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Abstract—DNN models are becoming increasingly larger to
achieve unprecedented accuracy, and the accompanying increased
computation and memory requirements necessitate the employ-
ment of massive clusters and elaborate parallelization strategies
to accelerate DNN training. In order to better optimize the perfor-
mance and analyze the cost, it is indispensable to model the training
throughput of distributed DNN training. However, complex paral-
lelization strategies and the resulting complex runtime behaviors
make it challenging to construct an accurate performance model.
In this article, we present Proteus, the first standalone simulator
to model the performance of complex parallelization strategies
through simulation execution. Proteus first models complex par-
allelization strategies with a unified representation named Strategy
Tree. Then, it compiles the strategy tree into a distributed execution
graph and simulates the complex runtime behaviors, comp-comm
overlap and bandwidth sharing, with a Hierarchical Topo-Aware
Executor (HTAE). We finally evaluate Proteus across a wide variety
of DNNs on three hardware configurations. Experimental results
show that Proteus achieves 3.0% average prediction error and
preserves order for training throughput of various parallelization
strategies. Compared to state-of-the-art approaches, Proteus re-
duces prediction error by up to 133.8%.

Index Terms—Deep neural networks (DNNs), distributed
training, parallelism, performance modeling, simulation.

1. INTRODUCTION

ECENT years, progressively larger DNN models continue
R to break predictive accuracy records [1], [2], [3], [4]. As
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these models grow, they are becoming computationally and
memory expensive to train. To efficiently train DNN models,
large GPU clusters and sophisticated parallelization strategies
are employed to accelerate the training process [5], [6], [7], [8],
[9], [10]. For example, NVIDIA trained an 8.3 billion parameters
language model on 512 GPUs with expert-designed hybrid data
and model parallelism [6].

Modeling the performance of a parallelization strategy is
crucial for performance optimization and analysis, since the
training performance (throughput) of a DNN highly depends
on its parallelization strategy. /) Knowing the performance of
a parallelization strategy can guide our optimization. Perfor-
mance model can be leveraged to locate the bottleneck of a
parallelization strategy in manual optimization and compare
different parallelization strategies in automated parallelization
systems [11], [12], [13], [14]. 2) Because implementing a paral-
lelization strategy on current deep learning frameworks [15],
[16] is error-prone, labor-intensive and resource-costing, an
accurate performance model can save lots of effort and resources
inevaluating it. 3) Predicting the performance of a parallelization
strategy in advance can help us analyze cloud service budgets
without requiring GPU resources, such as how many machine
hours or nodes to buy, thereby saving computing resources.

Plenty of performance modeling approaches have been pro-
posed to predict the performance of DNN models, but none of
them scale beyond hybrid data and model parallelism. Most
of recent efforts to model the performance of DNN models
focus on the scenario of single GPU. For example, various
analytical models [17], [18], [19], [20] that build with hardware
metrics and learning-based models [21], [22] that learn from
runtime statistics are presented to study the performance of
GPU kernels. In multi-GPU scenario, prior works [23], [24],
[25] build analytical or profiling-based performance models
for different DNN layers and predict training performance by
summing up the computation and communication time of each
layer. These approaches focus on a small subset of parallelization
strategies and are not applicable to emerging parallelization
strategies.

Some automated parallelization approaches [11], [13], [26]
also build performance models for distributed DNN training.
For example, FlexFlow [11] customizes a simulator to evaluate
parallelization strategies in SOAP space. However, these works
aim at searching optimal parallelization strategy for a DNN
model instead of accurate performance modeling for general par-
allelization strategies. The usability and scalability are greatly
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TABLE I
COMPARISON OF PROTEUS AND EXISTING APPROACHES
Complex Parallelization Strategy | Complex
Approach Operator-Level Subgraph-Level | Runtime
Comp. Mem. [ Pipeline Recomp. | Behavior
DAPPLE [13] | Data
FlexFlow [11] | SOAP
Alpa [28] Shard v v
Yan et al. [24] | Hybrid
Pei et al. [23] Data
Paleo [25] Hybrid
Proteus (ours) | Shard v v v v

Approaches in italics are automated parallelization frameworks, the others
are performance modeling frameworks.

limited due to their non-programmability and limited strategy
space.

We identify two primary challenges that impede the devel-
opment of accurate performance models for distributed DNN
training. The first challenge is how to model complex par-
allelization strategies. The complexity here stems from the
combination of various parallelization strategies, each with dis-
tinct computation and memory consumption characteristics, to
accelerate DNN training [6], [7], [8], [9], [10]. For example,
Megatron-LM combines recomputation [27] and hybrid data,
model, and pipeline parallelism to train large transformer mod-
els [6]. The second challenge is how to model complex runtime
behaviors. Previous works [11], [24], [25], [26] often assume
that the cost of a single operator depends solely on its input and
output tensor shapes. However, this assumption breaks down
when dealing with complex parallelization strategies. During
runtime, communication operators may overlap with computa-
tion operators to hide the gradient synchronization costs, and
different communication groups might compete for bandwidth
resources. While these optimizations can improve efficiency,
they also introduce additional overhead, potentially reducing
the overall throughput of the DNN model. Consequently, an
accurate performance model should explicitly account for both
the optimizations inherent in complex parallelization strategies
and the overhead arising from complex runtime behaviors.

To address these challenges, we present Proteus, a standalone
simulation framework that aims at accurately modeling the train-
ing throughput for distributed DNN training. Table I highlights
the advantages of Proteus against existing approaches.

First, we introduce a hierarchical tree structure, Strategy Tree,
to model complex parallelization strategies. We find paralleliza-
tion strategies can be classified into operator- and subgraph-
level strategies as a DNN graph is often divided into disjoint
subgraphs, each of which is assigned to a group of devices.
The strategies at operator-level specify how the operators and
tensors are split and mapped to devices, while the strategies at
subgraph-level indicate how to schedule subgraphs (details refer
to Section II). The hierarchical structure of strategy tree provides
a unified representation for parallelization strategies at different
levels and enables Proteus to efficiently program and model the
huge and complex strategy space.

Second, we propose HTAE (Hierarchical Topo-Aware Execu-
tor) to simulate complex runtime behaviors, which have been
overlooked in prior works. We identify two types of runtime
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behaviors that significantly impact performance: comp-comm
overlap and bandwidth sharing. HTAE simulates the scheduling
of subgraphs and operators to detect runtime behaviors during
execution and adjusts operator cost according to the detailed
cluster topology, thereby capturing complex runtime behaviors
of different operators.

Given a DNN model and Strategy Tree, Proteus automatically
compiles them into a distributed execution graph by splitting
operators and tensors and inserting inferred collective commu-
nication operators. Subsequently, Proteus predicts the training
throughput and OOM (Out-Of-Memory) error by mimicking the
schedule and execution of the execution graph considering the
cluster topology.

In summary, we propose Proteus, which to our knowledge
is the first standalone simulator capable of simulating complex
parallelization strategies through fine-grained scheduling and
simulation execution. We make the following contributions in
building Proteus:

1) We classify parallelization strategies into operator- and
subgraph-level and formulate a unified parallelization
space with Strategy Tree to model complex parallelization
strategies.

2) We identify two types of runtime behaviors that affect
performance: comp-comm overlap and bandwidth shar-
ing, and introduce Hierarchical Topo-Aware Executor to
dynamically detect and model such behaviors.

3) We evaluate Proteus across a wide variety of DNNs on 3
hardware configurations. Experiments show that Proteus
achieves 3.0% average prediction error and preserves or-
der for throughput among various parallelization strate-
gies. Compared to state-of-the-art approaches, Proteus
reduces prediction error by up to 133.8%.

II. BACKGROUND: DISTRIBUTED DNN TRAINING

DNNs are commonly represented as computation graphs in
modern DL frameworks [15], [16], with nodes as operators and
edges as tensors. Parallelizing a DNN involves parallelizing
elements in the computation graph which can be categorized
into two levels of strategies.

A. Operator-Level Strategy

Operator-level strategy partitions operators and tensors for
parallel execution on multiple devices and can be further catego-
rized into computation parallelization and memory optimization,
respectively.

1) Computation Parallelization: Computation paralleliza-
tion is achieved by partitioning the parallelizable dimensions
of operators. Typically, we consider every unique dimension
occurred in input or output tensors as parallelizable dimensions.
We will describe different parallelization strategies taking the
linear operator in Fig. 1(a) as an example: output(b, s,0) =
> oninput(b, s, h) x weight(o, h). There are 4 unique dimen-
sions: b(batch), s(sequence), o(output_channel), h(hidden/
reduction).

Data parallelism is the most widely used parallelization strat-
egy, which splits batch dimension (b) and replicates weight on
all devices.
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Fig. 1. Examples of parallelization strategies.

Model parallelism divides the operator in o or h dimension
thus partitioning weight into different parts and each part is
trained on a dedicated device. Hybrid parallelism combines both
data and model parallelism to partition operators.

Op shard is a general parallelization strategy that exploits the
power of partitioning arbitrary dimensions of (b, s, o, h).

In this paper, Proteus targets on modeling the performance of
general op shard unlike prior works that focus on data and model
parallelism [23], [24], [25]. SOAP [11] partitions operators in
b, s, o dimensions and is also a sub-space of op shard. Fig. 1(a)
shows an example configuration to shard an operator in b and h
dimensions. The partition describes how to parallelize different
dimensions and map specifies how to place each partition. The
operator is split into 4 (|partition|) parts, with each assigned to
a GPU. As reduction dimension (h) is partitioned, the operator
produces 4 partial output tensors, which should be aggregated
to produce the final output tensor.

2) Memory Optimization: All dimensions of a tensor are
parallelizable. Partitioning a tensor is achieved by splitting along
its dimensions similar to partitioning operators.

ZeRO [9] and Activation partitioning [29] partitions tensors
in the first dimension and maps each part to a device to reduce
redundancy. They can be combined with parallelization in other
dimensions. Fig. 1(b) shows an example that partitions o (ZeRO)
and h dimensions.

Proteus explicitly defines a parallelization strategy for each
tensor in a DNN model. Fig. 1(a) shows that splitting an operator
also creates implicit parallelization strategy for its input and out-
put tensors. The inconsistency between the implicit and explicit
strategy will incur additional communication (e.g., weight need
to transform from strategy of Fig. 1(b) to the implicit strategy
of Fig. 1(a)).

B. Subgraph-Level Strategy

A subgraph is composed of operators and tensors with
dependencies. Parallelization strategies that describe the sched-
ule of subgraphs are called subgraph-level strategies, including
pipeline parallelism and recomputation, which balance training
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Fig. 2. An overview of Proteus.

throughput and memory footprint by parallelizing subgraph
computations.

Pipeline parallelism divides a computation graph into disjoint
parts and assigns each part to a device group. It splits a batch in-
put data into multiple micro-batches to exploit parallelism [30].
Fig. 1(c) shows a pipeline example with n_micro_batch micro-
batches for each subgraph. To reduce memory consumption,
forward and backward micro-batches are interleaved [14], and
max_ongoing_micro_batch limits the number of forward micro-
batches on the flight.

Recomputation (Activation Checkpointing) [27] is a schedule
that trades computation for memory. It frees forward subgraph
activations after execution and recomputes when intermediate
activations are required in backward pass.

III. PROTEUS OVERVIEW

Fig. 2 shows an overview of Proteus, a simulation frame-
work towards accurate performance modeling for distributed
DNN training. Given that the performance of distributed DNN
training is heavily influenced by the chosen parallelization strat-
egy, explicitly modeling the strategy is crucial for an effective
performance model. Leveraging the hierarchical property of
operator- and subgraph-level strategies, Proteus introduces a
unified representation, strategy tree, to model complex paral-
lelization strategies (Section 1V).

The execution graph compiler (Section V) serves as a bridge
between high-level parallelization strategies and low-level exe-
cution. It takes both the DNN model and strategy tree as inputs,
compiling DNN layers into tensors and operators. The compiler
automatically inserts communication operators between tensors
and generates a distributed execution graph.

In Section VI, we first discuss the characterization and impact
of runtime behaviors, then introduce Proteus’s hierarchical topo-
aware executor, which simulates the schedule of the execution
graph and predicts the training throughput. During simulation, it
adapts operator cost, which is first obtained with the op estimator
(Section VII), considering the cluster configuration and dynamic
runtime behaviors.

IV. STRATEGY TREE

This section introduces strategy tree, which serves as a unified
representation for modeling complex parallelization strategies.
Moreover, the hierarchical tree structure also makes it easier for
users to write parallelization strategies.
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class MLP(nn.module):

def _init_(self, ...): —
self.d = torch.nn.Linear(...)

self.e = torch.nn.Linear(...)

(b) DNN model
class S2(nn.module):
def _init_ (self, ...):
self.mlp = MLP(...)

(a) PyTorch-style code for DNN (c) Computation graph

Fig. 3.
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(d) Strategy tree

(a) The PyTorch-style code for a DNN model. (b) The architecture of the DNN model with 6 layers (described by (a)). (b) The computation graph of (a),

including forward and backward computations. (c) The strategy tree of (a). Parallel configurations are assigned to non-leaf nodes and leaf nodes.

A. Tree Representation and Construction

Fig. 3 shows a DNN model along with its PyTorch-style
code, computation graph, and corresponding strategy tree. DNN
model architectures (Fig. 3(b)) inherently possess a nested struc-
ture in their construction, as evident from their code (Fig. 3(a)).
For instance, the linear layers d and e are encapsulated within
the mlp module. This structured information can significantly
simplify the definition of parallelization strategies. However,
such structural details are often lost in conventional computation
graph representations. To address this, we propose the strategy
tree, a hierarchical tree representation that models complex
parallelization strategies while preserving the nested structure
of DNN models. We will further discuss and compare strategy
tree with prior works in Section IV-D.

The strategy tree is automatically constructed based on the
PyTorch-style model code. Proteus provides a PyTorch-style
API to define DNN models, which can then be traced to build
the corresponding strategy tree. As illustrated in Fig. 3(d), the
strategy tree is a n-ary tree and the root node R represents the
whole model.

A leaf node models the forward and backward computation
graphs of individual DNN layers. It captures all forward and
backward operators, along with the tensors they produce and
consume. Proteus represents tensors by their shape, and opera-
tors by a set of unique parallelizable dimensions extracted from
input and output tensors (Section II). As illustrated in Fig. 3(d),
the leaf node d captures the tensors and operators of linear
layer d.

A non-leaf node models a subgraph, which represents the
forward and backward computation graphs of multiple DNN
layers. Each non-leaf node corresponds to a specific DNN
module, maintaining the hierarchical structure of the model. For
example, the layers d and e form a non-leaf node corresponding
to the mp module, while the module mip and layer f together
constitute another non-leaf node representing the S2 module.
This alignment between non-leaf nodes and DNN modules pre-
serves the model’s original structure, enabling more intuitive and
accurate representation of complex parallelization strategies.

B. Parallel Configuration

A parallel configuration defines how different components
are parallelized. Operator-level strategies are specified with

computation and memory config in leaf nodes, subgraph-level
strategies are assigned to non-leaf nodes with schedule config.
The complete parallelization strategy is composed of parallel
configurations for all tree nodes.

Computation/Memory Config: Computation (memory) con-
figs are assigned to operators (tensors) in leaf nodes. It contains
two aspects: partition and map. The partition (P) defines the
degree of parallelism in each dimension and splits the operator
(tensor) into |P| disjoint parts. Each part will be mapped to one
or more devices defined by map, namely shards on one device or
replicates on a device group. In Fig. 3(d), the computation config
partitions the B and K dimensions of the forward operator into 2
and 4 parts respectively, and shard each part on one GPU device.

Memory config defines the real placement of a tensor. With
this separated memory config, Proteus is able to express the
space of memory optimization.

Schedule Config: Schedule config specifies the subgraph-level
strategy of a subgraph, with only one config needed for each
non-leaf node due to the dual structure of the forward and
backward subgraphs. The config has three aspects (Fig. 3(d)):
n_micro_batch denotes the number of micro-batches consumed
by the subgraph, Since executing forward micro-batches in-
creases memory consumption, max_ongoing_micro_batch lim-
its the maximum number of forward micro-batches executed
before each corresponding backward micro-batch at any time,
and recomputation indicates whether to use activation check-
pointing.

Non-leaf nodes on the tree have a schedule config that is
propagated from the parent node unless explicitly defined by
the user. In particular, the schedule config on a non-leaf node is
independent of the configs on leaf nodes. Strategy propagation
will be discussed in Section VII.

C. Programming Primitive

Proteus provides several primitives to program the strategy
tree efficiently. The following shows an example to program the
parallelization strategy of Fig. 3(d):

R, ... = proteus.compile(dnn_model)

R.S2.mlp.d.split(dim=[0, 2], partition=[2, 4])
R.S2.mlp.e.split(dim=[0, 1], partition=[2, 4])
R.S2.mlp.d.map(dev_mesh)

R.S2.mlp.e.map(dev_mesh)

R.S2.schedule(n_micro_batch=4, max_ongoing_micro_batch=2)
R.S2.recompute(False)
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Distributed execution graph (R)
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"I "hode Recomp. DevGroup Iy

Fig. 4.

Proteus first obtains strategy tree R with .compile ().
The leaf and non-leaf nodes make it easier to specify operator-
and subgraph-level strategies. Proteus then uses the primitive
.split(dim, partition[, item]) to partition an
operator and .map (dev_mesh[, item]) to map a node
to a device mesh dev_mesh. Tensors and backward operators
can be operated by specifying the optional item. With these
two primitives, users can easily specify the parallel config-
urations for leaf nodes. Proteus provides .schedule (n_
micro_batch, max_ongoing_micro_batch) and
.recompute () to program the parallel configurations for
non-leaf nodes.

D. Discussion and Comparison

Prior automated parallelization works [11], [28], [31] have
proposed comprehensive parallelization space as listed in
Table I. However, they focus on searching optimal strategy based
on the computation graph, rather than enabling users to define
custom parallelization strategies. This limitation becomes sig-
nificant when considering performance modeling, where users
need the flexibility to manually program and study specific
strategies across a vast space of possibilities. The computation
graph used in prior works is not easily adaptable for user-defined
strategy specification due to two reasons. First, some layers are
converted into multiple operators on the computation graph,
making it challenging for users to directly manipulate and spec-
ify strategies. Second, it is difficult to annotate subgraph-level
strategies for arbitrary subgraphs within the plain computation
graph. In contrast, strategy tree provides a hierarchical repre-
sentation that supports comprehensive complex strategies and
preserves the original DNN structure for ease-of-programming.
GSPMD [32] develops powerful programming APIs to spec-
ify parallelization strategies for different DNN layers, but the
subgraph-level strategy is only supported for identical DNN
blocks with tailored vectorized_map API. Furthermore, chang-
ing parallelization strategy also takes great efforts to rewrite
the model. Our strategy tree unifies parallelization strategies
at different levels and decouples parallelization strategy from
model expression. This design allows Proteus to efficiently alter
parallelization strategies for a given DNN by solely adjusting
the strategy tree.
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The strategy tree and corresponding distributed execution graph of DNN model in Fig. 3.

V. EXECUTION GRAPH COMPILER

This section describes Proteus’s execution graph compiler,
which servers as a bridge between high level parallelization strat-
egy and low level execution. Given a strategy tree, the compiler
creates a distributed execution graph by splitting tensors and
computation operators, and inserting communication operators
and control dependencies. This graph is similar to execution
graphs proposed in previous works [33], [34], [35], except that
we represent operators and tensors across multiple devices in a
single graph.

A. Graph Compilation

Fig. 4 illustrates the workflow of execution graph compiler.
Proteus first divides the DNN model into disjoint subgraphs
based on its DevGroup, which defines a set of devices, in order
to parallelize the computations of different micro-batches. The
DevGroup of a tree node is composed of all of its children nodes’
DevGroups. Proteus splits all divisible nodes in breadth-first
order from root node. A node cannot be divided unless all
of its children nodes share some devices. Fig. 4(b) shows the
DevGroups of three nodes. The DevGroup of node S2 is “gpu
0-7” because layer d and e are partitioned and mapped to these
devices. The root node R is divided into 2 subgraphs since node
S1 and S2 share no devices and they are not divisible.

Proteus then compiles each subgraph into a forward and
backward execution subgraph as showed in Fig. 4(c). Tensors
and operators are split into small partitions such that each parti-
tion resides on and is executed by one device. Communication
operators, data and control dependencies are added to ensure the
computational equivalence.

Data dependency: Each tensor and operator has a parallel con-
figuration that defines the partition and mapping, as discussed
in Section IV-B. Due to the data dependency between tensors
and operators, Proteus also infers a parallel configuration for
each input and output tensor of operators. Once the two parallel
configurations of a tensor are inconsistent, Proteus automatically
inserts communication operators via strategy transformation
to adjust the parallel configuration, otherwise reusing original
tensors. Fig. 4 shows the strategy transformation of tensor y;.
Layer e partitions y; into 2 parts and each part replicates on
4 GPUs, but layer d partitions y; into 8 partial tensors on 1
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share the link. (b) The prediction errors for modeling runtime behaviors or not with Proteus.

GPU. Proteus adds communication operators between y; in the
execution subgraph of S2 to handle this inconsistency.

For a subgraph with recomputation enabled, Proteus compiles
it into two forward and one backward execution subgraphs and
adjust the data dependency accordingly. The backward subgraph
depends on one forward subgraph (i.e., recomputation subgraph)
and the other subgraph can be immediately released after exe-
cution (e.g., S lin Fig. 4(c)).

Control dependency: Control dependencies are inserted be-
tween execution subgraphs to follow the training schedule de-
fined by the schedule config in non-leaf nodes. First, the for-
ward subgraphs are control dependent on their corresponding
backward subgraphs to limit peak memory consumption. Sec-
ond, Proteus also adds control dependency for recomputation
subgraphs such that they are executed immediately before the
backward subgraphs. In Fig. 4(c), node S1 has two forward
subgraphs and one of them is control dependent on the backward
of node S2.

B. Strategy Transformation

Strategy transformation, a.k.a resharding [28], transforms
tensors to desired parallel configurations with appropriate com-
munication primitives. Proteus automatically infers collective
communication primitives (e.g., All-Reduce [36]) and groups
with communication pattern matching, failing back to point-
to-point communication if necessary. Resharding has also been
extensively discussed in recent works [28], [37].

VI. HIERARCHICAL TOPO-AWARE EXECUTOR

This section describes Proteus’s Hierarchical Topo-Aware
Executor (HTAE), which simulates the schedule and runtime
behaviors of a distributed execution graph and predicts the
training throughput.

A. Performance Characterization

Before introducing the design of HTAE, we first characterize
the performance of distributed DNN training using the example
of Fig. 5(a), which illustrates the execution timeline and run-
time behaviors of Fig. 4. The forward and backward execution
subgraphs are interleaved and the execution of S1 and S2 is
parallelized on different GPU groups. Operators in Fig. 4(c)
consist of three types that can be executed simultaneously: com-
putation, feature and gradient communication operators, and
they are scheduled into three streams following data dependency.

Modeling the training performance is to model the execution
timeline, including schedule, computation and communication.
Runtime Behavior: Prior work [11], [23], [24], [25] assumes
that the operator cost is fixed and focuses on modeling the
performance of single operator. The training speed of a DNN
is the summation of all the operators’ costs. However, runtime
behavior, which is ignored in prior work, has emerged as a
critical aspect determining training performance under today’s
sophisticated parallelization strategies and optimizations. It is
crucial to model runtime behaviors towards an accurate per-
formance predictor since they can affect the execution cost
of operators. Fig. 5(b) shows that ignoring runtime behaviors
results in large prediction error on a cluster with 32 GPUs.

We find that major runtime behaviors can be categorized
into two types. First, bandwidth sharing describes the scenarios
that different communication operators compete for bandwidth
(Fig. 5(2)0,®). Second, comp-comm overlap refers to the over-
lap of computation and communication operators (Fig. 5(a)®).
In addition, different computation operators could be overlapped
on single GPU [38], Proteus does not model such scenario
since it is rarely used in distributed DNN training. Fig. 5(a)®
shows an example of bandwidth sharing by mapping gradient
communication operators to a single node machine. The gra-
dient communication includes 4 groups indicated by the GPU
color: {{0, 4}, {1, 5}, {2, 6}, {3, 7}}, and their costs rise due
to the competition for available bandwidth of scarce physical
links.

Proteus is the first system to study and model runtime be-
haviors for distributed DNN training. Unlike prior analyti-
cal frameworks [24], [25], Proteus predicts training perfor-
mance via simulation since runtime behaviors only occur during
execution.

B. Simulator Design

Fig. 6 shows the design of Proteus’s two level simulator,
HTAE. The first level is scheduler, which consists of several
second level executors. Different schedulers can time-share
executors. To predict the performance, HTAE first gets single
operator cost with op estimator (Section VII) and then simulates
the schedule of subgraphs and operators to discover runtime
behaviors. During simulation, operator cost are adapted to model
runtime behaviors considering the cluster topology.

Cluster Configuration: Cluster Configuration describes the
topology of training cluster. There are two types of configurable
parameters in device topology. For intra-node topology, we can



DUAN et al.: PROTEUS: SIMULATING THE PERFORMANCE OF DISTRIBUTED DNN TRAINING

rSchedulers

oo

Q
N Queues ueues
T B r *I:l
v
Runtime Behavior Detector

v v v
—[ Execution ] L[ Execution ] L[ Execution ]

Fig. 6. The design of hierarchical topo-aware executor.

set device type, device memory, number of devices in a node
and the intra-node connection, which describes the physical con-
nections among devices (e.g., GPUs and CPUs). For inter-node
topology, we can specify the number of nodes and inter-node
connection bandwidth.

Scheduler: Each scheduler is assigned several forward and
backward execution subgraphs, and it interleaves the execution
of them based on data and control dependencies to balance
micro-batch parallelism and peak memory consumption. The
scheduler first selects current execution state (forward or back-
ward), then it chooses one subgraph from available dependency-
free execution subgraphs. It alternates different backward sub-
graphs and prefers forward subgraph that enables backward
execution. After determining the subgraph to be executed, the
scheduler dispatches initial tasks to executors and begin execut-
ing.

Executor: The executor schedules the execution of operators
for a subgraph and records the peak memory consumption.
Each executor contains a computation queue, a feature com-
munication queue and a gradient communication queue (Fig. 6).
Operators in different queues can be executed concurrently such
that achieving comp-comm overlap. By separating feature and
gradient communication queue, Proteus makes it possible to
overlap feature and gradient communication and avoid feature
communication blocked by gradient communication.

The executor executes computation and communication al-
ternatively. It pops a computation operator from the queue for
computation execution and pops one feature and one gradient
communication operator at the same time for communication
execution. These operators are first sent to the runtime behavior
detector to check runtime behaviors and executed afterwards.
During execution, the operator cost will be accumulated to
count the time cost for each queue separately. The execution
of operators will decrease the number of dependencies of their
consumers and dependency-free operators will be put into the
corresponding queue.

Memory Consumption: Proteus predicts whether a paral-
lelization strategy will out-of-memory (OOM) by monitoring
the memory consumption of executors. During execution, each
operator reads and writes some tensors. HTAE monitors executor
memory footprint by recording these tensor activities. When
writing a new tensor, HTAE tracks its memory consumption
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and reference counter. The memory will be released when the
reference counter decreases to zero.

C. Modeling Runtime Behaviors

As previously discussed, the operator cost may change during
execution due to complex runtime behaviors. The runtime be-
havior detector checks runtime behaviors for all operators and
adapt operator cost accordingly. To enable efficient detection, it
keeps execution history records of different execution streams.

Bandwidth Sharing: There are two types of bandwidth shar-
ing. One is inside a group of gradient or feature communication
operators (Fig. 5(a)®), and the other is between a group of
gradient and feature communication operators (Fig. 5(a)@).
These operators transfer datas within different device groups
and compete for bandwidth of shared physical links. To model
this behavior, Proteus assumes that concurrent operators fairly
share the bandwidth of a physical link and detects how many
communication groups share a link during execution. We find
this assumption generally holds in practice.

Proteus first checks bandwidth sharing for feature and gradi-
ent communication operators separately by mapping communi-
cation groups to cluster topology. Fig. 7 shows the hierarchy of
physical links in a cluster and Proteus detects bandwidth sharing
following this hierarchy. Proteus starts from NIC bandwidth
sharing. Each communication group is split into sub-groups such
that each sub-group is composed of devices in the same node.
The groups that consist of more than two sub-groups fairly share
the bandwidth of NIC. Proteus checks all the physical links from
top to bottom.

Proteus finally detects the intersection effects of feature and
gradient communication groups. Since the communication vol-
umes and operations of these groups may different, Proteus
only adapt operator cost for the overlapped parts. The detec-
tion algorithm is the same as the first step, except for that
the communication groups include both feature and gradient
communications.

Comp-Comm Overlap: In distributed DNN training, com-
putation and gradient communication operators may overlap,
because gradient communication operators can be launched
asynchronously and feature communication operators usually
block the computation stream. To detect comp-comm overlap,
Proteus keeps the start and end time of operators. When execut-
ing a computation (communication) operator, Proteus considers
itoverlapped if it finds a gradient communication (computation)
operator in execution.

Proteus introduces an overlap factor v to model the effect of
comp-comm overlap. When finding an operator overlapped, its
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cost will increase by ~y. This is motivated by the observation that
operator costs increase by about the same percentage on average
during overlap.

To obtain v, we profile the speeds of backward pass with
and without overlapping in data parallel training and -y is set to
the increase ratio. As <y is fixed for the type of machine and
DNN model, we can get v in advance with few cost. Prior
works [39], [40] also try to model the effect of comp-comm
overlap. For example, Pollux [39] introduces a learnable pa-
rameter 1) to model the data parallel training speed by combining
computation time 7,4 and gradient communication time Ty,
with (Tyraa” + Tsym")l/ . These works target on data paral-
lel training, and we find our simple formulation works pretty
well with complex parallelization strategies (Section VIII-D).
In addition, the overlapping adjustment is implemented as a
standalone function that takes overlapped operators as inputs.
This modular design also allows for the integration of more
advanced estimation techniques in the future.

VII. IMPLEMENTATION

Proteus is implemented as a standard python library (~ 9K
LoC). Proteus follows PyTorch [15] API to build model, and is
open-sourced at https://github.com/JF-D/Proteus.

Strategy Propagation: Proteus develops a strategy propaga-
tion algorithm to ease the programming difficulty of paralleliza-
tion strategies. For a complete parallelization strategy, users are
required to specify parallel configurations for critical leaf and
non-leaf nodes. Proteus will propagate the parallel configura-
tions to the other nodes. The identification of critical nodes relies
on expert knowledge. We leave the automatic identification as
future work.

Proteus first propagates parallel configurations from top to
bottom following tree structure. The schedule config of a non-
leaf node is inherited from its parent node unless explicitly
defined. Proteus then propagates parallel configurations among
leaf nodes following data dependency. The propagation proceeds
in topological order and includes two steps: forward graph
propagation and backward graph propagation. Proteus infers the
memory config of a tensor according to its producer’s compu-
tation config and infers the computation config of an operator
according to its inputs’ memory config.

Op Estimator: The op estimator predicts costs for all op-
erators in the distributed execution graph using a profiler and
analyzer. The profiler measures computation operator time costs
on target hardware with negligible cost. Proteus can be also
be extended to adopt existing performance models for single
operator cost estimation [17], [18], [19]. The analyzer estimates
communication costs using the a-3 model [41]. It estimates the
bandwidth of a communication group according to the detailed
cluster topology. When estimating the time cost of a collective
operation, a correction factor is applied to revise the bandwidth
to reflect the characteristics of different collective operations.
To simplify implementation, we utilize NCCL topo detection
algorithm [36] to find all the communication channels of a
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TABLE II
OVERVIEW OF HARDWARE CONFIGURATIONS EVALUATED

Config #Node #GPU per Node Intra-node Inter-node
HC1 1 8 x TitanXp PCl-e N/A
HC2 4 8x V100 NVLink 100 Gbps
HC3 2 8xA100 NVLink 200 Gbps

TABLE III

OVERVIEW OF THE S1X BENCHMARK MODELS EVALUATED

Task Model #Params  Dataset
ResNet50 [1] 25.6M
Vision Inception_V3 [42] 23.8M
VGG19 [43] 137M Synthetic
NLD GPT-2 [44] TI7M y
GPT-1.5B [44] 1.5B
Recommendation DLRM [45] 516M

communication group and its bandwidth is the summation of
these channels.

VIII. EVALUATION
A. Methodology

All the experiments are conducted with PyTorch 1.8 (CUDA
10.1, cuDNN 7.6.5 and NCCL 2.7.8).

Benchmarks: Table III summarizes the six representative
DNN models that we used as benchmarks, they are widely used
in prior works [11], [13], [19], [25]. These models cover widely
used basic units such as Attention, MLP, Conv and Embedding,
and can scale to different sizes and cover popular DNNs. We
evaluate throughput with synthetic dataset, which ignores the
data loading latency. Modeling real-world dataset is orthogonal
to Proteus.

Hardware Configurations: Proteus is evaluated across three
different hardware configurations. Table IT summarizes the clus-
ter type and size, intra- and inter-node connections.

B. Simulation Accuracy

To evaluate Proteus across a wide variety of parallelization
strategies, we evaluate each model with 2 popular parallelization
strategies. One is most commonly used parallelization strategy
(S1), the other is the optimal expert-designed parallelization
strategy (52). These two strategies covers hybrid data, model,
and pipeline parallelism and memory optimizations. Since Pro-
teus is aimed at accurate performance modeling rather than
discovering new parallelization strategies, and implementing
entirely new parallelization strategies is difficult, we do not eval-
uate Proteus on less commonly used parallelization strategies.
But the parallelization strategies we tested already cover both
operator- and subgraph-level strategies.

Since the most commonly used parallelization strategy is
data parallelism, Proteus uses data parallelism or its variants
as S1 for six DNNs. To enable data parallelism training of large
model, Proteus combines memory optimization (ZeRO [10]) and
recomputation in S1 to evaluate GPT-1.5B. Expert-designed
parallelization strategies (S2) exhibits more diverse patterns.
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TABLE IV
COMPARISON OF AVERAGE AND MAXIMUM PREDICTION ERROR OF PROTEUS
AND FLEXFLOW-SIM (FF-SIM)

Avg Error (%)

Max Error (%)

Model Strategy Proteus FF-Sim Proteus FF-Sim
ST 2090 359 6.00 8.69
ResNet50 2 230 5.98 577 3565
eoton va S 324 553 750 1171
neeption_ s2 3.19 6.57 7.97 36.73
ST 197 8.1l 197 2817
VGGI9 S2 168 X 6.64
ST 2.56 697 620 2414
GPT2 s2 231 X 11.38 X
ST 391 X 8.09 X
GPT-1.5B 2 3.65 X 9.92 P
ST 507 4814 1468 13789
DLRM 2 455 1405 1144 11463

Each strategy contains 15 results on 3 hardware configurations.

ResNet50 and Inception_V3 partitions data and output channels,
while VGG19 and GPT-2 partitions data, output channels and
reduction dimensions for computation parallelization. The 52
of GPT-1.5B combines op shard, pipeline and recomputation.
DLRM partitions huge embedding table in S2 to optimize
memory footprint.

Fig. 8 shows the simulation results of various DNN models
on two hardware configurations (HC'1 and H(C?2) and Table IV
displays the overall results on three hardware configurations.
Proteus delivers an accurate performance model and achieves
3.0% average prediction error for training throughput. Out of
180 simulation results, Proteus’s estimation of OOM is incorrect
only under 2 cases (blue box in Fig. 8).

Proteus is the first standalone simulator that targets on sim-
ulating complex parallelization strategies. The most related
and representative cost-model and simulator is Paleo [25] and
FlexFlow [11], respectively. Paleo [25] is an analytical cost-
model. It delivers high prediction error even on single GPU
(ResNet50 (59.8%), Inception_V3 (40%)) and does not support
GPT, DLRM models and complex parallelization strategies.
Therefore, we did not dive into Paleo and show the results.
FlexFlow [11] is an automated parallelization framework on

SOAP space. To compare generated parallelization strategies, it
internally tailors a simulator to simulate the training throughput.

To compare Proteus and FlexFlow, we re-implement its sim-
ulator as FlexFlow-Sim, since it is hard to run a manually
specified parallelization strategy with FlexFlow. FlexFlow-Sim
also uses profiled operator cost for fair comparison. To support
realistic simulation, FlexFlow-Sim inserts collective communi-
cation operators for strategy transformation instead of point-
to-point operators as described in FlexFlow paper. The com-
parison results are shown in Fig. 8 and Table IV. The average
prediction error for FlexFlow is 12.4%, which is 9.4% higher
than Proteus. Among all the test cases, the maximum error
is 14.7% and 137.9% for Proteus and FlexFlow, respectively.
For the total 180 training tasks, FlexFlow fails to estimate the
performance of 1/3 of them. Fig. 8 also shows that the prediction
error of FlexFlow-Sim becomes larger as the number of GPUs
increases.

We find that Proteus outperforms FlexFlow mainly in three
aspects. 1) Proteus can be applied to a much larger paral-
lelization strategy space with the abstraction of strategy tree.
2) FlexFlow ignores complex runtime behaviors thus cannot
accurately model the training throughput. 3) FlexFlow’s com-
munication bandwidth estimation ignores fine-grained cluster
topology. For example, FlexFlow delivers high prediction error
for DLRM model, where communication dominates.

C. Parallelization Strategy Comparison

Comparing the training throughput of various parallelization
strategies is an important problem in designing and understand-
ing high performance parallelization strategies. In this section,
we use GPT-2 as benchmark because GPT model is the most pop-
ular and widely used model to study all kinds of parallelization
strategies and these strategies can generalize to other models.
In these experiments, we select 4 parallelizable dimensions
across operator- and subgraph level strategies and represent the
parallelization strategy as DP x M P x PP(n_micro_batch)
and DP, M P and PP is the degree of data, model and pipeline
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TABLE V
THE PREDICTION ERROR AND RANK OF THROUGHPUT FOR GPT-2 WITH
DIFFERENT PARALLELIZATION STRATEGIES ON HC AND HC2

HC1 HC2

Strategy Error Rank Strategy Error Rank
8xIx1 (1) 234% 2/2 | 16xIx1(1) 338% 1/1
4x2x1(1) 292% 1/1 | 8x2x1(1) 2.89% 2/2
2x4x1 (1) 243% 3/3 | 4x4x1(1) 58™% 3/3
1x8x1(1) 1.77% 5/5 | 2x8x1(1) 3.88% 4/4
2x2x2 (1) 2.54% 6/6 | 8x1x2(4) 3.60% 6/6
2x2x2(2) 1.60% 4/4 | 8x1x2(Q8) 299% 5/5

2x4x2(4) 564% 7/7

Rank is denoted in the format of truth / predicted rank.
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Fig.9. The prediction error of VGG19 and GPT-2 with different components.
Plain: Proteus without runtime behavior detector.

parallelism. The global batch size is 8 and 64 for HCI and HC2
respectively.

Table V shows the simulation results of GPT-2 with various
parallelization strategies. For these parallelization strategies,
Proteus can accurately model the performance and achieves
3.2% average prediction error. Order preservation is an impor-
tant feature in strategy comparison and Proteus maintains the
rank of diverse parallelization strategies. Table V demonstrates
that HC2 prefers data parallelism training, since hybrid model
parallelism shares the bandwidth of IB net, and pipeline paral-
lelism introduces bubbles during training, which will decrease
the training throughput. The simulation results also confirms
that pipeline efficiency can be improved by injecting more micro
batches. HCI consists of a single NUMA node, and the 2-way
model parallelism can fully utilize the QPI links between two
CPU sockets, thus achieving highest throughput.

D. Runtime Behavior Ablation Study

To study the effective of runtime behavior detector, we test
the throughput of VGG19 and GPT-2 on HC/ and HC2 with
different parallelization strategies. For VGG19, we use batch
size 32 per GPU with data parallelism training. For GPT-2,
the global batch size is 8 and 64 on HCI and HC2 with
hybrid op shard and pipeline parallelism. Fig. 9 shows that
runtime behavior detector can greatly improve the simulation
accuracy of throughput (average error: Plain (14.4%) versus
Proteus (2.4%)). VGGI19 is very sensitive to comm-comp over-
lap, hence introducing overlap factor can significantly improve
the prediction accuracy. As there is no bandwidth sharing in
data parallelism training, prediction error of VGG19 keeps after
adding bandwidth sharing. In contrast, GPT-2 is more sensitive
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TABLE VI
SIMULATION COST OF PROTEUS ON HC2 IN SECONDS

VGGI9 GPT-2

#GPUs compile exe. total | compile exe. total
1 0.033 0.006 0.039 | 0.188 0.070 0.258

2 0.053 0407 0.460 | 0341 0450 0.792

4 0.114 0530 0.644 | 0.504 0.692 1.196

8 0.170 0.563 0.733 | 1.008 0.873 1.881

16 0336 0.630 0.966 | 1966 1.172 3.138
32 0777 0921 1.698 | 4.143 2123 6.265

to bandwidth sharing which is especially common in complex
parallelization strategies. Therefore, the throughput prediction
error reduces remarkably after modeling bandwidth sharing.

E. Simulation Cost

To evaluate the simulation cost of Proteus, we measure the
time it takes to evaluate VGG19 and GPT-2 on HC2 with data
parallelism. Since the cost of computation operators can be
profiled in advance, we only evaluate the time cost of execution
graph compiler and HTAE. Table VI demonstrates that Proteus
takes seconds to simulate the performance of DNNs with a
large number of GPUs, and the time increases linearly in the
number of GPUs. We believe this cost is acceptable to evaluate
a specified parallelization strategy since Proteus provides a
fine-grained simulation without requiring GPU resources. In
contrast, profiling a general parallelization strategy takes lots
of efforts and GPU resources.

IX. RELATED WORK

Handcrafted Parallelization Strategies are designed to op-
timize distributed DNN training. One wired trick [46] intro-
duces model parallelism for linear layers to accelerate AlexNet.
Megatron-LM [6] presents an expert-designed strategy to ex-
pedite transformer models combining data, model and pipeline
parallelism. DeepSpeed [29] introduces ZeRO to reduce mem-
ory footprint by partitioning model states across data parallel
processes. Recomputation [27] utilizes tensor rematerialization
to decrease memory consumption. Proteus can model the per-
formance of these manual designed strategies thus assisting their
analysis and optimization.

Automatic Parallelization: FlexFlow [11] and Tofu [12] pro-
poses SOAP and partition-n-reduce space to parallelize oper-
ators. GSPMD [32] introduces a more general parallelization
space by partitioning all parallelizable dimensions of tensors.
DAPPLE [13] and PipeDream [14] optimize parallelization
strategies in data and pipeline parallelization space. Alpa [28]
combines data, model and pipeline parallelism and proposes a
inter-operator and intra-operator parallelization space. Existing
automatic approaches focus on exploring the space of computa-
tion parallelization, while our work introduces a unified paral-
lelization strategy space considering computation parallelization
and memory optimization at operator level and schedule at
subgraph level.

Performance Model: Previous works propose analytical per-
formance models for DNN training on single GPU [17], [18],
[19], [20], [47] or on multiple GPUs with data parallelism
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or hybrid data and model parallelism [23], [24], [25]. These
approaches are not applicable to increasingly complex training
workload and strategies. FlexFlow [11] introduces a simulation
model to estimate the cost of a SOAP strategy, but it is not
designed to capture the cost of general strategies and runtime
behaviors. Proteus aims to provide a general simulation perfor-
mance model for various parallelization strategies.

X. CONCLUSION

In this work, we present Proteus to simulate the perfor-
mance of distributed DNN training strategies on diverse clusters.
Proteus features strategy tree to model unified parallelization
strategy space and hierarchical topo-aware executor to model
runtime behaviors of computation and communication operators
accurately. We can leverage Proteus to analyze and optimize the
performance of general parallelization strategies.

[1]

[2]

[3]

[5]

[6]

[7]

[8]
[9]

[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 6000-6010.

A. Radford et al., “Improving language understanding by generative pre-
training,” Tech. Rep., 2018.

T. Brown et al., “Language models are few-shot learners,” in Proc. Adv.
Neural Inf. Process. Syst., 2020, pp. 1877-1901.

J.Dean et al., “Large scale distributed deep networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2012, pp. 1223-1231.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-LM: Training multi-billion parameter language models using
model parallelism,” 2019, arXiv: 1909.08053.

D. Narayanan et al., “Efficient large-scale language model training on GPU
clusters using megatron-LM,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., St Louis, Missouri, USA, 2021, pp. 58:1-58:15.

Z. Li et al., “TeraPipe: Token-level pipeline parallelism for training large-
scale language models,” 2021, arXiv:2102.07988.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Memory opti-
mizations toward training trillion parameter models,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2020, pp. 1-16.

J. Ren et al., “ZeRO-offload: Democratizing billion-scale model training,”
2021, arXiv:2101.06840.

Z.Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism for
deep neural networks.,” Proc. Mach. Learn. Syst., vol. 1, pp. 1-13,2019.
M. Wang, C.-C. Huang, and J. Li, “Supporting very large models using
automatic dataflow graph partitioning,” in Proc. 14th EuroSys Conf., 2019,
pp. 1-17.

S. Fan et al., “DAPPLE: A pipelined data parallel approach for training
large models,” in Proc. 26th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., Republic of Korea, 2021, pp. 431-445.

D. Narayanan et al., “PipeDream: Generalized pipeline parallelism for
DNN training,” in Proc. 27th ACM Symp. Operating Syst. Princ., 2019,
pp. 1-15.

A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
Art. no. 721.

M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
in Proc. 12th USENIX Symp. Operating Syst. Des. Implementation, 2016,
pp. 265-283.

K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. Narayanan, and
K. Srinathan, “A performance prediction model for the CUDA GPGPU
platform,” in Proc. Int. Conf. High Perform. Comput., 2009, pp. 463—472.
Y. Zhang and J. D. Owens, “A quantitative performance analysis model for
GPU architectures,” in Proc. IEEE 17th Int. Symp. High Perform. Comput.
Archit., 2011, pp. 382-393.

G. Liu, S. Wang, and Y. Bao, “SEER: A time prediction model for CNNs
from GPU kernel’s view,” in Proc. 30th Int. Conf. Parallel Architectures
Compilation Techn., 2021, pp. 173-185.

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]
[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

1877

H.lJia, Y. Zhang, G. Long,J. Xu, S. Yan, and Y. Li, “GPURoofline: A model
for guiding performance optimizations on GPUs,” in Proc. 18th Int. Conf.
Farallel Process., Rhodes Island, Greece, Springer, 2012, pp. 920-932.
T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. 13th USENIX Symp. Operating Syst. Des.
Implementation, 2018, pp. 578-594.

R. Baghdadi et al., “A deep learning based cost model for automatic code
optimization,” in Proc. Mach. Learn. Syst., 2021, vol. 3, pp. 181-193.

Z. Pei, C. Li, X. Qin, X. Chen, and G. Wei, “Iteration time prediction
for CNN in multi-GPU platform: Modeling and analysis,” IEEE Access,
vol. 7, pp. 64788-64797, 2019.

F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling
and scalability optimization of distributed deep learning systems,” in
Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2015,
pp. 1355-1364.

H. Qi, E. R. Sparks, and A. Talwalkar, “PALEO: A performance model
for deep neural networks,” in Proc. 5th Int. Conf. Learn. Representations,
Toulon, France, 2017.

V. Elango, “Pase: Parallelization strategies for efficient DNN training,” in
Proc. IEEFE Int. Parallel Distrib. Process. Symp., 2021, pp. 1025-1034.
T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” 2016, arXiv:1604.06174.

L. Zheng et al., “Alpa: Automating inter-and intra-operator parallelism for
distributed deep learning,” in Proc. 16th USENIX Symp. Operating Syst.
Des. Implementation, 2022, pp. 559-578.

J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “DeepSpeed: System
optimizations enable training deep learning models with over 100 billion
parameters,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2020, pp. 3505-3506.

Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
Art. no. 10.

C. Unger et al., “Unity: Accelerating DNN training through joint opti-
mization of algebraic transformations and parallelization,” in Proc. 16th
USENIX Symp. Operating Syst. Des. Implementation, 2022, pp. 267-284.
Y. Xu et al.,, “GSPMD: General and scalable parallelization for ML
computation graphs,” 2021, arXiv:2105.04663.

Z. Lin et al., “Building a performance model for deep learning recom-
mendation model training on GPUS,” in Proc. IEEE 29th Int. Conf. High
Perform. Comput., Data, Analytics, 2022, pp. 48-58.

M. Liang et al., “Mystique: Enabling accurate and scalable generation
of production ai benchmarks,” in Proc. 50th Annu. Int. Symp. Comput.
Archit., 2023, pp. 1-13.

S. Sridharan et al., “Chakra: Advancing performance benchmarking and
co-design using standardized execution traces,” 2023, arXiv:2305.14516.
NVIDIA NCCL, 2021. [Online]. Available: https://developer.nvidia.com/
nccl

Y. Zhuang et al., “On optimizing the communication of model parallelism,”
Proc. Mach. Learn. Syst., vol. 5, 2023.

Y. Ding, L. Zhu, Z. Jia, G. Pekhimenko, and S. Han, “IOS: Inter-operator
scheduler for CNN acceleration,” in Proc. Mach. Learn. Syst., A. Smola,
A. Dimakis, and I. Stoica, Eds., 2021.

A. Qiao et al., “Pollux: Co-adaptive cluster scheduling for goodput-
optimized deep learning,” in Proc. 15th USENIX Symp. Operating Syst.
Des. Implementation, 2021.

C. Yang et al., “PerfEstimator: A generic and extensible performance esti-
mator for data parallel DNN training,” in Proc. IEEE/ACM Int. Workshop
Cloud Intell., 2021, pp. 13-18.

L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103-111, 1990.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818-2826.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and 1. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl Blog,
Tech. Rep., vol. 1, no. 8, p. 9, 2019.

M. Naumov et al., “Deep learning recommendation model for personal-
ization and recommendation systems,” 2019, arXiv: 1906.00091.

A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” 2014, arXiv:1404.5997.

L. Yuan and Y. Zhang, “A locality-based performance model for load-and-
compute style computation,” in Proc. IEEE Int. Conf. Cluster Comput.,
2012, pp. 566-571.


https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

1878

Jiangfei Duan received the BS degree from the Uni-
versity of Chinese Academy of Sciences, Beijing,
China, in 2020. He is currently working toward the
PhD degree with the Department of Information En-
gineering, The Chinese University of Hong Kong. His
research interests lie in machine learning systems, in-
clude efficient distributed DNN training and inference
and performance modeling.

Xiuhong Li received the BS and PhD degrees from
Peking University, China. He was a senior researcher
with Deep Learning Platform Department, Sense-
time, from 2019 to 2023. He is currently a research
assistant professor with the National Engineering
Laboratory for Big Data Analysis and Applications,
Peking University. His research interests include deep
learning compiler, distributed parallel computing, and
high-performance computation on heterogeneous ar-
chitectures.

Ping Xu received the BS and master’s degrees from
Tsinghua University, China. His research interests
include deep learning compiler and high performance
computing.

Xingcheng Zhang received the BEng degree from
Tsinghua University, in 2015, and the MPhil degree
from The Chinese University of Hong Kong, in 2018.
He is currently the research director of the Center of
Al Training and Computation, Shanghai Al Lab.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 10, OCTOBER 2024

Shengen Yan received the BS degree from the Harbin
Institute of Technology, Harbin, China, in 2009, and
the PhD degree from the Institute of Software, Chi-
nese Academy of Sciences, Beijing, China, in 2014.
He was a visiting student with NC State University,
Raleigh, North Carolina from 2013 to 2014. He was
a postdoctoral researcher with Multimedia Lab, Chi-
nese University of Hong Kong, Hong Kong, from
2015 to 2017. He is currently a research associate
professor with the Department of Electronic Engi-
neering, Tsinghua University. His research interests
include large scale deep learning and high performance computing.

Yun Liang (Senior Member, IEEE) is currently
an Endowed Boya distinguished professor with the
School of EECS, Peking University, China. His re-
search interests include hardware-software interface
with work spanning electronic design automation
(EDA), hardware and software co-design, and com-
puter architecture. He was the recipient of the best
paper awards with FCCM 2011 and ICCAD 2017
and best paper nominations with PPoPP 2019, DAC
2017, ASPDAC 2016, DAC 2012, FPT 2011, and
CODES+ISSS 2008 for his research. He is an asso-
ciate editor for ACM Transactions in Embedded Computing Systems (TECS),
ACM Transactions on Reconfigurable Technology and Systems (TRETS), and
Embedded System Letters (ESL). He is also with the program committees in
the premier conferences in the related domain including MICRO, DAC, HPCA,
FPGA, ICCAD, FCCM, ICS, etc.

Dahua Lin received the BEng degree from the Uni-
versity of Science and Technology of China (USTC),
in 2004, the MPhil degree from The Chinese Uni-
versity of Hong Kong (CUHK), in 2006, and the
PhD degree from the Massachusetts Institute of Tech-
nology (MIT), in 2012. He is an associate professor
with the Department of Information Engineering, The
Chinese University of Hong Kong. Prior to joining
CUHK, he served as a research assistant professor
with Toyota Technological Institute, Chicago, from
2012 to 2014. His research interest covers machine
learning, computer vision, and Big Data analytics. He has published more than
120 papers on top conferences and journals, e.g., ICCV, CVPR, ECCYV, NIPS,
and IEEE Transactions on Pattern Analysis and Machine Intelligence. His work
on a new construction of Bayesian nonparametric models has won the best
student paper award in NIPS 2010. He also received the outstanding reviewer
award in ICCV 2009 and ICCV 2011.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


