
1936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Logical Synchrony and the Bittide Mechanism
Sanjay Lall , Fellow, IEEE, Călin Caşcaval , Fellow, IEEE, Martin Izzard, Member, IEEE, and Tammo Spalink

Abstract—We introduce logical synchrony, a framework that
allows distributed computing to be coordinated as tightly as in
synchronous systems without the distribution of a global clock or
any reference to universal time. We develop a model of events
called a logical synchrony network, in which nodes correspond
to processors and every node has an associated local clock which
generates the events. We construct a measure of logical latency
and develop its properties. A further model, called a multiclock
network, is then analyzed and shown to be a refinement of the
logical synchrony network. We present the bittide mechanism as an
instantiation of multiclock networks, and discuss the clock control
mechanism that ensures that buffers do not overflow or underflow.
Finally we give conditions under which a logical synchrony network
has an equivalent synchronous realization.

Index Terms—Computer networks, distributed computing.

I. INTRODUCTION

D ISTRIBUTED computation requires processes on net-
worked machines to coordinate, presenting challenges in

maintaining a consistent notion of time across nodes. Local
clocks require continual realignment to prevent divergence,
while distributing a global clock is fragile and expensive at scale.
When coordination is focused on correctness, instead of tracking
time an option is to track only causality. This takes the form of
event sequence information, such as vector clocks, which avoid
needing to synchronize clocks but remain expensive at scale.

In this paper, we introduce logical synchrony, a novel ap-
proach providing a shared notion of time sufficient for reasoning
about causality without requiring a shared system-wide clock.
Logical synchrony scheduling relies solely on knowledge of
graph topology and logical latencies. We present the bittide
mechanism, which facilitates efficient implementation of logical
synchrony on modern networks, establishing synchrony along-
side wall-clock time as a primary abstraction. By ensuring that
clocks advance in lockstep with data frames sent between nodes,
bittide creates a clock mechanism with reduced state-keeping
compared to vector clocks, enhancing scalability.

Modern networks, including recent versions of Ethernet,
continually transmit frames regardless of nodes sending actual
data or not, in order to maintain synchronization of SerDes [1]
and clock recovery [2] circuits. Leveraging this, the bittide
mechanism achieves logical synchrony by directly tying the

Manuscript received 20 July 2023; revised 3 July 2024; accepted 9 August
2024. Date of publication 16 August 2024; date of current version 9 September
2024. Recommended for acceptance by O. Ozkasap. (Corresponding author:
Sanjay Lall.)

The authors are with Google, Mountain View, CA 94043 USA (e-mail:
lall@stanford.edu).

Digital Object Identifier 10.1109/TPDS.2024.3444739

clock advancement to the continuous frame transmission of
such networks. It is this continual transmission that enables
bittide synchronization to occur without the overhead of send-
ing additional information, a benefit over explicit synchroniza-
tion protocols such as PTP [3], [4]. Applications on networks
with clocks synchronized to wall-clock time must utilize clock
error-bounds for correctness reasoning [5]. The bittide system
enables cycle-accurate coordination without additional clock
error-bounds or any associated barriers. This is achieved by
defining the clock ordering at neighboring nodes using a graph
of frame transmission events.

Logical synchrony is particularly useful for applications with
predictable behavior and resource requirements, including finan-
cial exchanges [6], databases [4], [5], [7], robotics [8], and large-
scale numerical computations such as machine-learning training
and inference [9]. Such predictability allows for ahead-of-time
scheduling across both communications and computation, which
in turn allows for high efficiency and bounded response times.
An example use case is ensuring concurrency control correctness
in lock-free database transactions by ensuring that all distributed
system nodes observe the same order of events.

Ahead-of-time scheduling, inherent to logical synchrony, is
naturally limited to applications with predictable communica-
tion, memory, and compute cycles. Traditional dynamic com-
munication stacks and scheduling infrastructure can be imple-
mented above bittide transparently, which allows running appli-
cations which do not have the requisite predictability, but appli-
cations running on these stacks lose the benefits of ahead-of-time
scheduling. Further research may extend the utility of logical
synchrony to more dynamic and data-dependent situations, for
example to support probabilistic ahead-of-time scheduling of
such applications where behavior is evolving slowly enough for
a scheduler to adapt and reconfigure.

Logical synchrony and bittide have nodes track logical time,
which potentially diverges from wall-clock time. This poses a
limitation for applications requiring wall-clock time, such as
real-time embedded systems or control systems. Addressing
this limitation and failure handling requires augmentation of
the basic bittide mechanism presented here, and thus are be-
yond the scope of this paper. A consequence of ahead-of-time
scheduling is that failure handling naturally happens indepen-
dently of scheduling because there is no runtime dynamic sched-
uler. Node or link failures may necessitate rescheduling execu-
tion or communication, which in turn may require application
participation.

The bittide mechanism enables processes on distributed net-
work cores to behave as if perfectly synchronized despite in-
dividual cores being only imperfectly synchronized. A logical

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1783-5309
https://orcid.org/0000-0002-2780-6763
mailto:lall@stanford.edu

LALL et al.: LOGICAL SYNCHRONY AND THE BITTIDE MECHANISM 1937

synchrony network, abstracting the bittide mechanism, charac-
terizes causality relationships between events. Logical laten-
cies specify these relationships exactly, a striking property that
allows precise coordination and reasoning about both system
performance and event ordering. Using communication events
between processes for logical coordination originates with the
work of Lamport [10] and allows precise reasoning about cor-
rectness. Logical synchrony ties these events to the repetitive
frame transmission events of the network, and thus allows pre-
cise coordination and reasoning about the performance of the
system as well as the ordering of events, bringing the guaran-
tees available in synchronous execution to distributed systems
without the need for a global time reference. Our work extends
Lamport’s framework into the efficiency domain, enabling rea-
soning about both correctness and scheduling.

Synchronous execution models have been used successfully in
realtime systems [11], [12], [13] to reason about correctness, in
particular meeting deadlines. Often, synchronous abstractions
are decoupled from implementation and are used to validate
system functional behavior. When mapping synchronous ab-
stractions to asynchronous non-deterministic hardware, work
has been done to automate code generation that matches the
functional semantics, hiding the non-deterministic behavior of
the hardware with explicit synchronization, for example [14].
Logical Execution Time (LET) was introduced by Henzinger
and Kirsch [15] to support the design of reactive, cyber-physical
systems. More recently, Lingua Franca [16], [17] supports
concurrent and distributed programming using time-stamped
messages. Lingua Franca exposes to programmers the notion of
reactors that are triggered in logical time, allowing deterministic
reasoning about four common design patterns in distributed
systems: alignment, precedence, simultaneity, and consistency.
We argue that the causality reasoning in the logical synchrony
framework subsumes such design patterns – they are all effec-
tively enabling reasoning about ordering of events in a system
that exchanges messages, and as we will show in the paper, this
is exactly the class of applications for which logical synchrony
determines precisely the causality relationships.

Alternatively, synchronous execution can be implemented
using a single global clock. For small real-time systems, cyber-
physical systems, and control systems, a global clock can be
distributed from a single oscillator. Scaling such systems is
difficult because large clock distribution networks introduce
delays which must be corrected.

Preceding works such as Sundial [4] have also showcased the
difficulty in managing fault tolerance for synchronized real-time
clocks. For the majority of systems using wall-clock time as
their global clock, synchronization implies exchanging times-
tamps [3], [18]. Techniques such as TrueTime [5] and White
Rabbit [19] attempt to reduce the latency uncertainty, and thus
the time-uncertainty bounds, from milliseconds in TrueTime to
sub-nanosecond in White Rabbit.

To achieve desired levels of performance using existing net-
work protocols requires expensive time references such as ded-
icated atomic clocks and networking hardware enhancements
to reduce protocol overhead. Time uncertainty is exposed to
programmers through an uncertainty interval which guarantees

that current time is within interval bounds for all nodes in the
system, such that every node is guaranteed to have passed current
time when the bound elapses.

Logical synchrony, formalized in Section II, abstracts the no-
tion of shared time and allows us to avoid a global reference clock
or wall-clock. Time is defined only by local clocks decoupled
from physical time. The idea is that events at the same node
are ordered by local time, and events at different nodes are or-
dered by causality. As we will show, logical synchrony requires
no system-wide global clock and no explicit synchronization
(timestamp exchanges or similar), which thereby allows for po-
tentially infinitely scalable systems. Reasoning about ordering
of events in logically synchronous systems follows the partial
order semantics of Lamport [10] and thus provides equivalence
with any synchronous execution that generates identical event
graphs.

To establish how logical synchrony can be realized in practice,
we first define what logical synchrony means within an abstract
model of distributed systems with multiple clocks, defining local
clocks in a multiclock network. We show how to combine the
FIFO occupancies with the offsets between neighboring clocks,
and how this combination is enough to determine the causality
relationships.

We then explain how bittide [20], [21], [22] is a mechanism
to efficiently implement logical synchrony with real hardware
and thereby bring desirable synchronous execution properties to
distributed applications efficiently at scale.

A. Mathematical Preliminaries and Notation

An undirected graph G is pair (V, E) where V is a set and E is
a subset of the set of 2-element subsets of V . A directed graph
G is pair (V, E) where E ⊂ V × V and (v, v) �∈ E for all v ∈ V .
An edge e ∈ E in a directed graph may be denoted (u, v) or
u → v. A directed graph may contain a 2-cycle, that is a pair of
edges u → v and v → u. An oriented graph is a directed graph
in which there are no 2-cycles.

Suppose G = (V, E) is a directed graph, and number the
vertices and edges so that V = {1, . . . , n} and E = {1, . . . ,m}.
Then the incidence matrix B ∈ Rn×m is

Bij =

⎧⎨
⎩
1 if edge j starts at node i
−1 if edge j ends at node i
0 otherwise

for i = 1, . . . , n and j = 1, . . . ,m.
A walk in a directed graph G is a non-empty alternating

sequence v0, s0, v1, s1, . . . , sk−1, vk in which vi ∈ V , si ∈ E ,
and either si = vi → vi+1 or si = vi+1 → vi. In the former case
we say si has forward or +1 orientation, otherwise we say it has
backward or−1orientation. A path is a walk in which all vertices
are distinct. A cycle is a walk in which vertices v0, . . . , vk−1

are distinct, all edges are distinct, and v0 = vk. Walks, paths,
and cycles are called directed if all edges are in the forward
orientation.

In a directed graph G, given a walk

W = (v0, s0, v1, s1, . . . , sk−1, vk)

1938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

the corresponding incidence vector x ∈ Rm is such that xi = 1
if there exists j such that i = sj and sj has forward orientation,
and xi = −1 if there exists j such that i = sj and sj has reverse
orientation, and xi = 0 otherwise. For a directed graph with
2-cycles, there is an edge u → v and v → u, and we assign
one of these directions as primary and the other as secondary.
This is simply a choice of sign convention. From a directed
graph we construct an associated oriented graph by discarding
all secondary edges. From an oriented graph we construct an
associated undirected graph by discarding all orientations. The
concepts of spanning tree and connectedness when applied to a
directed graph always refer to the associated undirected graph.
The following two results are well-known.

Theorem 1: Suppose G = (V, E) is a directed graph with
incidence matrix B, and suppose edges 1, . . . , n− 1 form a
spanning tree. Partition B according to

B =

[
B11 B12

−1TB11 −1TB12

]

then B11 is unimodular. Further

B =

[
B11 0

−1TB11 1

][
I 0

0 0

][
I N

0 I

]

where N = B−1
11 B12.

Proof: See for example Theorem 2.10 of [23]. �
For convenience, denote by Z the m× (m− n+ 1) matrix

Z =

[
−N

I

]

Then we have the following important property.
Theorem 2: Every column of Z is the incidence vector of a

cycle in G.
Proof: See, for example, Chapter 5 of [23]. �
Theorem 1 implies that the columns of Z are a basis for the

null space ofB, sinceBZ = 0 andnull(Z) = {0}. The columns
of Z are called the fundamental cycles of the graph. Note that
each of the fundamental cycles is associated with exactly one of
the non-tree edges of the graph.

II. LOGICAL SYNCHRONY NETWORKS

The goal of this section is to develop an abstraction which
contains two key things; first, a notion of ordering of events
such as that of Lamport [10]; and second, a notion of network
latency. It turns out that these two ideas may be combined into a
simple unified abstraction, which we call the logical synchrony
network, and this allows analysis of both causality and system
performance. We build an event model, in which events may be
thought of as ticks of a local clock at each node, corresponding to
process execution. The events at neighboring nodes are linked
by data transmission. There is no notion of global time, and
yet within this framework there is still a notion of latency and
duration. We show that ordering of events can be defined in a
meaningful way when round-trip latencies are positive.

We start with a formal definition of a logical synchrony
network as a directed graph with edge weights, as follows.

Fig. 1. A logical synchrony network (edges labeled with λ) and corresponding
extended graph.

Definition 1: A logical synchrony network is a directed graph
(V, E) together with a set of edge weights λ : E → Z.

In this model, each node corresponds to a processor, and an
edge between nodes i → j indicates that node i can send data
along a physical link to node j. Sent data is divided into tokens
which we refer to as frames.

Local clocks: Every node has an infinite sequence of events
associated with it, which can be thought of as compute steps.
The events at node i are denoted (i, τ), where τ is referred to
as a localtick and thereby implicitly defines a local clock. We
define the set of all events

Vext = {(i, τ) | i ∈ V, τ ∈ Z}
Events at one node are aligned to events at other nodes by the
transmission of frames. At localtick τ and node i, a frame is
sent from node i to node j, and it arrives at node j at localtick
τ + λi→j . The constant λi→j is called the logical latency. We
define the following binary relation.

Definition 2: Event (i, τ) is said to directly send to the event
(j, ρ) if (i, j) ∈ E and ρ = τ + λi→j , or i = j and ρ = τ + 1.
We use the notation

(i, τ) → (j, ρ)

to mean (i, τ) directly sends to (j, ρ), and define the set

Eext = {
(
(i, τ), (j, ρ)

)
| (i, τ) → (j, ρ)}

The graph Gext = (Vext, Eext) is called the extended graph of the
logical synchrony network.

This relation may be viewed as an infinite directed graph with
vertex set Vext and directed edges (i, τ) → (j, ρ). In this graph,
those edges (i, τ) → (j, ρ) for which i = j are called computa-
tional edges. An edge that is not a computational edge is called
a communication edge. Fig. 1 illustrates a logical synchrony
network and its corresponding extended graph. Definition 2 adds
two types of edges to the extended graph. Computational edges
are vertical in the figure, and they connect (i, τ) to (i, τ + 1).
These express the relationship between sequential events at node
i. Communication edges are non-vertical, and connect (i, τ)
to (j, τ + λi→j). These express the relationship between the
sending of a frame from node i at time τ and its reception at
node j at time τ + λi→j .

The localticks define a separate and ideal notion of local dura-
tion at each node by counting events (i.e., frame transmissions or

LALL et al.: LOGICAL SYNCHRONY AND THE BITTIDE MECHANISM 1939

receptions.) We can speak of the event (i, τ) as occurring at time
τ localticks on node i. We say that event (i, τ + a) happens a
localticks after event (i, τ), for any a ∈ Z. We cannot in general
compare clock values at two different nodes.

Execution: This model captures the local evolution of time
at each node i ∈ V , and the transmission of frames between
them. Although we do not investigate execution models in this
paper, it is possible to define many different execution semantics.
One simple choice is the functional model, where frames carry
data, and associated with each event (i, τ) ∈ Vext in the extended
graph we have a function, which maps data from incoming edges
to data on outgoing edges. Another possibility is to have a more
procedural model, where events in Vext correspond to the clock
ticks of a processor in the corresponding V . For the purposes
of this paper it is not necessary to specify how many bits each
frame contains but we assume all frames on a given link are
equally sized.

The abstract models considered in this paper consist of se-
quences of events which extend infinitely far into both the future
and the past. It is possible to extend this model to include system
startup, for example by introducing a minimum node within the
extended graph, or by modifying the execution model. We do
not address startup within this paper.

Frames and logical latency: If A denotes a particular frame
sent i → j, then we will make use of the notation receive(A)
to refer to the localtick at node j when A arrives at j. Similarly
send(A) refers to the localtick at node i when A was sent. This
notation leaves implicit the source and destination of frame A,
in that i, j are not included as arguments of the send and receive
functions. We do not as yet assume any particular mechanism for
transmission of frames, but we assume that frames are received
in the order that they are sent, without any loss. Note that the
logical latency has no connection to physical latency. If we were
to measure the send and receive times with respect to a global
notion of time, we would know that, for example, the receive time
must be greater than the send time. In the framework presented
here, that is not the case; the localticks are strictly local, and as
a result there is no such requirement on their numerical value;
the logical latency λi→j may be negative. This is, of course, a
statement about the clocks, not about causality.

In words, the logical latency is the time of arrival in the
receiver’s clock minus the time of departure in the sender’s
clock. There are several observations worth making about logical
latency.
� Logical latency is constant: For any two nodes i, j, every

frame sent i → j has the same logical latency. It is a
property of the edge i → j in E .

� Despite the name, logical latency is not a measure of length
of time or duration: It is not the case that if λi→j is greater
than λp→q then it takes longer for frames to move from i to
j than it does for frames to move from p to q. (In fact, we
do not have a way within this framework to compare two
such quantities.)

� The logical latency can be negative:
Logical latencies and paths: Logical latencies add along a

path. Suppose node i sends a frame B along edge i → j to node

j, and then node j forwards it j → k. Then we have

receive(B) = send(B) + λi→j + λj→k

This means that we can speak of the logical latency of the
path i → j → k as being λi→j + λj→k, and more generally
we can define the logical latency of a directed path P =
v0, s0, v1, s1, . . . , sk−1, vk from node v0 to node vk in G. The
logical latency is path dependent; two paths with the same
endpoints may have different logical latencies. We have

λP =

k−1∑
i=0

λsi

This makes sense, which is potentially surprising because we
are measuring arrival and departure times with different clocks.
Since frames are being relayed, there may be additional delay at
intermediate nodes (i.e., additional compute steps) which would
need to be included when determining the destination event.
Logical latencies are defined such that they do not included this
additional delay.

A. Ordering of Events

A fundamental question regarding causality arises in the study
of distributed systems. Given two events, we would like to deter-
mine which happened first. In a nonrelativistic physical setting,
such a question is well-defined. In a relativistic setting, there are
events which are separated in space for which the relative order is
undetermined — the order depends on the observer. Something
similar happens in distributed systems, as was pointed out by
Lamport [10]. Given two events, instead of asking which event
happened first, a more useful question is to ask which event, if
any, must have happened first. The framework for distributed
clocks developed by Lamport [10] established that there is a
partial ordering on events determined by one event’s ability
to influence another by the sending of messages. In that paper
the author defines a global notion of time consistent with said
partial order. Subsequent work [24], [25] defines vector clocks
which assign a vector-valued time to events for which the partial
ordering is equivalent to that defined by message-passing. We
would like to construct the corresponding notion of causality in
a logical synchrony network.

We define below the � relation, which can be used to define
a partial order on Gext provided we can ensure that it is acyclic.
To do this, we consider round-trip times.

Round trip times: Logical latencies are not physical latencies,
despite the additive property. However, there is one special
case where logical latency is readily interpreted in such phys-
ical terms, specifically the time for a frame A to traverse a
cycle in the graph, the cycle round-trip time. Suppose C =
v0, s0, v1, s1, . . . , sk−1, vk is a directed cycle, then

λC = receive(A)− send(A)

is the round-trip time measured in localticks. Two different
cycles from a single node i may have different round-trip times,
and these are comparable durations since they are both measured

1940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

in localticks at that node. We have

λC =

k−1∑
i=0

λsi

We make the following definition.
Definition 3: A logical synchrony network is said to have

positive round-trip times if, for every directed cycle C in the
graph G we have λC > 0.

We then have the following result, which says that if the round-
trip times around every directed cycle in the logical synchrony
network are positive, then the extended graph is acyclic.

Theorem 3: If a logical synchrony network has positive
round-trip times then its extended graph is acyclic.

Proof: Suppose for the purpose of a contradiction that the
extended graph is cyclic. Then there exists a directed cycle C1 =
v0, s0, v1, s1, . . . , sk−1, vk where each vj ∈ Vext is a pair vj =
(ij , τj). Since the start and end node is the same, we have

0 =
k−1∑
j=1

(τj+1 − τj)

=
∑

j∈Ccomp

(τj+1 − τj) +
∑

j �∈Ccomp

(τj+1 − τj) (1)

where Ccomp is the set of indices j such that (vj , vj+1) is
a computational edge. Each of the computational edges has
τj+1 − τj = 1. If all of the edges in the graph are computa-
tional then the right-hand side is positive. If there are some
communication edges, then the second of the two terms on the
right-hand side is positive due to the assumption that the logical
synchrony graph has positive round-trip times, and again the
right-hand-side is positive. This contradicts the claim that the
sum is zero. �

This acyclic property is necessary for an execution model
based on function composition to be well-defined. It also allows
us to define a temporal partial ordering between events in Gext.
Since a logical synchrony network with positive round-trip times
has an extended graph which is acyclic, the reachability relation
on the extended graph defines a partial order. Specifically, we
write

(i, τ) � (j, ρ)

if there is a directed path from (i, τ) to (j, ρ) in the extended
graph. Here, the notation is meant to be similar to <, indicating
comes before. Under these conditions, a logical synchrony net-
work is a distributed system in the sense of Lamport [10], with
logical latencies providing strict inter-event timings at any node
i ∈ V . The partial ordering on the induced logical synchrony
network has exactly the property that, if u � v, then u must
have happened before v.

III. EQUIVALENCE OF LSNS

The goal of this section is to establish an invariant, which we
will use in the subsequent sections to analyze system correctness.
We introduce the idea of clock relabeling, which modifies logical
latencies while preserving the interconnection of events and the

Fig. 2. Two equivalent logical synchrony graphs (edges labeled with λ). Rela-
beling the clocks using c = (1, 2, 3) maps the left-hand graph to the right-hand
one.

underlying physical system. We show that the round trip times,
being physically measurable properties, cannot change. We use
this invariant to characterize when two networks are physically
the same, even though their clock labels may be different.

Two logical synchrony networks may have different logical
latencies, but be nonetheless equivalent for the purpose of exe-
cuting processes. An example is given by the graphs in Fig. 2.

This arises because we can relabel the events. Specifically,
given a logical synchrony network with events Vext, we define
a new logical synchrony network. Given c1, . . . , cn ∈ Z, we
relabel event (i, τ) as (i, τ + ci). This is a relabeling of the
vertices of the graph Gext. In Gext we have edges

(i, τ) → (j, τ + λi→j)

for every i �= j ∈ V and τ ∈ Z. Under the relabeling, these are
mapped to

(i, τ + ci) → (j, τ + λi→j + cj)

and since there is such an edge for all τ ∈ Z the edge set of the
relabeled extended graph is

Êext = {
(
(i, τ), (j, τ + λi→j + cj − ci)

)
| i, j ∈ V, τ ∈ Z}

This is the extended graph for a logical synchrony network with
logical latencies

λ̂i→j = λi→j + cj − ci

This leads us to the following definition of equivalence.
Definition 4: Suppose we have two logical synchrony net-

works on a directed graph (V, E), with edge weights λ and λ̂.
We say these LSNs are equivalent if there exists c1, . . . , cn ∈ Z
such that, for all i, j ∈ V ,

λ̂i→j = λi→j + cj − ci (2)

We can write this equation as

λ − λ̂ = BTc

where B is the incidence matrix of G. Relabeling the clocks
results in a relabeling of the corresponding extended graph.
Since this only changes the labels of the nodes, not how the
nodes are interconnected, any code which is executable on one
graph may also be executed on the other (but any references
to particular localticks will need to be changed.) Physically
measurable properties such as round-trip times cannot change
under such a simple relabeling. We have

LALL et al.: LOGICAL SYNCHRONY AND THE BITTIDE MECHANISM 1941

Fig. 3. Two non-equivalent logical synchrony graphs with no directed cycles
(edges labeled with λ).

Proposition 1: If two LSNs are equivalent, they will have the
same round trip times on every directed cycle.

Proof: The round-trip times for a directed cycle C =
v0, s0, v1, s1, . . . , sk−1, vk in G satisfy

k−1∑
j=0

λsj =

k−1∑
j=0

λ̂sj

which follows from (2). �
The converse is not generally true, as the following example

shows.
Example 1: Consider the logical synchrony networks shown

in Fig. 3 . Both networks have the same underlying graph, which
has no directed cycles, and so the round trip times on every
directed cycle are trivially equal on both networks. If we order
the edges ((1 → 2), (2 → 3), (1 → 3)) then we have incidence
matrix

B =

⎡
⎢⎣ 1 0 1

−1 1 0

0 −1 −1

⎤
⎥⎦

which has rank(B) = 2. In the left-hand network of Fig. 3 the
logical latencies are λ1 = 2, λ2 = 3 and λ3 = 4, and in the right-
hand network they are λ̂1 = 2 λ̂2 = 3 and λ̂3 = 3. Therefore

λ − λ̂ =

⎡
⎢⎣00
1

⎤
⎥⎦ (3)

and there is no vector c such that λ − λ̂ = BTc.
If the round trip times are equal around every cycle, account-

ing for signs and orientations, then the two logical synchrony
networks are equivalent. To show this, we need a preliminary
result.

Lemma 1: Let the graph be connected. Suppose y ∈ Zm,
and for every cycle C we have yTx = 0 for the corresponding
incidence vector x. Then y = BTc for some c ∈ Zn.

Proof: Pick a spanning tree, and partition B according to the
spanning tree. Let N = B−1

11 B12. Partition y according to

y =

[
y1

y2

]

where y1 ∈ Zn−1. We choose

c =

[
B−T

11 y1

0

]

and note that since B11 is unimodular c must be integral. Using
Theorem 1 we have

BTc =

[
I 0

NT I

][
I 0

0 0

][
BT

11 −BT
111

0 1

][
B−T

11 y1

0

]

=

[
I 0

NT I

][
y1

0

]

=

[
y1

y2

]

as desired, where in the last line we use Theorem 2 to show that

yT

[
−N

I

]
= 0

since y is orthogonal to the incidence vectors of the fundamental
cycles. �

We now state and prove a variant of Proposition 1 which is
both necessary and sufficient.

Theorem 4: Suppose we have two logical synchrony net-
works on a connected directed graph (V, E), with edge weights
λ and λ̂. These networks are equivalent if and only if they have
the same signed round trip times on every cycle in G. That is,
for every cycle C = v0, s0, v1, s1, . . . , sk−1, vk we have

k−1∑
j=0

λsjoj =

k−1∑
j=0

λ̂sjoj (4)

where oj is the orientation of edge sj on the cycle C.
Proof: Equation (4) means that for every cycle C with inci-

dence vector x we have

(λ − λ̂)Tx = 0

Then Lemma 1 implies that λ − λ̂ = BTc for some integer
vector c, and hence λ and λ̂ are equivalent. �

What this means, in particular, is that in Example 1 the graph
does not have a directed cycle but it does have a cycle, where
edges 1 → 2 and 2 → 3 are oriented in the forward direction,
and edge 1 → 3 is oriented in the backward direction. Then λ

and λ̂ are equivalent if and only if

λ1 + λ2 − λ3 = λ̂1 + λ̂2 − λ̂3

Since this does not hold for λ and λ̂ in that example, those two
networks are not equivalent.

One cannot verify equivalence by checking pairs of nodes.
That is, it is not sufficient to simply check the length-2 round
trip times, as the following example shows.

Example 2: Suppose G is the complete graph with 3 nodes.
For the two logical synchrony networks, shown in Fig. 4, the
length-2 round trip times are

λ1→2→1 = 5

λ2→3→2 = 4

λ1→3→1 = 2

1942 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 4. Logical synchrony networks for Example 2.

Fig. 5. Triangle invariant.

Fig. 6. Diamond invariant.

and they are the same for λ̂. However, these networks are not
equivalent. There is no way to relabel so that the logical latencies
are the same. This is because the length-3 round trip times are
λ1→2→3→1 = 6 and λ̂1→2→3→1 = 4.

Invariants: As shown by the above results, round-trip times
around directed cycles are invariant under relabeling. Cycles
which are not directed also result in invariants which may be
physically measured and interpreted. We give some examples
below.

Example 3: Fig. 5 shows a triangle graph in which node 1
sends frame A to node 3, and simultaneously sends frame B to
node 3 via node 2. Then receive(B)− receive(A) is measured
in localticks at node 3, and it is invariant under relabeling.

Example 4: Fig. 6 shows a square graph. Here node 1 sends
frame A to node 2 and simultaneously sends frame B to node
4. Node 3 sends frame C to node 2 and simultaneously sends
frame D to node 4. Note that the transmissions of node 1 and
node 3 are not synchronized with each other. Then the quantity

(receive(A)− receive(C))− (receive(B)− receive(D))

is invariant under clock relabelings.
Equivalent networks can have different logical latencies, but

must have the same round-trip times. The question of how

much freedom this leaves is interesting, and has an important
consequence which we discuss below. We first show that one
can set the logical latencies arbitrarily on any spanning tree.

Theorem 5: Suppose G, λ is a logical synchrony network,
where G = (V, E). Suppose T ⊂ E is a spanning tree. Then for
any γ : T → Z there exists c ∈ Zn such that

γi→j = λi→j + cj − ci for all i → j ∈ T
Proof: We would like to show that there exists c ∈ Zn such

that [
I 0

]
(λ − γ) =

[
I 0

]
BTc

Let y1 be the left-hand side, then using Theorem 1, this is
equivalent to

y1 =
[
BT

11 −B111
]
c

and hence we may choose

c =

[
B−T

11 y1

0

]

which is integral since B11 is unimodular. �
We can use this result in the following way. There is no

requirement within this framework that logical latencies be
nonnegative. However, it turns out that any logical synchrony
network which has nonnegative round-trip times is equivalent
to one with nonnegative logical latencies. We state and prove
this result below. This result will be useful when we discuss
multiclock networks in the subsequent section.

Theorem 6: Suppose G, λ is a logical synchrony network
with G strongly connected, and for every directed cycle C the
round-trip logical latency λC is nonnegative. Then there exists
an equivalent LSN with edge weights λ̂ which are nonnegative.

Proof: Pick a node r. Since the graph has no negative cycles,
there exists a spanning tree T , rooted at r, with edges directed
away from the root, each of whose paths is a shortest path [26].
Use Theorem 5 to construct c such that

λi→j + cj − ci = 0 for all i → j ∈ T
As a result, we have λi→j = ci − cj for all edges i → j in the
tree T . Denote by ti→k the length of the path from i to k in the
tree. Then we have ti→k = ci − ck.

Since this is a shortest path tree, we have for any edge i → j

tr→i + λi→j ≥ tr→j

because the path in the tree from r to j must be no longer than
the path via node i. Therefore

cr − ci + λi→j ≥ cr − cj

Setting λ̂i→j = λi→j + cj − ci for all edges we find λ̂i→j ≥ 0
as desired. �

This result says that, if we have a shortest path tree, we can
relabel the clocks so that the logical latency is zero on all edges
of that tree, and with that new labeling the logical latency will be
nonnegative on every tree edge. An example is given in Fig. 7.

Note also that an edge having zero logical latency does not
imply that communication between the endpoints is instanta-
neous; only that the numerical value of the time at which the

LALL et al.: LOGICAL SYNCHRONY AND THE BITTIDE MECHANISM 1943

Fig. 7. Relabeling so that logical latencies are nonnegative. The upper graph
shows edges labeled with λ. The root node is in the lower left, and the shortest-
path spanning tree is shown in red. The lower graph shows an equivalent LSN,
with nodes i labeled with ci, and the corresponding logical latencies λ̂i→j =
λi→j + cj − ci. All logical latencies in this graph are nonnegative.

frame is received is equal to the numerical value of the time at
which it was sent.

IV. MULTICLOCK NETWORKS

The objective of this section is to build a model of a physical
system, and relate its correctness to the invariants of the previous
section. We introduce a model in which there are physical clocks
at each node, and the nodes pass data to each other, according to
specific timed sequential communications which occur through
FIFOs. We call such a system a multiclock network. We show
that the latencies that arise satisfy exactly the semantics of the
abstract latencies of logical synchrony networks. We further
show that the natural requirements that the FIFO occupan-
cies be bounded leads to the physical requirement that round
trip times are nonnegative. In other words, building a correct
multiclock network will result in a correct logical synchrony
network.

We formulate the relationship between events on a network
in terms of physical clocks, leading to a mathematical defini-
tion called the multiclock network. We show that multiclock
networks are special types of logical synchrony networks.

We will use t to denote an idealized notion of time, called
wall-clock time, or ideal time [27]. Time on the network is
multiform [11], in the sense that the nodes on the network
each maintain their own sense of time. At each node, there is a
real-valued clock, denoted by θi. Its units are the localticks. We
refer to the value θi as the local time or phase at node i. Local
time has no quantitative relationship to physical or wall-clock
time. In particular, we do not view θi as an approximation to
wall-clock time and consequently clocks at two distinct nodes
are inherently unrelated.

At a node i, a processor can read the value θi, its own clock,
but cannot access the value θj at any other node j �= i. We
mathematically model θi as a function of physical time t, so
that θi : R → R, without implying anything about its construc-
tion; it simply means that if at physical time t a hypothetical
outside observer were to read clock i, it would read value θi(t).
What is required is that θi is continuous and increasing, so
that θi(s) < θi(t) if s < t. We emphasize again that this does
not imply that any processes running on the system can access
wall-clock time t. The quantity θi is not related to physical time.

At times t where θi is differentiable, we define the fre-
quency ωi of the clock θi by

ωi(t) =
dθi(t)

dt

At a node i, a clock generates an infinite sequence of events,
also referred to as localticks, which happen whenever θi is an
integer. Clocks are not required to be periodic, and this definition
of frequency is applicable in the general aperiodic case. Clocks
at different nodes may have very different frequencies. If the
frequency at node i is large, then events at that node occur more
often.

We model the process of frame transmission from node i to
node j as a FIFO, but real-world implementations are likely
to consist of uninterrupted physical communication streams
feeding into memory buffers. Every node can access the output
(or head) of the FIFO corresponding to each of its incoming
links, and the input (or tail) of the FIFO corresponding to each
of its outbound links. We will discuss below the requirement
that FIFOs neither overflow nor underflow.

Logical synchrony in multiclock networks: With every lo-
caltick, node i inserts a frame at the tail of each of its outgoing
link FIFOs and removes a frame from the head of each of
its incoming link FIFOs. This lock-step alignment of input
and output is the fundamental synchronization mechanism that
imposes logical synchrony upon the network. At each node, with
every localtick, one frame is removed from each incoming FIFO
and one frame is sent on each outgoing FIFO.

Formal definition of multiclock network: We now turn to a
mathematical model that will enable us to analyze the behavior
of this system.

Definition 5: A multiclock network is a directed graph
G = (V, E) together with continuous increasing functions
θi : R → R for each i ∈ V , and edge weights λ : E → Z.

This definition contains the entire evolution of the clock
phases θi, and the link properties λi→j . We will discuss the
physical meaning of λi→j below. Unlike the logical synchrony
network, where events are abstract and have no physical time
associated with them, in a multiclock network the global timing
of all events is defined by the clocks θ. We will show that a
multiclock network is a special case of a logical synchrony
network, and the constants λ are the associated logical latencies.
To do this, we model the behavior of the FIFOs connecting the
nodes.

FIFO model: If i → j in the graph G, then there is a FIFO
connecting node i to node j. With every localtick at node i, a
frame is added to this FIFO, and with every localtick at node j, a

1944 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

frame is removed from the FIFO. We number the frames in each
FIFO by k ∈ Z, according to the localtick at the sender, and the
frames in the FIFO are those with k satisfying

αi→j(t) ≤ k ≤ βi→j(t)

where α and β specify which frames are currently in the FIFO
at time t. The FIFO model is as follows.

βi→j(t) = �θi(t)	 (5)

αi→j(t) = �θj(t)	 − λi→j + 1 (6)

Equation (5) means that frames are added with each localtick
at the sender, and numbered according to the sender’s clock.
Equation (6) means that frames are removed with each localtick
at the receiver. The constant λ is to account for the offset
between the frame numbers in the FIFO and the clock labels
at the receiver. (We add 1 for convenience.) This offset must be
constant, since one frame is removed for each receiver localtick.
This constant is specified by the multiclock network model in
Definition 5.

This model precisely specifies the location of every frame on
the network at all times t. In particular, this determines the FIFO
occupancy at startup. For any time t0, the specification of λ is
equivalent to specifying the occupancy of the FIFOs at time t0.
This allows us to have a well-defined FIFO occupancy without
requiring an explicit model of startup.

Logical latency: Logical latency is the fundamental quantity
which characterizes the discrete behavior of a network, and
allows us to ignore the details of the clocks θi. The idea is that
we can understand the logical structure of the network, such as
the events, the execution model, and causality, without needing
to know specific wall-clock times at which these things occur.

We now show that the quantity λi→j corresponds to the logical
latency. Suppose a frame is sent from node i at localtick k ∈ Z,
and wall-clock time tksend. Then θi(tksend) = k. Let the time which
it is received at node j be denoted by tkrec. Both tksend and tkrec are
wall-clock times, and apart from the causality constraint that the
frame must be received after it is sent, there is no constraint on
the difference between these times; that is, the physical latency
tkrec − tksend may be large or small. In general, physical latency
will be affected by both the number of frames in the FIFO
i → j as well as the time required for a frame to be physically
transmitted. We do not presuppose requirements on the physical
latency.

Lemma 2: Suppose frame k is sent from node i to node j.
Then tksend and tkrec satisfy

θi(t
k
send) = k (7)

θj(t
k
rec) = k + λi→j (8)

and hence the logical latency is given by

λi→j = θj(t
k
rec)− θi(t

k
send) (9)

Proof: Since frames in the FIFO i → j are numbered accord-
ing to the sender’s clock, we have

tksend = inf{t | βi→j(t) = k}

that is, tksend is the earliest time at which frame k is in the FIFO
from i to j. Since the floor function is right continuous, this gives
(7). Similarly, we have

tkrec = inf{t | αi→j(t) = k + 1}

which is the first time t at which the lowest-numbered frame in
the FIFO is number k + 1, and therefore this is the time at which
frame k has just left the FIFO, and hence has just arrived at the
destination. This implies (8), and the logical latency follows.�

Unlike the physical latency trec − tsend, the logical latency
θj(t

k
rec)− θi(t

k
send) does not change over time. Note also that

the logical latency is an integer. Since the logical latency is
constant, we can conclude that every multiclock network is a
logical synchrony network; more precisely, the logical latencies
defined by the multiclock network satisfy the same properties
as those of a logical synchrony network.

A. Realizability

We now turn to an analysis of the occupancy of the FIFOs in
more detail. A frame is considered in-transit from i → j at time
t if it has been sent by node i but not yet received by node j;
that is, if it is in the FIFO from i to j. Define νi→j(t) to be the
number of frames in transit i → j. Then we have

νi→j(t) = βi→j(t)− αi→j(t) + 1

= �θi(t)	 − �θj(t)	+ λi→j (10)

and this holds for all t. Here we can see that the constant λi→j is
a property of the link i → j, which determines the relationship
between the clock phases at each end of the link and the number
of frames in transit.

So far in this model, there is nothing that prevents the FIFO
occupancy on an edge i → j from becoming negative. If the
clock at node θj has a higher frequency than the clock at θi, and
if that frequency difference is maintained for long enough, then
the FIFO i → j will be rapidly emptied. In this case, θj will
become much larger than θi, and from (10) we have that νi→j

will become negative. Similarly, the FIFO will overflow if the
frequencies become imbalanced in the other direction. In [22]
a technique using a dynamically switching control algorithm is
presented that allows prevention of such behaviors. We make
the following definition.

Definition 6: A multiclock network is called realizable if
there exists νmax ∈ R such that for all edges i → j

0 ≤ νi→j(t) ≤ νmax for all t ∈ R (11)

Note that this requirement must hold for all positive and
negative time t. The terminology here is chosen to be sugges-
tive, in that we would like a condition which implies that we
can physically implement a multiclock network. A physically
necessary condition is that the FIFO occupancies are bounded
and cannot be negative.

Cycles and conservation of frames: Cycles within a multi-
clock network have several important properties. The first is
conservation of frames, as follows.

LALL et al.: LOGICAL SYNCHRONY AND THE BITTIDE MECHANISM 1945

Theorem 7: Suppose C = v0, s0, v1, s1, . . . , sk−1, vk is a di-
rected cycle in a multiclock network. Then

k−1∑
i=0

νsi(t) = λC

In particular, the number of frames in transit around the cycle is
constant, and is the sum of the logical latencies on the cycle.

Proof: The proof follows immediately from (10). �
An immediate corollary of this is that, in a physical network,

if every edge of G is on a cycle, then the number of frames in the
network is finite and the upper bound condition for realizability
is satisfied. This is the case, for example, in a strongly connected
graph. Note that this holds because, in a physical network, the
FIFO occupancy cannot be negative. It is not the case that the
FIFO model used here implies that ν is upper bounded, since in
the model some FIFO lengths may become large and negative
while others become large and positive.

This theorem is particularly evocative in the simple and com-
mon case where we have two nodes i, j connected by links
in both directions. In this case, whenever i receives a frame, it
removes it from it’s incoming FIFO from j, and adds a new frame
to the outgoing FIFO to j. Thus the sum of the occupancies of
the two FIFOs is constant.

The following result relates round trip times to realizability.
Theorem 8: Suppose C is a cycle in a realizable multiclock

network. Then λC ≥ 0.
Proof: This follows immediately from Theorem 7 and Defi-

nition 6. �
That is, a realizable multiclock network has the important

physical property that all round-trip times are nonnegative.
The monotonic property of θ implies that this holds in both
localticks and wall-clock time. No matter what path a frame
takes around the network, it cannot arrive back at its starting
point before it was sent. However, it is possible, within the class
of realizable networks defined so far, for this sum to be equal
to zero. In this case one would have a frame arrive at the time
it is sent. This would require some pathological conditions on
the clocks. This is an extreme case corresponding to the limit
where frames spend zero time in the FIFOs, which in a physical
network would require that the link have zero link latency. For
example, in the case of a length 2 cycle between nodes i and j,
we would need θj(t) = θi(t) + λi→j and θi(t) = θj(t) + λj→i,
which would give λi→j = λj→i. Since the clocks are related by
integer constants, they tick at exactly the same times.

B. Equivalent Synchronous Systems

We now consider the class of perfectly synchronous systems,
where all of the nodes of the graph share a single clock. The
links between the nodes are FIFOs as before, and as a result
of the synchronous assumption their occupancies are constant.
This is a particular instance of the multiclock network where all
clocks θi are equal.

Such a system has an extended graph, and it has logical
latencies which do not change with time, and are equal to the
occupancies of the FIFOs, according to (10). Because the system
is synchronous, the FIFOs behave like a chain of delay buffers.

The corresponding execution model, defined by the extended
graph, is identical to that of a logical synchrony network with
the same logical latencies. Said another way, a logical synchrony
network is equivalent to a perfectly synchronous network of
processors connected by delay buffers with occupancies given
by the logical latencies.

This suggests the following question; what happens if we have
a logical synchrony network where one or more of the edges has
a negative logical latency? Using Theorem 6, we know that if a
network has nonnegative round-trip times, one can relabel the
clocks so that all logical latencies are nonnegative. Hence any
physically constructible multiclock network is equivalent to a
perfectly synchronous network.

V. THE BITTIDE MECHANISM

We now turn to a specific form of multiclock network
which can be implemented on modern networking hardware. In
Section IV we have already discussed one of the key components
of this, specifically that with each localtick, a node removes one
frame from the head of every incoming FIFO, and sends one
frame on every outgoing FIFO. However, this is not enough for
implementation, since we must ensure that the occupancies of
the FIFOs neither underflow nor overflow.

In the bittide model, the FIFO connecting node i to node j
is composed of two parts, connected sequentially. The first part
is a communication link, which has a latency li→j , the number
of wall-clock seconds it takes to send a frame across the link.
The second part is called the elastic buffer. It is a FIFO which
is located at the destination node j. Node i sends frames, via
the communication link to node j, where they are inserted at the
tail end of the elastic buffer. We assume that the communication
link cannot reorder frames, and so together the communication
link and the elastic buffer behave as a single FIFO.

Each node has an elastic buffer for each of its incoming links.
With each clock localtick, it does two things; first, it removes a
frame from the head of each of the elastic buffers and passes that
frame to the processor core; second, the core sends one frame
on each outgoing communication link.

The purpose of this structure is as follows. An implementation
of bittide has nodes whose hardware oscillators are adjustable.
The elastic buffer occupancies provide information regarding the
relative clock frequencies of the node compared to its incoming
neighbors. This allows the oscillators to be adjusted in real-time,
by each node, based on measurements of the occupancy of
the elastic buffers. Off-the-shelf modules are available which
provide fine-grained control of the oscillator frequency. Specif-
ically, if we have an edge i → j, and node i has a lower clock
frequency that node j, then the corresponding elastic buffer at
node j will start to drain. Conversely, if node i has a higher clock
frequency, the elastic buffer will start to fill. Node j can therefore
use the occupancy of the elastic buffers to adjust its own clock
frequency. If, on average, it’s buffers are falling below half-full,
the node can reduce its clock frequency, and conversely.

This mechanism was originally proposed in [28]. Further
refinements to the implementation were developed in [20], [21],
[22]. These papers show that, provided the frequency corrections

1946 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

Fig. 8. Graph for bittide simulation.

are chosen appropriately, this mechanism will ensure that elastic
buffers never underflow or overflow. A simple mechanism for
doing this is to control the correction. Adjustable oscillators
allow choosing a value for correction c, which causes the fre-
quency ω to become

ω = (1 + αc)ωu

Here ωu is the base frequency of the oscillator, which is only
known approximately, and α is small, of the order of 10−6. Let
βi→j be the occupancy of the elastic buffer at node j for the link
from i to j. Each node j polls the hardware to observe these
quantities, and sets the correction at node j to be

c = kp
∑
i|i→j

(βi→j − β0)

where kp is a positive constant, and the sum is over all links
which are incoming to j. The value β0 is a fixed offset. For an
appropriate choice of kp, all of the the frequencies converge to
the same steady-state value. See [20], [21], [22] for more details.

An example simulation of the clock dynamics is in Fig. 8. The
time evolution of the clock frequencyω and the buffer occupancy
β is shown in Fig. 9, with the buffer occupancy for edge i → j
labeled i, j. For this simulation, the link latencies li→j = 1ns.
Note that in this simulation the parameters are chosen so that
the dynamics of the system are clearly visible. In particular, the
nodes start at frequencies 1.1, 1.4, 1.8, 2.0 GHz, and in practical
hardware systems typically the frequencies at startup would be
separated by less than one part in 105. Similarly, the control
algorithm parameters are set so that convergence is slow and
the equilibrium buffer occupancies are large, between 25 and 75
frames, whereas in practice (e.g., in the hardware of [29]) these
parameters are chosen to keep the buffers much smaller. With
more realistic parameters the dynamics follow the same general
pattern, but are less visible on a plot.

Available implementations: There are three open-source ef-
forts addressing bittide and logically synchronous systems. The
first is the hardware description, written in Clash, available
at [29]. This may be compiled onto standard FPGA boards,
linked to controlled oscillator boards. Second, there is a simula-
tor called Callisto [30], which is written in Julia, and simulates
the dynamics of the oscillators and the occupancies of the elastic
buffers. Finally, there is the Aegir simulator [31], written in Rust,
which is a functional simulation of a logical synchrony network.

Fig. 9. Occupancy and frequency of the bittide system.

VI. RELATED WORK

The seminal work of Lamport [10] presents a formal frame-
work for clocks in distributed systems, which in particular de-
fined an ordering on a directed graph corresponding to temporal
relationships between events, and a global scalar clock which
was consistent with that ordering. Subsequent work [24], [25]
developed the notion of vector clocks, where each node in a
network maintains a vector notion of time which captures exactly
the ordering defined by the graph. The synchronization mecha-
nism of bittide was first proposed in [28]. Subsequent works
include [20], which developed a mathematical model of the
synchronization layer, and [21], which analyzed its performance
properties.

Ever since the first distributed systems, synchronous exe-
cution has been a gold standard for formal reasoning, prov-
able correctness properties, and ability to express efficient
algorithms [32], [33], [34], [35]. As a consequence, the
domain of synchronous execution has been studied exten-
sively, in particular in the context of cyber-physical systems.
Cyber-physical systems interact with physical processes, and
Lee [36] argues that integrating the notion of time in sys-
tem architecture, programming languages and software com-
ponents leads to the development of predictable and repeatable
systems.

Reasoning about distributed systems has led to the definition
of both execution models and parallel programming models.

LALL et al.: LOGICAL SYNCHRONY AND THE BITTIDE MECHANISM 1947

Kahn Process Networks [37] is one of the most general; while it
does not involve time or synchronization explicitly, processes in
a Kahn process network communicate through blocking FIFOs,
and thus synchronize implicitly through the communication
queues. An important distinction between bittide and the Kahn
Process Networks is that the former does not make use of
blocking.

Synchrony, and its most common representation as a global
time reference, led to the definition of multiple models of com-
putation. For example, Synchronous Dataflow [38] enables static
scheduling of tasks to resources; Timed Concurrent Sequential
Processes (Timed CSP) [39] develop a model of real-time exe-
cution in concurrent systems; Globally Asynchronous, Locally
Synchronous (GALS) communication models [40] address the
issue of mapping a synchronous specification to existing systems
which are asynchronous.

Henzinger et al. [41] introduce the concept of logical execu-
tion and Kopetz et al. [42] introduce Time-Triggered Architec-
tures (TTAs) as a system architecture where time is a first-order
quantity and they take advantage of the global time reference to
exploit some of the desirable properties of synchronous execu-
tion: precisely defined interfaces, simpler communication and
agreement protocols, and timeliness guarantees.

Synchronous programming models led to synchronous pro-
gramming languages, e.g., Esterel [43], Lustre [44], Signal [45],
and the development of tools to formally analyze their execution
correctness as well as compilers to generate correct synchro-
nizing code for embedded [12] or multicore platforms [14].
This created a virtuous cycle – as researchers understood better
properties and embedded them into languages and tools, they
drove the adoption of synchronous execution and formal tools
for a number of industrial control applications, avionics, and
critical system components.

VII. CONCLUSION

This paper has presented the logical synchrony framework.
We have shown how this may be used to enable processes on
a network of distributed machines to coordinate as if they were
synchronized, even if the the clocks on the individual cores are
only imperfectly synchronized. We have discussed the bittide
mechanism for implementing logical synchrony, how it is ab-
stracted as a multiclock network, and how that corresponds to a
further abstraction called the logical synchrony network (LSN).
We have analyzed the invariant properties of these networks, and
shown how these clocks provide predictable logical latencies on
the network.

ACKNOWLEDGMENTS

The ideas for this paper came about through much collabora-
tion. In particular, we would like to thank Nathan Allen, Pouya
Dormiani, Chase Hensel, Logan Kenwright, Robert O’Callahan,
Chris Pearce, Dumitru Potop-Butucaru, and Partha Roop for
many stimulating discussions about this work. Robert had the
idea for the proof of Theorem 6.

REFERENCES

[1] D. Stauffer et al., High Speed Serdes Devices and Applications. Berlin,
Germany: Springer, 2008.

[2] F. Ling, Synchronization in Digital Communication Systems. Cambridge,
U.K.: Cambridge Univ. Press, 2017.

[3] Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems, IEEE Standard 61588–2021, 2021.

[4] Y. Li et al., “Sundial: Fault-tolerant clock synchronization for datacenters,”
in Proc. 14th USENIX Symp. Operating Syst. Des. Implementation, Nov.
2020, pp. 1171–1186.

[5] J. C. Corbett et al., “Spanner: Google’s globally distributed database,”
ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 1–22, 2013.

[6] E. Gupta, P. Goyal, I. Marinos, C. Zhao, R. Mittal, and R. Chandra, “DBO:
Fairness for cloud-hosted financial exchanges,” in Proc. ACM SIGCOMM
Conf., 2023, pp. 550–563.

[7] R. Taft et al., “CockroachDB: The resilient geo-distributed SQL database,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020, pp. 1493–1509.

[8] S. Bateni et al., “Xronos: Predictable coordination for safety-critical
distributed embedded systems,” 2022. [Online]. Available: https://arxiv.
org/abs/2207.09555

[9] M. Cowan, S. Maleki, M. Musuvathi, O. Saarikivi, and Y. Xiong, “MSC-
CLang: Microsoft collective communication language,” in Proc. ACM
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2023,
pp. 502–514.

[10] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[11] G. Berry and L. Cosserat, “The esterel synchronous programming lan-
guage and its mathematical semantics,” in Proc. Int. Conf. Concurrency,
1984, pp. 389–448.

[12] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone, “The synchronous languages 12 years later,” Proc. IEEE,
vol. 91, no. 1, pp. 64–83, Jan. 2003.

[13] P. S. Roop, Z. Salcic, and M. W. S. Dayaratne, “Towards direct execution
of esterel programs on reactive processors,” in Proc. ACM Int. Conf.
Embedded Softw., 2004, pp. 240–248.

[14] K. Didier, A. Cohen, D. Potop-Butucaru, and A. Gauffriau, “Sheep
in wolf’s clothing: Implementation models for dataflow multi-threaded
software,” in Proc. Int. Conf. Appl. Concurrency Syst. Des., Jun. 2019,
pp. 43–52.

[15] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-triggered
language for embedded programming,” Proc. IEEE, vol. 91, no. 1,
pp. 84–99, Jan. 2003.

[16] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a lingua franca
for deterministic concurrent systems,” ACM Trans. Embededded Comput.
Syst., vol. 20, no. 4, pp. 1–27, May 2021.

[17] E. A. Lee and M. Lohstroh, “Time for all programs, not just real-time
programs,” in Proc. 10th Int. Symp. Leveraging Appl. Formal Methods,
Verification Validation, 2021, pp. 213–232.

[18] D. L. Mills, “Internet time synchronization: The network time protocol,”
IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–1493, Oct. 1991.

[19] M. Lipinski, T. Wlostowski, J. Serrano, and P. Alvarez, “White rabbit:
A PTP application for robust sub-nanosecond synchronization,” in Proc.
IEEE Int. Symp. Precis. Clock Synchronization Meas., Control Commun.,
2011, pp. 25–30.

[20] S. Lall, C. Caşcaval, M. Izzard, and T. Spalink, “Modeling and con-
trol of bittide synchronization,” in Proc. Amer. Control Conf., 2022,
pp. 5185–5192. [Online]. Available: https://arxiv.org/abs/2109.14111

[21] S. Lall, C. Caşcaval, M. Izzard, and T. Spalink, “Resistance distance and
control performance for bittide synchronization,” in Proc. Eur. Control
Conf., 2022, pp. 1850–1857. [Online]. Available: https://arxiv.org/abs/
2111.05296

[22] S. Lall, C. Caşcaval, M. Izzard, and T. Spalink, “On buffer centering for
bittide synchronization,” 2023. [Online]. Available: https://arxiv.org/abs/
2303.11467

[23] R. B. Bapat, Graphs and Matrices. Berlin, Germany: Springer, 2017.
[24] C. J. Fidge, “Timestamps in message-passing systems that preserve the

partial ordering,” Australian Comput. Sci. Commun., vol. 100, no. 1,
pp. 56–66, Feb. 1988.

[25] F. Mattern, “Virtual time and global states of distributed systems,” in Proc.
Workshop Parallel Distrib. Algorithms, 1989, pp. 215–226.

[26] R. E. Tarjan, Data Structures and Network Algorithms, Philadelphia, PA,
USA: SIAM, 1983.

[27] C. André, F. Mallet, and R. de Simone, “Modeling time(s),” in Proc. Int.
Conf. Model Driven Eng. Lang. Syst., 2007, pp. 559–573.

https://arxiv.org/abs/2207.09555
https://arxiv.org/abs/2207.09555
https://arxiv.org/abs/2109.14111
https://arxiv.org/abs/2111.05296
https://arxiv.org/abs/2111.05296
https://arxiv.org/abs/2303.11467
https://arxiv.org/abs/2303.11467

1948 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 11, NOVEMBER 2024

[28] T. Spalink, Deterministic Sharing of Distributed Resources. Princeton, NJ,
USA: Princeton Univ., 2006.

[29] “Hardware implementation of the bittide system,” 2023. [Online]. Avail-
able: https://github.com/bittide/bittide-hardware

[30] “Callisto: Simulator of bittide clock synchronization dynamics,” 2023.
[Online]. Available: https://github.com/bittide/Callisto.jl

[31] “Aegir: Multi-level bittide functional simulator,” 2023. [Online]. Avail-
able: https://github.com/bittide/aegir

[32] L. Lamport, “The implementation of reliable distributed multiprocess
systems,” Comput. Netw., vol. 2, no. 2, pp. 95–114, 1978.

[33] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of
partial synchrony,” J. ACM, vol. 350, no. 2, pp. 288–323, 1988.

[34] B. Liskov, “Practical uses of synchronized clocks in distributed systems,”
in Proc. ACM Symp. Princ. Distrib. Comput., 1991, pp. 1–9.

[35] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “Polychrony for system
design,” J. Circuits, Syst., Comput., vol. 12, no. 3, pp. 261–303, 2003.

[36] E. A. Lee, “Computing needs time,” Commun. ACM, vol. 52, no. 5,
pp. 70–79, 2009.

[37] G. Kahn, “The semantics of a simple language for parallel programming,”
Inf. Process., vol. 74, pp. 471–475, 1974.

[38] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comput.,
vol. 36, no. 1, pp. 24–35, Jan. 1987.

[39] G. M. Reed and A. W. Roscoe, “Metric spaces as models for real-time
concurrency,” in Proc. Workshop Math. Found. Program. Lang. Semantics,
1988, pp. 331–343.

[40] D. Potop-Butucaru, B. Caillaud, and A. Benveniste, “Concurrency in
synchronous systems,” in Proc. Int. Conf. Appl. Concurrency Syst. Des.,
2004, pp. 67–76.

[41] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Embedded control
systems development with Giotto,” in Proc. ACM SIGPLAN Workshop
Lang., Compilers Tools Embedded Syst., 2001, pp. 64–72.

[42] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. IEEE,
vol. 91, no. 1, pp. 112–126, Jan. 2003.

[43] G. Berry, “The foundations of Esterel,” in Proof, Lang., Interact.: Essays
Honour Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Eds. MIT
Press, 2000, Ch. 14, doi: 10.7551/mitpress/5641.003.0021.

[44] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proc. IEEE, vol. 79, no. 9,
pp. 1305–1320, Sep. 1991.

[45] A. Benveniste, P. Le Guernic, and C. Jacquemot, “Synchronous program-
ming with events and relations: The SIGNAL language and its semantics,”
Sci. Comput. Program., vol. 16, no. 2, pp. 103–149, 1991.

Sanjay Lall (Fellow, IEEE) received the BA degree
in mathematics with first-class honors and the PhD
degree in engineering from the University of Cam-
bridge, England, in 1990 and 1995, respectively. He
is professor of electrical engineering with the Infor-
mation Systems Laboratory, Stanford University. His
research group focuses on algorithms for control, op-
timization, and machine learning. From 2018 to 2019
he was director with the Autonomous Systems Group,
Apple. Before joining Stanford he was a research
fellow with the California Institute of Technology,

Department of Control and Dynamical Systems, and prior to that he was a NATO
research fellow with the Massachusetts Institute of Technology, Laboratory for
Information and Decision Systems. He was also a visiting scholar with the
Lund Institute of Technology in the Department of Automatic Control. He
has significant industrial experience applying advanced algorithms to problems
including satellite systems, advanced audio systems, Formula 1 racing, the
America’s cup, cloud services monitoring, and integrated circuit diagnostic
systems. He is currently a visiting researcher with Google.

Călin Caşcaval (Fellow, IEEE) received the MS
degrees from the Technical University of Cluj, Ro-
mania and West Virginia University, USA, and the
Ph. degree in computer science from the Univer-
sity of Illinois at Urbana-Champaign, in 2000. He
is a director of engineering with Google Research,
leading research in scalable distributed systems and
compilers. He spent his career in industrial research,
where identified industry trends, defined, built, and
delivered first of a kind prototypes and products,
including: the first programmable networking (P4)

production compiler and networking stack at Barefoot Networks; the first mobile
heterogeneous computing runtime and parallel browser, mobile optimized math
libraries and power optimization framework at Qualcomm Research; system
software for the Blue Gene family of supercomputers and the first UPC compiler
to scale to hundreds of thousands of processors at the IBM TJ Watson Research
Center.

Martin Izzard (Member, IEEE) received the BS and
MS degrees from Natal University in South Africa,
and the PhD degree from Cambridge University, Eng-
land (Trinity College). He joined Texas Instruments
in 1991 where he held a variety of technical and
general management roles in both the digital and
analog divisions. He was instrumental in building
the TI custom ASIC business in the Datacom and
Telecom markets. He also ran a business building
and selling TI Analog ICs (clocks and serdes) into
the same networking space. Before leaving in 2013,

he was a TI vice president and responsible for the R&D Labs chartered with
creating opportunities for TI in new markets. He was a founder of Barefoot
Networks and was its Founding CEO through 2017. He joined Google in 2019
to work on a long-range research project, bittide , which seeks to change the
way distributed systems are built. Martin is an alumnus of the Stanford Business
School Executive Program (SEP) and was at one time a Stanford EECS visiting
scholar.

Tammo Spalink received the BS degree from
Carnegie Mellon University, the MS degree from
the University of Arizona, and the PhD degree from
Princeton University, all in computer science. He
has spent his career to date with Alphabet where
he has contributed to Android, ChromeOS, Loon,
and numerous internal projects. He is currently an
engineering director in Google Research responsible
for a range of projects from silicon design to machine
learning compilation.

https://github.com/bittide/bittide-hardware
https://github.com/bittide/Callisto.jl
https://github.com/bittide/aegir
https://dx.doi.org/10.7551/mitpress/5641.003.0021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

