multiple complex
traffic scenarios are tested in detailed traffic simulations, as well
as validated via high-fidelity co-simulations with the CARLA
Simulator.

Index Terms—Obstacle avoidance, model predictive control,
mixed-integer programming, lane change control, connected and
automated driving, single-track model, flatness-based control.

I. INTRODUCTION

LANE changes, usually performed to overtake slower
traffic, avoid collisions, or reach a specific lane [1], are

among the most complex and dangerous driving maneuvers
and pose the main source of (human-caused) traffic accidents
on highways [2], [3]. The introduction of connected and
automated vehicles (CAVs) aims to eliminate human errors and
autonomously perform well-informed, smooth, and collision-
free lane changes, which will increase road traffic safety
and efficiency [4]–[6]. Connected and automated driving
additionally bears the potential to reduce fuel consumption,
vehicle emissions, and environmental impact [7]–[9] while
increasing the productivity of CAV drivers [10] and the
efficiency and comfort of all road users by stabilizing traffic
flow and mitigating bottleneck congestion [4]. To realize these
benefits, a CAV motion planner should utilize vehicle-to-
everything (V2X) communication and collective perception
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to ensure well-informed maneuvers in diverse and complex
road scenarios with a variety of road users [9], [11].

To this end, we propose a holistic model-predictive control
(MPC) concept for optimal lane-change planning and vehicle
control that implicitly incorporates obstacle avoidance for
efficient and collision-free automated driving. The optimal
control problem (OCP) is formulated as a mixed-integer
quadratic programming (MIQP) problem which considers
motion predictions of surrounding traffic participants received
via V2X communication. A two-layer MPC architecture realizes
efficient lane-change and overtaking maneuvers via a reference
velocity tracking policy at the high level while facilitating safe
operation via a time-gap tracking policy in the low-level MPC.
The versatile control concept is able to efficiently handle and
swiftly adapt to a wide range of possible traffic scenarios.

A. Model Predictive Control

Methods suitable for CAV motion planning can be catego-
rized as machine-learning-based, sampling-based, geometry-
based, and optimization-based approaches [12], [13]. Being an
optimization-based approach, MPC is able to systematically
deal with input and state constraints, and utilize behavior
predictions of other traffic participants over a receding horizon.
The re-planning nature of MPC allows changes in the perceived
environment to be accounted for at each evaluation time
instance, which ensures robustness against prediction errors
and uncertainties [14]. Therefore MPC methods are well-
suited for CAV motion planning [15] with efficient obstacle
avoidance and lane-change functionality while exploiting V2X
communication capabilities [16]. The computational burden
for online optimization conducted in MPC algorithms can
be high and increases with the complexity of the used
prediction models, constraints, and the number of considered
obstacles and predicted time steps [11], [17], [18]. Hence, MPC
algorithms are usually tailored to specific traffic scenarios or
maneuvers to reduce computational effort at the expense of
versatility [15], [18]. In contrast to nonlinear MPC (NMPC)
problem formulations that are solved via local minimum search
algorithms, linear MPC methods guarantee globally optimal
solutions [11], [19].

B. Related Work

This section discusses relevant MPC concepts for the efficient
planning of lane-change and overtaking maneuvers.

A distributed MPC-based vehicle trajectory planning method
implementing a time-varying planning horizon for automated
on-ramp highway merging is presented in [20]. Only lon-
gitudinal second-order point mass dynamics are considered
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in the linear-quadratic OCP formulation that provides a
longitudinal acceleration trajectory. The trajectory planning
of CAVs merging from a dedicated CAV lane into an ordinary
lane with non-cooperative human-driven vehicles (HDVs) in
a two-lane highway scenario is investigated in [21]. The
optimal inter-vehicle gap, time, and speed at which a lane
change should be initiated are found by utilizing the proposed
dynamic programming approach to solve a nonconvex quadrat-
ically constrained quadratic programming (QCQP) problem.
Again, only longitudinal dynamics are considered and the
actual lane-change trajectory is not optimized. A mixed-
integer programming (MIP) MPC for longitudinal reference
velocity tracking and lane-change decision-making in a two-
lane highway scenario excluding lateral control is presented
in [22]. Lane selection and longitudinal obstacle avoidance are
included in the OCP formulation via binary decision variables
preventing inter-vehicle distances from becoming unsafe. While
the combinatorial complexity of MIP is mentioned, calculation
times are not shown. In [14] the same authors propose a
slightly different approach for the MPC-based inter-vehicle
space gap and lane-change maneuver starting time for the
same two-lane highway road layout. The MIP-based lane
selection and obstacle-avoidance formulations used in [22]
are substituted with a longitudinal and lateral safety corridor
formulation which reduces calculation efforts but also renders
the proposed control concept highly specific for the investigated
two-lane highway layout. Again, the same two-lane highway
road layout is examined in [15]. A longitudinal adaptive model-
predictive acceleration controller utilizes the same reference
velocity tracking policy and kinematic point-mass model to
decide if and when to perform a lane change. A separate
weight-adaptive path-tracking MPC controls the steering angle
and conducts the lane-change maneuver according to the
command of the longitudinal MPC. A nonlinear MPC concept
for overtaking unexpected obstacles while maximizing traffic
information gain (sensor coverage) in urban road traffic is
developed in [23]. Based on the available information, the risk
and execution of an overtaking maneuver are decided by a
finite state machine. The nonlinear and non-convex OCP is
prone to converge to local minima and backup commands are
used in case the OCP cannot be solved in time.An algorithm
for overtaking a slow-moving leading vehicle in the presence
of oncoming and adjacent vehicles with known speeds is
proposed in [17]. The OCP is formulated relative to the spatial
distance to the leading vehicle and uses ramp barrier constraints
for obstacle avoidance in a highway setting. The emanating
second-order cone programming (SOCP) problem is solved via
SQP which is shown to be computationally more efficient in
finding a (locally) optimal solution than the classical MIQP-
based temporal OCP formulation. Both OCP formulations
show similar results in the investigated simple scenarios under
the limiting assumptions of constant leading vehicle speed,
zero lateral speed of surrounding vehicles, trivial (point-mass)
vehicle dynamics, and a straight two-lane highway layout. The
rear and front barrier constraints may not be applicable with
more than two lanes and multiple vehicles [24].

Globally optimal autonomous overtaking with consideration
of oncoming traffic is investigated in [24]. Obstacle avoidance

is realized via the Big-M method which results in an NP-
hard MIP MPC problem formulation. Methods to reduce the
number of necessary binary variables are proposed to reduce
calculation times. However, the method lacks autonomous lane
selection capabilities. Additionally, longitudinal and lateral
reference trajectories need to be provided externally. An MIQP-
based MPC for automated driving that uses a linear vehicle
model in a road-aligned coordinate system including obstacle
avoidance, lane-change decisions, and traffic rules via mixed-
integer inequalities is developed in [25]. The controller shows
promising performance in various low-speed (1m/s) traffic
scenario simulations using the dedicated MIQP solver BB-
ASIPM [26] but lacks obstacle avoidance and lane-change
fidelity, which could render the concept problematic in complex
traffic situations, e.g. intersections. A flatness-based linear
time-invariant (LTI) obstacle avoidance MPC (OA-MPC) for
dynamic CAV motion control in structured and unstructured
road environments is proposed in [19]. The concept utilizes an
MIQP-based OCP formulation to enable the globally optimal
realization of velocity or time gap tracking policies with
implicit collision avoidance against dynamic traffic participants.
The versatile OA-MPC exploits available position predictions
of surrounding vehicles and shows promising performance
but lacks real-time computation and lane-change capabilities.
The disadvantageous calculation times of the OA-MPC are
addressed in [11] by combining it with a computationally fast,
real-time capable QP-MPC formulation in a two-layer control
architecture, augmenting MIQP-based globally optimal obstacle
avoidance with guaranteed locally optimal performance in real
time.

C. Research Gap & Contribution

Optimization-based motion planning approaches for CAVs
found in most literature are specifically designed for selected
road scenarios and tasks, e.g., overtaking, car-following, lane-
changing, and merging, in highway, urban, or intersection traffic
environments [18]. Often the decision of whether and when
to change lanes is separated from the actual motion controller
or defined rule-/threshold-based for specific scenarios. While
these control concepts excel in their specific area of application,
they lack versatility and agility with respect to more generally
encountered traffic situations, environments, or constellations.
Dynamic and agile (universally applicable) autonomous lane
changing and overtaking in variable mixed-traffic environments
remains an open research gap [27].

This work extends the discussed OA-MPC formulations [19]
and [11] by adding lane-change capabilities, combining velocity
tracking and time-gap tracking policies in a two-layer control
architecture, and representing the ego vehicle shape in higher
fidelity for precise, efficient, and safe autonomous driving.
Since real-time computation is already discussed in [11], we
do not focus on this aspect here, but present general methods
to reduce calculation times of MIQP-based obstacle avoidance
problems which can beneficially be incorporated in, e.g., [19]
and [11]. We propose to include the selection of the optimal
lane directly via binary variables in the cost function of
the MIQP-based model-predictive motion controller that, per
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design, guarantees collision-free, agile, and globally optimal
autonomous driving. The following main contributions are
developed hereafter:

1) A model-predictive motion controller for CAVs is pro-
posed which yields globally optimal trajectories by implic-
itly considering lane selection and the precise avoidance of
dynamic obstacles via MIQP. The LC-MPC uses motion
predictions of surrounding traffic objects received via V2X
communication.

2) The LC-MPC is integrated into a two-layer MPC archi-
tecture that combines two structurally distinct policies,
namely velocity and time gap tracking, to achieve efficient
and safe maneuvering.

3) A method to reduce the calculation times of typically com-
putationally expensive MIQP-based trajectory planning
approaches is proposed.

4) The control concept is versatile, robust, and agile with
respect to the encountered driving scenarios and traffic
participants.

5) A comprehensive validation with a multitude of complex
simulation scenarios, including high-fidelity co-simulation
studies with the CARLA Simulator [28], is conducted.

The remainder of this work is organized as follows: The
problem formulation is given in Sec. II. The LC-MPC formu-
lation, together with a method to reduce its calculation time,
is presented in Sec. III and extended into the proposed two-
layer LC-MPC architecture in Sec. IV. The performance of
the proposed control concept in a multitude of different traffic
scenarios is demonstrated in Sec. V and validated via realistic
co-simulations in Sec. VI while Sec. VII concludes this paper.

II. PROBLEM FORMULATION

This work considers the motion planning and control of a
single CAV in different road traffic scenarios with an emphasis
on efficient lane changes and overtaking under dynamic obstacle
avoidance.

A. Control Goals

The following control goals need to be addressed when
adding lane-change capabilities to automated driving strategies:
(i) Collision safety against static and dynamic obstacles, (ii)
stability, and (iii) feasibility with respect to the vehicle dynam-
ics have to be guaranteed at all times. The resulting maneuver
should be (iv) efficient while (v) maximizing passenger comfort,
and (vi) obeying traffic regulations.

B. Assumptions

This study focuses on lane change maneuver planning and
vehicle control with implicit obstacle avoidance, which means
that the perception, prediction, and communication modules are
assumed to be working satisfactorily. The problem setting is
developed based on the following assumptions similar to [14],
[18], [25]:
A1) Pre-defined reference paths, usually the center lines of

each lane, are available.

Fig. 1. Kinematic single-track vehicle model incl. ego-shape representation
and Frenet coordinates (s, l) with respect to a given reference path, adapted
from [11].

A2) An external perception module detects, classifies, and
observes relevant traffic participants.

A3) The planar poses and shapes of these detected traffic
participants together with their

A4) deterministic motion predictions in the form of position
trajectories over a defined prediction horizon are available.

A5) Backward ego vehicle motions are disregarded.
As in [11], the position predictions of CAVs are received

via V2X communication while the future motions of HDVs
are provided either by V2X communication in combination
with intelligent infrastructure and collective perception or an
onboard prediction module. We assume the prediction and
communication modules are available in line with [14], [18],
[25]. We propose a deterministic MPC design, that optionally
allows the consideration of uncertain position predictions via
adapted obstacle shapes as outlined in Sec. IV-E1.

C. Vehicle Model

The vehicle dynamics used for the control design are
modeled according to a kinematic single-track model (non-
holonomic, zero slip, also referred to as bicycle model) depicted
in Fig. 1. The equations of motion are formulated analogous
to [19] as

ẋ =


Ẋ

Ẏ

ψ̇
v̇x

 =


vx cosψ
vx sinψ

vx tan (δ)/Lwb

ax

 , (1)

with the state vector x =
[
X, Y, ψ, vx

]T
consisting of the

global Cartesian coordinates X and Y , the global heading angle
ψ, and the longitudinal velocity vx ≥ 0 (compare assumption
A5). Note that here the lateral velocity vanishes, i.e. vy ≡
0. The input vector u =

[
ax, δ

]T
contains the longitudinal

acceleration and the steering angle, respectively. The parameter
Lwb > 0 represents the wheelbase distance. Although (1) by
definition does not consider tire slip, the model yields consistent
results for limited lateral vehicle accelerations as discussed
in [29] and observed in [11] and Sec. VI.

By exploiting the differential flatness property of the
kinematic single-track model, (1) can be transformed to
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flat coordinates, producing an exactly linearized LTI system
comprised of two decoupled double integrators

ż =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Ac

z +


0 0
1 0
0 0
0 1


︸ ︷︷ ︸

Bc

ν , (2)

with the flat state vector z and virtual input vector ν depending
on the particular choice of flat outputs y. In this work, the
Frenet coordinates (s, l), with s being the arc length and l
being the lateral deviation with respect to a defined reference
path, see Fig. 1, are chosen as flat outputs

y =
[
s, l

]T
, (3)

which yields the flat state and virtual input vectors

z =
[
s, ṡ, l, l̇

]T
, ν =

[
s̈, l̈

]T
. (4)

The reference path is assumed to be provided by an envi-
ronmental perception module (assumption A1) and vx = ṡ
and ax = s̈ hold for nominal motion along it. No analytical
transformation between the physical and flat Frenet states is
possible for arbitrarily curved reference paths, so the vertices
are mapped by utilizing the numerical transformation methods
global2frenet and frenet2global provided by the
MATLAB® environment [30]. Representing the vehicle dynam-
ics in (flat) Frenet coordinates allows decoupling of longitudinal
and lateral vehicle dynamics control [30], facilitating the
implementation of car-following strategies and lateral lane
geometry constraints [19]. Limitations of the Frenet frame
transformation are discussed in [11]. The LTI vehicle model
representation (2) is used in the following for a linear MPC
design, which guarantees globally optimal solutions, understood
with respect to the transformed (flat) problem description.

III. GENERIC MPC FORMULATION

This section presents the LC-MPC formulation for efficient
and safe autonomous lane-change control by extending the
OA-MPC formulations [19] and [11] with MIQP-based lane
selection and more precise obstacle avoidance capabilities. To
reduce MIQP calculation times a so-called solution space split-
ting approach is developed. The resulting linear time-invariant
MPC formulation guarantees globally optimal autonomous
driving and serves as the basis for the two-layer LC-MPC
architecture developed in Sec. IV.

A. Generic Flatness-Based OA-MPC Formulation

The generic OA-MPC formulation used for the LC-MPC
design is introduced analogous to [11], [19]. The linearized LTI
system dynamics (2) is solved and expressed in discrete time
with sampling time Ts under the zero-order hold assumption:

zk+1 =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1


︸ ︷︷ ︸

Ad

zk +


T 2
s/2 0
Ts 0
0 T 2

s/2
0 Ts


︸ ︷︷ ︸

Bd

νk . (5)

It is used as the prediction model for the ego vehicle dy-
namics. The discrete-time OCP at time step tk = k Ts with
k ∈ N is to find the optimal transformed input sequence
V∗

k =
[
ν∗
k,ν

∗
k+1, . . ,ν

∗
k+Np

]
and flat state sequence Z∗

k which
minimize the convex quadratic objective function (6a) subject
to the constraints (6b)–(6d) explained below:

min
V,Z,s

(
J + sTrs s+ Jlc + Jterm

)
(6a)

s.t. zk+j+1 = Ad zk+j +Bd νk+j , (6b)
νk+j ∈ W , (6c)
zk+j+1 ∈ Z , (6d)

with j = 0, 1 . . , Np − 1. The cost function J is defined in
Sec. III-A1, the slack-term Jlc is introduced with the lane-
change formulation in Sec. III-C, and optional terminal costs
Jterm are discussed in [11, Sec. IV-C]. In this work, we omit
Jterm (Jterm = 0) as it is not necessary to obtain a stabilizing
closed-loop behavior. The slack cost weight rs ≫ 0 is chosen
sufficiently large to enforce collision safety while ensuring
problem feasibility. The transformed input set W is defined in
Sec. III-A2, and the flat state set Z , realizing lane keeping (and
selection), speed limits, and obstacle avoidance, is discussed
in Sec. III-A3 and Sec. III-B.

1) Cost Function: The cost function J is defined as

J =

Np−1∑
j=0

(
eTk+j+1 Qek+j+1 + νT

k+jRνk+j

)
, (7)

with the tracking error e = [es, el]
T and tuning matrices Q =

diag(qs, ql) and R = diag(r1, r2). The model representation
in Frenet coordinates allows the decoupling of lateral and
longitudinal control and therefore the essentially independent
weighting of the longitudinal resp. lateral cost functionals and
virtual inputs (4). The lateral error reads

el,k+j+1 := lref,k+j+1 − lk+j+1 , (8)

with lref,k =
[
lref,k, lref,k+1, . . , lref,k+Np

]
usually set to zero

(compare assumption A1) if lane-change functionalities are
disregarded. The longitudinal error is chosen to realize one
of two distinct control modes, namely velocity tracking or
time-gap tracking:

a) Velocity Tracking: Tracking of a desired reference
velocity signal vref,k =

[
vref,k, vref,k+1, . . , vref,k+Np

]
is

achieved by defining the longitudinal position error as (cf. [11])

es,k+j+1 :=

(
j∑

i=0

Ts vref,k+i

)
− (sk+j+1 − sk) . (9)

On curved roads the lateral vehicle accelerations an are limited
by reducing vref,k+i depending on the local reference path
curvature κref(s) and utilizing the flat state trajectory of the
last time step Z∗

k−1 (cf. [11])

vref,k+i =

min

(
vref ,

√
an,max

|κref (s∗k−1+i)|

)
if κref(s∗k−1+i) ̸= 0

vref otherwise .
(10)
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As demonstrated in [31], the kinematic single-track model
describes vehicle motion accurately up to a maximal lateral
acceleration of about an,max ≈ 4m/s2 on a dry road [11].

b) Time-Gap Tracking: Direct access to s and ṡ enables
the straightforward implementation of time-gap tracking poli-
cies that aim to track an inter-vehicle distance of h · v, where
h is a chosen fixed time span and v the ego velocity. With
v ≈ ṡ the longitudinal error reads (cf. [11])

es,k+j+1 :=

j+1∑
i=0

(h ṡk+i)+s0︸ ︷︷ ︸
time−gap

−
(
sprek+j+1− sk+j+1− Lego

)
︸ ︷︷ ︸

∆sk+j+1

.

(11)
Therein, s0 represent the desired standstill distance and ∆s the
distance to the predecessor vehicle with Lego being the length of
the ego vehicle [16]. The (rear end) position of the predecessor
projected on the ego vehicle’s reference path is denoted as spre.
The parameters h, s0 are defined on the tactical level, including
the selection of the predecessor vehicle to be followed. One
method to realize an overtaking maneuver, for example, is
to drop the time-gap tracking objective (11) and switch to
the velocity tracking mode (9). Tracking a higher reference
velocity than the predecessor together with the realized OA
capability automatically induces a safe overtaking maneuver.

2) Input Constraints: The input set in physical coordinates

U = {u : Guu ≤ fu} (12)

typically comprises interval constraints on u of the form

U = {u : umin ≤ u ≤ umax} . (13)

These box constraints are then mapped to the virtual inputs
corresponding to the flat coordinates using the state and input
trajectories of the last time step’s solution X∗

k−1 and U∗
k−1,

respectively. This allows the formulation of constraints for the
transformed inputs ν according to (cf. [11])

W = {ν : Gνν ≤ fν} . (14)

The longitudinal and lateral jerks are limited to ν̇max directly
in flat coordinates using the virtual inputs computed at the
previous time step νi,k−1 with i = {1, 2}

|νi,k−1 − νi,k| ≤ ν̇max Ts . (15)

3) State Constraints: The problem formulation in flat Frenet
coordinates and the resulting decoupling of the longitudinal
and lateral dynamics allow the direct formulation of state
constraints in the flat coordinate space. We formulate the
longitudinal velocity constraint as ṡ ≤ vmax (soft), lane
boundary constraints llhs ≤ l ≤ lrhs (soft), and 0 ≤ ṡ (hard).
Soft constraints are utilized to ensure the solvability of the
optimization problem in all cases. Here, soft constraints are
formed by re-defining a “hard” inequality constraint of the
form gTu ≤ f to gTu− s ≤ f , with s ≥ 0 and high penalty
cost on s, in which u and s are decision variables.

B. Obstacle Avoidance Constraints

Obstacle avoidance is realized by avoiding any overlap of
the ego vehicle’s spatial footprint with any of the modeled
convex obstacle regions Oi,k at any time step k based on the
known or predicted positions, rotations, and suitably inflated
shapes of obstacles i. All these quantities are considered known
in the scope of this work. We approximate the ego vehicle’s
shape by two circles with radii rego centered at the rear (yR)
and front axles (yF), compare Fig. 1. Inflating the surrounding
obstacle shapes and lane boundaries by rego allows one to
specify the collision avoidance constraints directly with respect
to the points y{R,F},k+j /∈ Oi,k+j . The main difficulty is that
these exclusions render the problem landscape non-convex. By
utilizing a suitable mixed-integer formulation with auxiliary
binary decision variables, a reasonably efficient optimization
problem is attained which can be solved to global optimality
with modern solver algorithms. MIQP problems are generally
NP-hard, so no useful (polynomial) worst-case runtime bounds
can be given [32]. However, we present a method to reduce
calculation times in Sec. III-D and it becomes evident that on
today’s hardware, the investigated MIQP-MPC problems can
be solved on average in times similar to the required sampling
times.

Let a bounded convex polygonal obstacle region O with ne
edges be given in the flat coordinates y as

O = {y : Gy ≤ f} (16)

with coefficients Gne×2 and fne×1. The well-known Big-
M method [33], [34] is utilized to express the exclusion
y{R,F} /∈ O, by introducing a large constant scalar M
(interpreted as a constraint relaxation distance), binary decision
variables δne×1 ∈ {0, 1}ne and the exclusion constraints
(cf. [11])

f −Gy − s1 ≤M (1− δ) , (17a)
s ≥ 0 , (17b)

1T δ ≥ 1 , (17c)

which are realized in a soft formulation, with the slack variable
s ∈ R. The binary variables δ taking value 1 indicate which
of the edge constraints in (16) are violated, which has to
hold true for at least one edge due to (17c) with 1ne×1 =[
1, 1, . . . , 1

]T︸ ︷︷ ︸
ne

. It is evident that when formulating (17)

for all known obstacles at all time steps in the problem (6), the
globally optimal, feasible and collision-free ego trajectory is
obtained if a collision-free solution exists and if assumptions
A1-A5 in Sec. II-B hold. Since typically only a few of these
constraints are actually relevant, only those OA constraints
that are violated otherwise are formulated, and the OCP is
re-solved. This iterative sparse constraint formulation leads
to significantly faster total MIQP calculation times. A more
detailed description of the original OA-MPC formulation can
be found in [19] and [11].

We can express yF =
[
sF, lF

]T
in terms of y (= yR) and

z by

yF (z) = y +R
(
φ
(
ṡ, l̇
))[

Lwb

0

]
(18)
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with φ = arctan
(

l̇
ṡ

)
. Linearizing (18) with respect to

Y F,k−1 =
[
yF0,k−1,yF0,k, . . ,yF0,k+Np−1

]
and Zk−1 yields

yF,k (zk) ≈ yF0,k +
∂ yF (z)

∂z︸ ︷︷ ︸
L

∣∣∣∣
z0,k

(zk − z0,k) . (19)

The exclusion constraints for the center point of the front axle
follow by substituting y with (19) into (17a) as

f −GyF − s1 ≤M (1− δ) (20a)

f̃ − G̃zk − s1 ≤M (1− δ) , (20b)

with

f̃ = f +G
(
L|z0,k

z0,k − yF0,k

)
, (21a)

G̃ = GL|z0,k
. (21b)

The exclusion constraints (20b) are concatenated to (17), thus
doubling the number of binary decision variables δ2ne×1 ∈
{0, 1}2ne and trading increased calculation time for fidelity.

C. Lane Change Constraints

To enable optimal autonomous lane selection, the OCP
formulation (6) is adapted by (i) implementing the velocity
tracking policy (9), (ii) removing the lateral position tracking
from the cost function (ql = 0), and (iii) adding terminal soft
constraints on the lateral ego states l and l̇ that are switched
via binary decision variables ci and the Big-M method similar
to the implementation of the OA constraints in Sec. III-B. The
additional terminal soft constraints for a road layout with nla
parallel lanes of width B and the centerline of the middle lane
assumed as a global reference path are implemented as

lk+Np
≤ lterm,i + slc,1 +M (1−ci)

lk+Np ≥ lterm,i − slc,1 −M (1−ci)

}
lk+Np ≡ lterm,i (22a)

l̇k+Np ≤ 0 + slc,2
l̇k+Np

≥ 0− slc,2

}
l̇k+Np

≡ 0 (22b)

ci ∈ {0, 1}
nla∑
1

ci = 1 lterm,i ∈ L (22c)

with the set of terminal lateral target lane center coordinates
L = {0, B,−B, 2B, . . }, |L| = nla measured from the global
reference path and slack variables slc,1, slc,2 (not to be confused
with the Frenet coordinate y1 = s). The cost function (6a) is
extended with the slack-term

Jlc =
[
slc,1, slc,2

] [rlc,1 0
0 rlc,2

] [
slc,1, slc,2

]T
. (23)

Since the constraints (22) should just nudge the vehicle to track
the center line of a selected lane, the slack-weights rlc,i are
chosen suitably low with rlc,i ≪ rs. Equations (22) realize a
tracking cost function with nlaequivalent global minima. The
lane-change extension is applicable to any structured road lay-
out consisting of nla lanes or reference paths and introduces nla
additional binary decision variables to the original OCP formu-
lation (6). Additionally, individual costs can be assigned to each
lane, e.g. to model fast lanes, dedicated lanes for CAVs/HDVs,
or right-hand or left-hand driving regulations, by extending (23)

Fig. 2. Splitting the original MIQP problem into smaller sub-problems with
visualized sOCP1 - sOCP3 incl. illustration of the original and longitudinally
stretched shape of obstacle O2.

to Jlc,ext = Jlc + [c1, . . , cnla
] [Jlc,1, . . , Jlc,nla

]
T. The binary

decision variables ci can also be used to implement costs for
changing lanes (additionally to the input costs). The exemplary
road layout depicted in Fig. 2 with nla = 4 lanes of width B
and the centerline of the second lane used as a global reference
path results in the set of terminal lateral target lane center
coordinates L = {0, B,−B, 2B} and four additional binary
decision variables ci.

Simulations show that this lane-change extension leads to
reduced calculation times and in general to more efficient
driving maneuvers by increasing the degrees of freedom of the
formulated optimization problem, see also Sec. V.

D. Reducing Calculation Times by Solution Space Splitting

MIP problems are NP-hard [35] and do not provide useful
worst-case bounds on solving effort, which is problematic for
real-time applications in complex traffic scenarios [19], [36].
Therefore, this section presents a useful method to reduce the
solver time of the MIQP-based LC-MPC problem (6). It has to
be mentioned that this method still does not deliver bounds on
solving effort. This drawback is addressed in [11] by utilizing
a two-layer MPC architecture enabling MIQP-based obstacle
avoidance in real-time (out of the scope of this work, but
exemplarily shown in Sec. V-E).

Domain reduction techniques are known to reduce the
calculation times of MIP problems solved by branch-and-bound
algorithms drastically [37]. We therefore spatially split the
solution space of the original OCP (6) into multiple smaller
sub-OCP (sOCP) formulations by shifting the lateral lane
boundaries of each sOCP i

lk+j ≤ lOCPi
rhs , lk+j ≥ lOCPi

lhs , with j = 0, 1 . . , Np−1 , (24)

and fixing the terminal lane constraints (22a) as depicted in
Fig. 2. Here, sOCP1 just considers the current ego vehicle lane,
while sOCP2 additionally includes the left and sOCP3 the right
lane. To link each sOCP uniquely to its respective target lane
(and therefore lane-change maneuver), their terminal target
lane constraints (22a) are fixed, e.g., lOCP2

k+Np
= B. We employ

a time limit for each sOCPi, tsp,max, and set the cost functions
of sOCPs that do not evaluate in that time to Ji = ∞. The
solution with minimal costs is selected as the control output.
If all sOCPs are evaluated in time, we can be sure to have
obtained the globally optimal solution to the original problem
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formulation. This can be validated by comparing the costs and
trajectories of the split and the original OCP formulation.

If legally permitted, overtaking across the oncoming lane is
enabled via a dedicated sOCP that includes that domain but
uses the original terminal target lane constraints to prevent
the ego vehicle from staying in the oncoming lane. To enable
this maneuver, the considered prediction horizon needs to be
sufficiently large.

1) Obstacle Shape Adaption: In this work, all obstacles
are approximated by rectangular shapes (ne = 4), which, after
transformation to flat coordinates, are stretched in s-direction
analogous to Fig. 2. The vertices of the rear obstacle edge
are shifted by ∆sr = −hrṡ while the front edge is shifted
by ∆sf = hf ṡpre with the obstacle’s longitudinal speed ṡpre

and hr, hf ∈ R≥0. This adaption allows the consideration of
speed-dependent longitudinal safety distances and brings the
velocity tracking policy closer to a time gap tracking behavior.
Setting hr = hf = 0 yields the original definition of O (16) as
proposed in [11], [19] and visualized red-dotted in Fig. 2.

2) Hard Constrained Formulation: The soft-constrained
sOCP formulations guarantee problem feasibility but lead to
significantly high solver times for non-optimal lane changes.
Instead of unnecessarily consuming processing power to find
sub-optimal solutions, non-advantageous lane changes should
be immediately disregarded. Therefore, we resort to a hard-
constrained sOCP formulation, which is faster to solve and,
more importantly, does not guarantee feasibility. Additionally,
we use the resulting terminal longitudinal coordinate of sOCP1
sOCP1
k+Np

to implement terminal (hard) constraints for all other
sOCPs,

sk+Np
> sOCP1

k+Np
, (25)

to render lane changes (resp. sOCPs) that do not yield a final
longitudinal position advantage over the current lane infeasible.
Non-relevant lane changes can therefore be quickly filtered out
and calculation effort saved. Since a fast and feasible solution
of sOCP1 is needed for the implementation of (25), it may
be formulated soft-constrained or reformulated as QP. The
proposed solution space splitting in combination with hard-
constrained sub-OCP formulations and the implementation of
the lane-change efficiency constraint (25) reduces solver times
by up to 95%, comp. Fig. 10 in Sec. V-C. Since the sOCPs
can be evaluated in parallel, this approach is well-suited for
parallel computing and parallel processor applications.

3) Relations to Existing Approaches: There exist approaches
that achieve real-time computation by gridding the solution
space with a number of trajectories of which the one with the
smallest costs is selected as a near optimal solution. In [38]
the solution space is discretized by a manifold of candidate
trajectories (quintic polynomials) of which the cost functionals
are evaluated at each time step. The trajectory with the lowest
cost is selected as the ”optimal” solution. The solution space
splitting presented in this section does not rely on pre-defined
trajectories. Each sOCPi provides an optimal trajectory for
its defined operation space - if it evaluates in the given time
limit. This means that, compared to [38], our approach yields
truly globally optimal trajectories that are not constrained by
solution space gridding. The individual optimization problems

could also be approximated as corridors as in [31], [39] which
considers obstacles by time-varying lateral road boundaries and
yields faster computation times at the expense of a nonlinear
problem formulation without the guarantee of global optimality.

IV. TWO-LAYER LANE-CHANGE MPC ARCHITECTURE

Two MPCs are combined in a two-layer control architecture
for efficient and collision-free autonomous driving and lane-
changing. While the high-level LC-MPC utilizes a velocity-
tracking policy for lane selection, the low-level OA-MPC
employs a time-gap tracking policy for car-following. Both
controllers are based on the generic MPC formulation devel-
oped in Sec. III and incorporate obstacle-avoidance capabilities,
whereby only the high-level LC-MPC employs lane-selection
and solution-space-splitting functionalities.

A. High-Level LC-MPC

The high-level LC-MPC uses the velocity tracking pol-
icy (9), incorporates all functionalities presented in Sec. III,
and typically employs a larger sampling time Ts,hi > Ts,lo
than the low-level OA-MPC. The solution space splitting
heuristic, cf. Sec. III-D, aims at reduced calculation times
and parallel computing. In addition to the hard-constrained
domain-restricted sOCPs for lane keeping and lane changing,
a soft-constrained OCP formulation for lane-keeping is added.
All sOCPs are solved every n-th time step, with n = Ts,hi/Ts,lo.
The resulting costs of each sOCP are used as a selection
criterion in that the sOCP with the lowest cost is considered
optimal and its solution is passed to the low-level MPC.
The cost of the previously selected sOCP is discounted by
a small factor to introduce some commitment to decided
maneuvers and reduce a rapid switching of decisions. Since
the soft-constrained sOCP should only be selected if the hard-
constrained sOCPs are all (marginally) infeasible or do not
evaluate in time, its cost is increased drastically. Compared to its
hard-constrained counterpart, the soft-constrained sOCP usually
exhibits significantly higher solver times. Therefore, its solution
can only be used if the solver time is fast enough. Otherwise,
a fail-safe solution, which consists of the last optimal solution
calculated within the time limit, is implemented. The predicted
flat state sequence Z∗

k is passed to the low-level OA-MPC in
the form of a reference path (parametrized by z1, z3) together
with an optimal speed vvirt = z2 along it which is used for
tracking if no predecessor car or obstacle is detected.

B. Low-Level OA-MPC

The low-level OA-MPC employs the time-gap tracking
policy (11) along the reference path provided by the high-level
LC-MPC and evaluates over a finer time grid with Ts,lo < Ts,hi,
whereby the same horizon length is chosen for simplicity
(Ts,loNp,lo = Ts,hiNp,hi). The LC constraints (22) and obstacle
shape adaptions (compare Sec. III-D1) are excluded from the
soft-constrained low-level MIQP MPC problem formulation.
Time step grouping [40] (clustering of half-space avoidance
constraints (16) of adjacent time steps and same orientation
and switching each cluster by one respective binary decision
variable) is employed to reduce calculation effort.
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When following an unobstructed reference path, a virtual
vehicle driving with the velocity received from the high-level
controller is tracked, comp. Fig. 3 (c). In the vicinity of a
relevant predecessor vehicle, the virtual and real predecessor
position trajectories are merged, enabling a smooth transition
from virtual vref tracking to actual time gap tracking, see Fig. 4.
The tracked time gap is set to be always larger than the stretched
obstacle shapes used in the high-level OA-MPC problem
formulation, which favors low calculation times of both high-
and low-level OCPs. This is due to the following reasons: (i)
in nominal operation, the low-level OCP formulation does not
require the formulation of OA constraints since it is already
provided with a collision-free reference path and velocity, (ii)
the low-level OA-MPC keeps enough distance to surrounding
vehicles so that the high-level controller does not become
marginally infeasible (especially important for hard constrained
sOCPs of SSS, see Sec. III-D).

The low-level OA-MPC described here can easily be sub-
stituted by the real-time capable two-layer obstacle-avoidance
MPC architecture presented in our previous work [11], which
would render the TL-LC-MPC architecture real-time capable
as exemplarily shown in Sec. V-E. The implemented time gap
tracking policy facilitates string stability, the property that state
disturbances do not amplify as they propagate along a string
of vehicles from any vehicle to its successor [41], [42], and
the application of known string stability analysis methods as
discussed in [16], [43], [44]. In the case that the low-level
controller performs an evasive emergency maneuver due to its
obstacle avoidance capabilities (with reduced obstacle shapes),
string stable driving is of minor importance. However, in the
nominal driving case, the low-level controller is able to provide
string-stable operation if properly tuned [16] (out of scope
here).

C. Control Architecture

The TL-LC-MPC architecture is illustrated in Fig. 3. The
high-level LC-MPC provides a collision-free and (if all OPs
evaluate in time) globally optimal solution which is then passed
to the low-level OA-MPC as a new reference path and virtual
vehicle velocity vvirt, see Fig. 3 (b). The low-level OA-MPC
tracks a time gap along the received reference path and is able to
perform evasive maneuvers utilizing the original obstacle shapes
and the whole road as the driving domain, comp. Fig. 3 (c).

D. Feasibility & Stability

The control problems (6) are designed to be always feasible
because all state constraints (except the hard constraint ensuring
vx ≥ 0) are formulated as soft constraints with slacks. Since
the SSS method applied in the high-level LC-MPC contains the
soft-constrained lane following sub-OCP, at least this solution is
always feasible (but most probably not optimal). The feasibility
of the hard-constrained control problem can fundamentally be
destroyed by critical or malicious obstacles if a collision cannot
be avoided by the ego vehicle’s control authority. However, in
these cases, the proposed soft-constrained problem formulation
yields a solution that can be deemed as a sensible trade-off. For
example, maximum braking would be employed to minimize

+

+

Fig. 3. Illustration of the TL-LC-MPC architecture: The solution of the high-
level LC-MPC (a) is handed to the low-level OA-MPC as a reference path
and velocity vvirt along it (b), which may be used in case no predecessor is
in range. The low-level controller (c) tracks a time gap to its predecessor or a
virtual vehicle traveling with vvirt.

Fig. 4. The longitudinal position reference sref,tgt(t) describes the rear
end position of the closest preceding vehicle and is tracked in the low-level
OA-MPC.

collision penalty cost in an unavoidable head-on collision,
hence also reducing collision severity in reality.

The linear time-invariant core MPC problem can be for-
mulated with the stabilizing Riccati terminal costs Jterm =
eTz,Np

P ez,Np
in (6a) which are formulated in the error

coordinates ez = z−z∗ =
[
es, ṡ− vref , el, l̇

]T
. Together

with detectability of (Ad,Q), stabilizability of (Ad,Bd) and
a suitable terminal constraint set (not detailed here) nominal
closed-loop stability is ensured [45]. We empirically validate
the stability and performance of the comprehensive control
concept in simulations and co-simulations (i.e., also with
realistic model errors) in the following. Therein, none of the
mentioned stabilization modifications have been utilized as
they were not necessary to obtain stable behavior.
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E. Consideration of Uncertain Obstacle Position Predictions

The assumption of having deterministic obstacle predictions
available, A4, facilitates straightforward control design. These
can be re-interpreted in the case of prediction uncertainties or
errors. The deterministic position predictions can be interpreted
as the mean loci of (stochastic) occupation probabilities, and the
considered obstacle shapes can be inflated in correlation with
the variance [11]. Uncertainties in the predictions can be taken
into account by increasing the safety margins to the surrounding
traffic participants and lane boundaries over the prediction
horizon in relation to the confidence level of the assumed
prediction modules [11], [14]. E.g., in [46], the probability of
a maneuver class and the corresponding probability density
function (PDF) of future positions are estimated using Gaussian
Mixture regression techniques. The PDF’s confidence bounds
are used for computing the deterministic obstacle occupancies,
which are used in an MPC-based trajectory planner and can
be related to the obstacle shapes used in this work. Based
on this idea, a method for incorporating uncertain obstacle
position predictions by dynamically inflating the corresponding,
assumed obstacle shapes is presented in the following.

1) Dynamic Obstacle Shape Inflation: To account for
uncertain predictions, extra sOCPs are added in the high-level
LC-MPC with dynamically inflated obstacle shapes over the
prediction horizon for certain (or all) surrounding vehicles
to depict the increasing uncertainties associated with longer
predictions, potentially informed by stochastic metrics provided
by corresponding estimations, comp. Fig. 5. While lateral
inflation accounts for localization errors and uncertain future
lane change behavior (and therefore scales with the velocity
of the observed vehicle), longitudinal inflation accounts for
unforeseen/aggressive acceleration behavior. The costs of each
added sOCP are reduced in comparison to the original sOCPs,
e.g. in relation to the prediction covariance levels, to strike a bal-
ance between efficiency and safety. In line with this approach,
assumption A4 can be replaced with the assumption of having
access to occupancy probability predictions, comp. [47], and
subsequently deriving future mean positions and confidence
levels over the prediction horizon. These metrics are then
utilized to adjust the obstacle shapes as needed. The impact
of uncertain predictions, in conjunction with the proposed
obstacle shape adaption method, is investigated in Sec. V-C3,
whereas we inflate selected vehicle shapes (i) longitudinally
by adding a chosen velocity difference of 10 km/h to ∆sf

(which scales with the vehicle velocity), comp. Sec. III-D1,
and (ii) laterally from 0 to 2B v

vref
over the prediction horizon

to account for a possible future lane change. This basic method
(which can be easily extended) already allows the consideration
of (i) state uncertainties (sensing/perception/localization), (ii)
behavioral uncertainties (intention/multi-modal trajectories),
and (iii) temporal uncertainties (increase over the length of the
prediction horizon).

Uncertain multi-modal driving [48] (beyond a simple lane
change) can be considered in the respective sOCPs by the
formulation of additional obstacles following each of the
possible position trajectories, leading to very conservative
driving (not shown here). Further, the control concept is robust

Fig. 5. The ego vehicle keeps a safe distance to O1 due to its uncertain
position predictions (possible future lane change), which are reflected by
dynamically inflated obstacle shapes in the lateral direction.

against marginal model and obstacle prediction uncertainties
via the soft (slack) formulations of the obstacle-avoidance
constraints in the low-level OA-MPC [11]. The re-planning
nature of receding horizon MPC allows changes in the
perceived environment to be accounted for at each time instance,
which makes the TL-LC-MPC architecture robust to moderate
prediction errors and uncertainties [14].

V. SIMULATION STUDY

This and the following Sec. VI summarize simulation and co-
simulation results of 6 typical traffic scenarios to demonstrate
the versatility and agility of the TL-LC-MPC architecture with
respect to the encountered traffic situation, environment, and
road user composition. The simulation scenarios comprise (A)
overtaking with oncoming traffic, (B) dense urban traffic incl.
variants (B2) for performance comparison and (B3) considering
prediction uncertainties, (C) highway merging, and (D) collision
scenario. Furthermore, (E) urban intersection traffic and (F)
dense highway traffic are co-simulated with the traffic simulator
CARLA [28].

A. Simulation Setup

The multi-agent model architecture developed in [49] serves
as the MATLAB® simulation environment by representing the
traffic participants and their position predictions and providing
the necessary information for the optimization problems. The
LC-MPC optimization problems (6) are formulated and solved
by MIP utilizing the untuned commercial solver Gurobi®

Optimizer version 11.0.0. The transformation and computation
of the MPC control actions are carried out in MATLAB®

R2023a. Although parameter tuning could significantly reduce
calculation time, especially for MIP, as stated in [50], we
use the untuned solver with default settings to allow for easy
benchmarking. In the following simulations the TL-LC-MPC
architecture-controlled ego vehicle 1⃝ is depicted in blue, while
all other traffic participants are controlled longitudinally via
the IDM car-following model [51] and laterally via the Stanley
path-following controller [52], tracking predetermined routes
analogous to [49]. All scenarios are conducted with the same
set of control parameters listed in Table I, Appendix A. The
simulations were carried out on a PC with an Intel Core i9-
11900 processor and 64GB RAM.
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Fig. 6. Scenario (A): The ego vehicle 1⃝ takes over a cyclist, aborts an
overtaking maneuver due to oncoming traffic and an accelerating vehicle to
be overtaken, and finally takes over 3⃝ in the absence of oncoming traffic. At
the first time instance the reference path is shown in blue.

B. Urban Traffic Scenario (A)

This scenario shows how the controller deals with curvy
road segments, oncoming traffic, and smaller obstacles in the
same lane, e.g., bicyclists.

Five selected time instances of the simulation are depicted
in Fig. 6 while Fig. 7 shows the corresponding time-series
data. The ego vehicle 1⃝ spawns with v0 = 20 km/h and
accelerates to reach its reference velocity of vref = 50 km/h
while passing a bicyclist 2⃝ on its lane and attempting to
overtake car 3⃝ that travels with 20 km/h. At t = 4.5 s car
3⃝ suddenly accelerates up to 50 km/h and thereby forces
the ego vehicle to abort the overtaking maneuver due to
the oncoming traffic 4⃝. After passing 4⃝ and detecting a
velocity reduction of 3⃝ back to 20 km/h the ego vehicle
successfully completes the overtaking maneuver. The TL-LC-
MPC architecture enables safe and efficient maneuvering and
optimally adapts to changing traffic situations. Due to its
precise obstacle avoidance capability smaller traffic participants
can be passed in the same lane to increase traffic efficiency.
Overtaking maneuvers are canceled as soon as the scenario
changes adversely and potential collisions are predicted. The
efficient OCP formulation in flat Frenet coordinates excels in
curved roads and almost always solves in real time, compare
Fig. 7. The three low-level solve time peaks at t = 4.5 are
caused by the changed situation due to the sudden acceleration
of vehicle 3⃝. While this causes a peak calculation time of
0.2660 s, the mean calculation time lies with 0.0183 s still
far below Ts,lo. The high-level MPC problems are solved on
average in 0.0342 s with a maximum solve time of 0.1330 s.

C. Dense Urban Traffic Scenario (B)

The TL-LC-MPC architecture guides the ego vehicle safely
and efficiently through dense urban traffic in real-time, high-
lighting the advantages of the two-layer architecture in combi-
nation with solution space splitting introduced in Sec. III-D.

Fig. 7. Scenario (A): Control inputs, velocities of vehicles 1⃝ and 3⃝, and
high & low-level MPC calculation times incl. snapshot times of Fig. 6.

Fig. 8 depicts five selected time instances of the scenario
(B1), while Fig. 9 shows the corresponding time-series data
and Fig. 10 displays the different calculation times for each
OCP solution space. The ego vehicle 1⃝ spawns with v0 =
10 km/h in a group of vehicles 2⃝, 3⃝, 4⃝, and 5⃝, whose initial
and reference velocities are 10 km/h, 16 km/h, 22 km/h, and
30 km/h, respectively. As the reference speed of the ego vehicle
is vref = 30 km/h, it first overtakes the slower vehicles by
changing to the center lane and then to the left lane. At t =
10 s vehicle 5⃝ stops abruptly, forcing 1⃝ to move back into
the center lane. After passing car 5⃝, the ego vehicle can
accelerate freely to vref in the left lane. This scenario shows
how efficiently the TL-LC-MPC architecture handles four lane
changes during 25 s of simulation. The computed trajectories
are realistic and smooth, while the distance to other vehicles
remains within a safe range and the control inputs are far
from saturation. Both high- and low-level MPC show real-time
capable computation times with a mean & max. solver time
of 0.0173 s & 0.0450 s and 0.0133 s & 0.0230 s, respectively,
staying well below the controller sampling times of Ts,hi =
0.3 s and Ts,lo = 0.1 s, comp. Fig. 9.

1) Solution Space Splitting: The basic concept of solution
space splitting, introduced in Sec. III-D and always applied to
the high-level LC-MPC, is visualized in Fig. 10 by showing
the calculation times of each sOCP. The selected feasible
and optimal sOCP is highlighted in gray for each time step
while the red shaded area marks a time step at which all hard-
constrained sOCPs turn out to be infeasible. The first three
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Fig. 8. Scenario (B1): The ego vehicle 1⃝ starts on the right lane surrounded
by a group of cars with varying velocities. It first changes lanes to the middle
and left lane since vehicles 4⃝ and 5⃝ move faster. At t = 10 s 5⃝ breaks
which forces the ego vehicle back into the middle lane. After moving past the
breaking vehicle 5⃝, the ego vehicle chooses a free lane to accelerate to its
reference velocity.

sOCPs correspond to lane-keeping and lane-changing to the left
or right. If the ego vehicle drives in the left or right lane these
lane-change sOCPs disappear. The fourth sOCP considers the
whole driving domain, therefore its calculation time is typically
higher. The soft-constrained sOCP is formulated over the same
domain as the first OCP (lane-keeping). The calculation times
of the low-level MPC are also displayed in Fig. 10.

2) Comparison to TL-OA-MPC Architecture [11] (B2):
Scenario (B) is tested with the ego vehicle controlled by
the real-time capable two-layer obstacle avoidance MPC (TL-
OA-MPC) architecture recently proposed in [11], which, to
create a fair comparison, is enhanced with the lane-change
capability developed in Sec. III-C by adding the respective con-
straints (22a)-(23). Additionally, some parameters are adapted,
e.g., the prediction horizon is reduced to 40 samples for a fair
comparison (the calculation time of the TL-OA-MPC high-
level MIQP controller scales exponentially with it). The TL-
OA-MPC controlled ego vehicle stays behind its predecessor
longer, abruptly changes to the middle lane, and after overtaking
changes back into the right lane. The difference in behavior and

Fig. 9. Scenario (B1): Control inputs, velocities, and high & low-level MPC
calculation times incl. snapshot times of Fig. 8.

calculation time is depicted in Fig. 11. While the position trace
of the TL-LC-MPC controlled vehicle corresponds to Fig. 8, the
TL-OA-MPC controlled vehicle shows more intense changes in
lateral and longitudinal direction. While the calculation times
of the low-level controllers are comparable, the high-level
calculation times during the overtaking maneuver are an order
of magnitude higher, see Fig. 12, because in the TL-OA-MPC
architecture, the original MIQP problem is formulated over the
entire driving domain.

3) Prediction Uncertainties (B3): We consider the original
scenario (B1) with prediction uncertainties to demonstrate
the concept of dynamically inflating the obstacle shapes as
discussed in Sec. IV-E. Additionally, the ego vehicle uses
only a constant velocity prediction to estimate the position
trajectories of all other vehicles. The shapes of vehicles 3⃝
and 5⃝ are increasingly inflated over the prediction horizon
based on their (assumed) prediction covariance levels, see
Fig. 13. If possible, the ego vehicle conservatively keeps a
safe distance from these vehicles. Here, the obstacle shape
inflations also consider multi-modal driving, i.e., a possible
future lane change. Compared to the original scenario (B1), the
ego vehicle drives more conservatively, which results in 11m
less distance traveled. The calculation times of the high-level
LC-MPC are significantly higher than in scenario (B1) but stay
with a mean & max. value of 0.0387 s & 0.1820 s well below
Ts,hi, comp. Fig. 14. The mean low-level OA-MPC solver times
increase by ca. 50% to 0.0209 s, whereas the max. values do
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Fig. 10. Scenario (B1): High-level MPC computation times for sOCPs
corresponding to different solution spaces. At red-shaded times, all hard
constraint OCPs are infeasible. The sOCP whose solution is applied and
corresponds to minimal cost is highlighted in gray.

Fig. 11. Scenario (B2): Position traces of ego vehicle controlled by TL-OA-
MPC [11] and TL-LC-MPC architecture incl. respective calculation times of
high- and low-level MPCs (with different high-level MPC time scales).

not significantly change. Scenario (B3) demonstrates that the
TL-LC-MPC architecture is able to deal with uncertain obstacle
predictions. For clarity, however, all remaining simulations are
carried out following assumption A4.

D. Highway Traffic Scenario (C)

This scenario shows how the controller handles a simple (non-
cooperative) highway on-ramp merging scenario performed

Fig. 12. Scenario (B2): Comparison of high- and low-level MPC solver times
of TL-OA-MPC [11] and TL-LC-MPC architectures.

Fig. 13. Scenario (B3): Scenario (B1) with const. velocity-based obstacle
position predictions and additionally uncertain position predictions for vehicles
3⃝ and 5⃝ considered by the dynamic obstacle shape inflation concept

(inflated shapes of 3⃝ and 5⃝ visualized for every 5th sample of each position
prediction).

with a high velocity, and empirically shows string stability
(or lane changes that do not alter other vehicles’ trajectories).
The ego vehicle 1⃝ starts in the right merging lane with a
velocity of 60 km/h and has to find a suitable gap to enter
the main road while also accelerating to its reference velocity
vref = 130 km/h, as shown in the two snapshots in Fig. 15.
It accomplishes this by keeping a constant velocity of around
95 km/hour between t = 4 s and t = 10 s, letting the faster
vehicle 2⃝ pass, before accelerating and integrating itself into
the main traffic in front of vehicle 3⃝ while keeping a safe
distance. In this simple scenario, the high- and low-level MPC
show real-time capable computation times with mean & max.
solver times of 0.0156 s & 0.0600 s and 0.0146 s & 0.0250 s,
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Fig. 14. Scenario (B3): Control inputs, velocities, and high & low-level MPC
calculation times incl. snapshot times of Fig. 13.

Fig. 15. Scenario (C): The ego vehicle 1⃝ has to merge into traffic within
the length of the merging lane. It accomplishes that by decelerating until a
suitable gap is available. Note that this figure is horizontally compressed.

respectively.

E. Safety-critical Collision Scenario (D)

To demonstrate plausible safety-critical behavior, a scenario
involving an unavoidable collision is examined. To provoke a
collision, the detection range of the ego vehicle is intentionally
reduced to ddet = 52m, which is far too short for a reference
velocity of 100 km/h. We additionally illustrate a possible
coupling of the TL-LC-MPC architecture with the QP-MPC
from [11], resulting in a real-time-capable three-layer control
architecture.

As soon as the ego vehicle detects the static obstacle at
t = 1.8 s with an obstacle net distance of 45.3m, the collision
is imminent, comp. Fig. 16. The calculation times of the
low-level OA-MPC exceed Ts,lo but the QP-MPC recovers
real-time computation and immediately realizes an emergency
braking maneuver, see Fig. 17. As a result, the relative speed
between the collision participants at the time of collision
tcoll = 4.5 s is minimized, reducing the kinetic energy at
impact by ∆Ek

(
v2ref − v2coll

)
/v2ref = 95%. We observe the

detection range

Fig. 16. Scenario (D): The ego vehicle detects the static obstacle 2⃝ too
late and performs an emergency braking maneuver to reduce the speed at
impact. The simulation results are valid until tcoll = 4.5 s since collision
and post-collision behavior modeling is out of the scope of this work. The
overlapping vehicle shapes at t = 5.5 s visualize the hypothetical standstill
position of the ego vehicle without consideration of interaction with 2⃝.

unmodeled 
post-collision 
behavior

collision

Fig. 17. Scenario (D): Acceleration, velocity, and low-level & QP-MPC
calculation times incl. snapshot times of Fig. 16. The ego vehicle collides
with the static obstacle 2⃝ with a remaining speed of vcoll = 22.5 km/h.

capability of the control concept to optimally handle this
(simple) safety-critical traffic scenario due to the combination
with a QP-MPC in a third layer and the slacked obstacle
avoidance constraint formulations (17) and (20) guaranteeing
real-time computation and problem feasibility. Details regarding
the QP-MPC implementation can be found in [11].

VI. CO-SIMULATION-BASED VALIDATION

The proposed TL-LC-MPC architecture is validated by real-
istic co-simulations of highly dynamical scenarios utilizing the
traffic simulator for autonomous driving research CARLA [28].

A. Co-Simulation Setup

The same co-simulation architecture as in [11] is employed
and briefly summarized in this section. For more details see [11],
[49]. The vehicle dynamics, approximated for the control design
by (5), are computed in CARLA with higher fidelity, including
the simulation of (i) longitudinal tire slip, (ii) lateral tire slip,
and (iii) drive train dynamics [11], [28]. The robustness of the
proposed control architecture with respect to these modeling
errors is shown by utilizing the co-simulation architecture
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Fig. 18. Scenario (E): Co-simulation of urban intersection: The reference path and road boundary constraints of the ego vehicle 1⃝ are highlighted in the first
snapshot while the predictions of detected traffic participants Oi are visualized with red circles. The position prediction and history of the ego vehicle are
visualized with green circles and green dots, respectively. Traffic lights are, depending on their phase plan predictions, considered as (static) obstacles.

described in [11]. CARLA (Car Learning to Act) is a hyper-
realistic (traffic) simulator that uses Unreal Engine 4 to run
the simulation and OpenDRIVE standard 1.4 to define roads
and urban settings [28], [53]–[56]. Detailed vehicle dynamics
are simulated by coupling the components engine, clutch,
gears, differential, wheels, tires, suspensions, and chassis. In
CARLA vehicles are controlled by the commands of steering,
accelerating, and braking, so the calculated acceleration input a
of the LC-OA-MPC architecture is mapped to normalized brake
and gas pedal positions via a self-developed MATLAB2CARLA
bridge that utilizes the provided client API. In this work,
CARLA version 0.9.14 is used. Vehicle control interface: The
control inputs u∗

k are mapped to normalized brake, throttle, and
steering inputs via identified look-up tables as an alternative
to a low-level PI controller. The Tesla Model 3 vehicle model
from the CARLA standard vehicle library is used with adjusted
braking torque and engine/drivetrain damping with the clutch
engaged, as listed in Table I. More details regarding the
employed co-simulation architecture can be found in [11]
and [49].

B. Urban Intersection Scenario (E)

In this scenario, the ego vehicle performs an unprotected
left turn with oncoming traffic. Selected time instances of the
scenario are depicted in Fig. 18 while the ego vehicle states
are shown in Fig. 19.

The ego vehicle 1⃝ spawns in the left lane with vref =
30 km/h and employs time gap tracking towards its predecessor
2⃝ who has the same velocity. At t = 6 s, vehicle 2⃝ abruptly
stops, which causes the ego vehicle to slightly break and
change into the right lane. Its new predecessor, vehicle 4⃝,
stops at the red traffic light, which triggers a lane change
back into the left lane. Although the traffic lights 8⃝ and 9⃝

Fig. 19. Scenario (E): Calculated and realized inputs, velocity, and high and
low-level calculation times incl. snapshot times of Fig. 18.

are red, all vehicles are assumed to know their phase plans
(e.g., via V2X communication) and include this in their OCP
formulations. At t = 15 s the traffic lights turn green and the
ego vehicle continues on its path to turning left. It performs
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detection range road boundaries

Fig. 20. Scenario (F): Co-simulation of highway: At first, the ego vehicle 1⃝
encounters a local optimum at t = 0.5 s, but with next high-level solution
vehicles 4⃝ and 5⃝ come into the detection radius and the ego vehicle manages
to pass on the right side.

a final evasive lane change due to the oncoming vehicle 4⃝
to avoid decelerating and finishes the left turn before vehicles
5⃝ and 6⃝ cross the intersection. The calculation times of
the high- and low-level controller are shown in Fig. 19. The
high-level MPC solve time only peaks above its sampling time
Ts,hi = 0.3 s once, with a maximal value of 0.3560 s while
the low-level controller calculation times only peak above
Ts,lo = 0.1 s between t = 11 s and t = 12 s. The spiking low-
level solve times between t = 11 s and t = 13 s observed in
Fig. 19 are caused by active obstacle avoidance conducted in
the low-level controller due to OCP solution and sampling time
mismatch: While the high-level MPC does not detect a collision
with vehicle 4⃝ at t = 11.1 s, the low-level MPC does one
time step later (finer sampling) and applies the corresponding
obstacle avoidance constraints, thereby increasing calculation
time. The next high-level solution plans to stay in the left
lane and brake, but due to a small control output mismatch
between the reference velocity tracking and time gap tracking
OCP formulations (low-level MPC brakes less intensively) the
low-level controller still needs to actively perform obstacle

Fig. 21. Scenario (F): Calculated and realized inputs, velocity and high and
low-level calculation times incl. snapshot times of Fig. 20.

avoidance. Only when the high-level solution plans a lane
change to the right lane, at t = 12.9 s, applied at t = 13.2 s,
the low-level OCP no longer predicts a collision, and thus
reduces the calculation times back to nominal levels.

C. Highway Traffic Scenario (F)

This scenario is the same as in [11]. The result of the
simulation is depicted at selected times in Fig. 20, while the
ego vehicle states are shown in 21. At first, the ego vehicle
1⃝ tries to overtake a column of vehicles, 3⃝, on the left side.

When vehicles 4⃝ and 5⃝ enter the detection radius, it switches
to overtake on the right, thereby evading the local optimum
created by 3⃝, 4⃝, and 5⃝. Between seconds t = 5 s and t = 7 s,
the ego vehicle briefly tries to overtake 2⃝, but when it enters
the curve it has to reduce its velocity due to the reference
velocity shaping, as seen at t = 8 s. Because of model errors,
like tire slip, the ego vehicle drifts onto the most right lane and
follows 6⃝. When the path is straight again, 1⃝ accelerates and
overtakes its predecessors 2⃝, 6⃝, and the standing group of
vehicles 7⃝. This scenario is explained in more detail in [11].
As seen in Fig.21, the control inputs stay easily within their
limits, the velocity during the whole maneuver is smooth and
the calculation times are minimal, spiking only around t = 5 s
due to obstacle avoidance constraints when the ego vehicle
tries to find a gap between 2⃝ and 3⃝. Again, the proposed
control algorithm shows its effectiveness and versatility in a
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complex scenario with many other traffic participants and high
velocities.

VII. CONCLUSION

The proposed TL-LC-MPC architecture allows safe, efficient,
and globally optimal autonomous driving for CAVs with
computation times close to real-time. Two MIQP-MPCs are
coupled, whereby the high-level LC-MPC tracks a reference
velocity and decides on optimal lane changes while the low-
level controller employs a time-gap tracking policy. A safe
time gap is kept to preceding traffic, and optimal lane-change
or overtaking maneuvers are executed autonomously whenever
beneficial. A method to speed up calculation times of the NP-
hard MIQP MPC problems by exploiting parallel computing
allows the proposed concept to run in near real-time conditions.
Uncertain motion predictions are considered by dynamically
inflated obstacle shapes. The control concept is robust and agile
with respect to the encountered scenarios, traffic participants,
and prediction uncertainties which is demonstrated in numerous
different traffic simulations and high-fidelity co-simulation
studies conducted with the CARLA Simulator.

The presented approach not only implicitly enables over-
taking via its lane-change functionality, but also allows the
passing of small obstacles or traffic participants in the same
lane if safely possible to increase traffic efficiency and facilitate
string stability, which is a future research topic.

APPENDIX A
SIMULATION PARAMETERS

The control parameters used in this work are listed in Table I.
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