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SPRINGALD: GPU-Accelerated Window-Based
Aggregates Over Out-of-Order Data Streams

Gabriele Mencagli , Patrizio Dazzi , and Massimo Coppola

Abstract—An increasing number of application domains require
high-throughput processing to extract insights from massive data
streams. The Data Stream Processing (DSP) paradigm provides
formal approaches to analyze structured data streams considered
as special, unbounded relations. The most used class of stateful
operators in DSP are the ones running sliding-window aggregation,
which continuously extracts insights from the most recent portion
of the stream. This article presents SPRINGALD, an efficient sliding-
window operator leveraging GPU devices. SPRINGALD, incorpo-
rated in the WINDFLOW parallel library, processes out-of-order
data streams with watermarks propagation. These two features—
GPU processing and out-of-orderliness—make SPRINGALD a novel
contribution to this research area. This article describes the
methodology behind SPRINGALD, its design and implementation.
We also provide an extensive experimental evaluation to under-
stand the behavior of SPRINGALD deeply, and we showcase its
superior performance against state-of-the-art competitors.

Index Terms—Data stream processing, window-based aggreg-
ates, out-of-order data streams, GPUs.

I. INTRODUCTION

COMPUTING complicated analytics over high-velocity
data streams is a challenging topic having increasing

importance in domains such as IoT applications, social media
analysis, log monitoring, financial markets, and many others.
Data Stream Processing [1] (DSP) is an approach to query data
streams proposed years ago by the database community, with
a dialect of SQL (e.g., the Continuous Query Language [2]) to
process streams like finite relations. This approach adapts the se-
mantic foundation of some stateful relational operators—mainly
aggregates and joins—to unbounded streams by introducing
the notion of window [3]. Motivated by the idea that only the
most recent data are relevant, such operators repeatedly compute
results over independent and dynamic windows of the stream
representing the last received inputs (called tuples hereinafter).

Manuscript received 5 March 2024; revised 15 July 2024; accepted 17 July
2024. Date of publication 22 July 2024; date of current version 31 July 2024. This
work was supported in part by the Italian PRIN project OUTFIT under Grant
2022BAL2F3, and in part by NOUS (A catalyst for EuropeaN ClOUd Services
in the era of data spaces, high-performance and edge computing) HORIZON-
CL4-2023-DATA-01-02 project, G.A. under Grant 101135927. Recommended
for acceptance by F. Zhang. (Corresponding author: Gabriele Mencagli.)

Gabriele Mencagli and Patrizio Dazzi are with the Department of Com-
puter Science, University of Pisa, 56126 Pisa, Italy (e-mail: gabriele.mencagli
@unipi.it; patrizio.dazzi@unipi.it).

Massimo Coppola is with ISTI-CNR, 56127 Pisa, Italy (e-mail: massimo.
coppola@isti.cnr.it).

Digital Object Identifier 10.1109/TPDS.2024.3431611

The first generation of Stream Processing Engines (SPEs)
was proposed 20 years ago. They were called Data Stream
Management Systems (DSMSs) (e.g., Aurora [4], Borealis [5]
and others) to highlight their direct evolution from traditional
Data Base Management Systems. They provided full support
to CQL and stateful operators, and they dealt with several
stream imperfections like stream disordering and duplicates [6].
Modern SPEs (e.g., Storm [7], Flink [8]) supersede DSMSs
by supporting different kinds of streams, both structured and
unstructured.

Sliding-window aggregation is one of the main stateful oper-
ators of relational stream processing, which usually affects the
overall query performance [3]. It computes a binary aggregation
function over all tuples belonging to the same window, which
usually captures the last data received. Modern SPEs provide
built-in operators to perform aggregation over count- and time-
based windows. For example, the built-in algorithm adopted by
Flink is based on the bucket-per-window approach [9], where
each open window (bucket) is associated with a partial result,
and upon arrival of a new tuple all buckets affected by that tuple
are considered and their results updated. To enforce potential
overlapping between consecutive windows, several optimized
algorithms have been proposed over the years (they will be
reviewed in Section VII). Examples of such techniques are
panes [10], pairs [11], and other general incremental aggregation
approaches [12], [13], [14], [15]. When the data stream may be
received out-of-order—with tuples having non-monotonically
increasing timestamps—sliding-window aggregation requires
special care to close windows properly without missing data
[6], [16].

As modern hardware is inherently parallel (i.e., composed of
more multi-core CPUs and co-processors such as GPUs), its ex-
ploitation to speed up query performance has been the subject of
prior works (see Section VII). StreamBox [17], LightSaber [18],
Grizzly [19] are some relevant papers focusing on approaches
starting from a CQL-based declarative program and exploiting
multi-core CPUs efficiently. SABER [20] and FineStream [21]
are two SPEs targeting heterogeneous systems based on CPUs
and GPUs. Although with relatively high performances, they
support GPU processing for sliding-window aggregation by as-
suming in-order streams, i.e., the stream exhibits monotonically
increasing timestamps. While in-order streams can be realistic
in some use cases, out-of-order streams are the norm, especially
when events originate from several sources displaced across a
wide area network.
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This paper presents SPRINGALD,1 a GPU-accelerated sliding-
window aggregator supporting associative and commutative ag-
gregation functions, and working with out-of-order data streams,
i.e., data streams whose items are watermarked, i.e., associated
with metadata indicating the progress of the stream. Both as-
pects, i.e., GPU exploitation and out-of-orderliness, synergically
studied and applied in SPRINGALD, represent a novel contribution
to the field. Our approach processes tuples with a two-staged
procedure: first, tuples are processed out-of-order to generate
partial results; second, when some partial results are considered
complete (i.e., based on the last received watermark), they are
added to a binary tree structure representing all the partial
aggregates useful to compute a set of contiguous windows
of the same stream. The algorithmic approach underpinning
SPRINGALD is inspired by some techniques originally introduced
for sequential processing (i.e., pane-based aggregation [10]
and binary trees [12]), which we have implemented efficiently
on GPU hardware accelerators with SIMD (Single-Instruction
Multiple-Data) processing capabilities. Such a design provides
high throughput with count- and time-based windows and stream
disordering.

The contributions of this paper are the following:
� SPRINGALD employs a pipelined architecture composed

of two stages named PLS (Pane-level Stage) and WLS
(Window-level Stage). This architecture, inspired by the
original work about panes [10], has been revisited in this
paper to parallelize each stage on GPU. Furthermore, the
pipeline approach allows hiding latencies such as host-to-
device and device-to-host copies;

� The parallelization of PLS adopts an approach where panes
are aggregated on the fly by processing input batches
in parallel on GPU, and by keeping a circular buffer of
pending panes that cannot be considered complete yet. So,
we succeed in incorporating an out-of-order processing
logic on the device, where panes are considered closed
once a watermark closing them is available from the input
stream;

� The parallelization of WLS is our second contribution. In-
spired by some previous work adopting binary aggregation
trees [12], we design a new data structure called Batched
Pane Aggregation tree (B-PAT). Differently from previous
works, the B-PAT can be configured to have a width in
terms of leaves sufficient to compute Nw ≥ 1 consecutive
windows, so storing partial aggregates that contribute to
more windows of the stream. This increases data paral-
lelism opportunities since windows can be computed in
parallel on the device with high bandwidth. Furthermore,
we design the B-PAT to have a pointer-less and flat layout
particularly efficient for being updated by GPU hardware.

The paper proposes also a reasoned comparison of SPRINGALD

against SABER [20], a GPU-accelerated SPE for in-order
streams, and SCOTTY [22], a CPU-based out-of-order aggrega-
tion framework integrated into modern SPEs.

The outline of the paper is the following. Section II introduces
background concepts. Sections III and IV provide an overview of

1Springald was a medieval torsion artillery device for throwing bolts.

Fig. 1. Time-based windows with w = 2 and s = 1.

SPRINGALD and its design. Section V shows the implementation.
Section VI outlines the experimental evaluation, Section VII in-
troduces related works, and Section VIII draws the conclusions.

II. BACKGROUND AND MOTIVATION

We briefly introduce the essential concepts of data stream
processing and out-of-order streams used in the paper, and we
show the motivations of our work.

Data Stream Processing DSP originates from the database
community [1]. It allows the processing of data streams to
extract online analytics and complex events. DSP queries are
composed of operators executing intermediate transformation
stages and connected in data-flow graphs. Operators can be
stateless—computing pure functions whose outputs depend
solely on tuples—or stateful, which maintain and update a set
of data structures while processing tuples.

Window-Based Aggregates Since streams are unbounded,
statistics like aggregates (e.g., max, min, average, count) are
computed over subsets of tuples called windows. Depending on
how tuples are grouped into windows, different models have
been proposed over the years [23]. In this paper, we consider
count- and time-based windows. They are both expressed with
two parameters: the window length w and the slide s, where
consecutive windows contain overlapped data if s < w. In time-
based windows, w and s are expressed in time units, while in
count-based windows in number of tuples. Fig. 1 shows an
example of time-based windows with w = 2 and s = 1 (sec-
onds). Tuples are associated with timestamps. The tuple with
timestamp 2.8 belongs to both windows 2 and 3 in the figure.

Out-of-Order Data Streams Data streams are considered or-
dered if the timestamps of the received tuples are monotonically
increasing. If ti is the i-th received tuple, and ti.ts is its times-
tamp, we say that ti is a late tuple if ∃ tj with j < i such that
tj .ts > ti.ts. In the presence of late tuples, so with out-of-order
data streams, detecting the ending of time-based windows is
more challenging. With w = 5 sec and s = 1 sec, if the stream
is ordered (no late tuples exist), the first window is complete
when the first tuple having a timestamp greater or equal to 5 is
received. Unfortunately, this is no longer true with out-of-order
data streams. A solution is to associate with each tuple ti a
further attribute called watermark (ti.wm s.t. ti.wm ≤ ti.ts)
of the same type of the timestamp. Such a watermark indi-
cates that ∀ tj s.t. j > i, tj .ts > ti.wm, i.e., all future tuples
received after ti will have timestamps greater or equal than
ti.wm. In addition to being conveyed by the tuples as further
attributes, watermarks can be propagated through dedicated
meta tuples called punctuations. Watermarks, which have to be
monotonically increasing, are often calculated by the sources in a
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Fig. 2. Out-of-order stream with watermarks.

user-defined manner. Fig. 2 shows an example of an out-of-order
data stream by referring to the same tuples, timestamps, and
windows of Fig. 1. We suppose two punctuations (red diamonds)
with watermarks of 2.0 and 4.0 respectively. Window 1 is
finalized when the first watermark is received, while windows 2
and 3 at the time instant when the second watermark arrives.

Motivation Using GPU hardware to accelerate DSP work-
loads is compelling and challenging at the same time. Traditional
database operators can greatly benefit from GPU acceleration
and SIMD execution. This has been proved true for special-
ized sorting algorithms and joins, but also for projection and
selection that are embarrassingly parallel [24]. Since DSP op-
erators originated from linear algebra and database theory, DSP
workloads may benefit from GPU acceleration too. However,
DSP poses additional challenges due to the transient nature of
the data that is continuously in motion (i.e., not persistently
available in advance). This requires data streams to be bucketed
in batches of tuples with a linear layout in device memory, which
is transferred to the device continuously so that the GPU is
never idle. Furthermore, since not all the fields of the tuples
might be useful for the offloaded computation, projections, and
data lifting are of special importance to save host-to-device
memory bandwidth (e.g., by keeping only the fields useful to
compute the aggregation function). Last but not least, DSP
operators are often complex due to the windowing nature of
the computation, where portions of the stream with dynamic
sizes, and potential overlaps, are continuously aggregated. The
amount of data parallelism is often large for those operators
(e.g, a window aggregate is a reduction over a linear array
of tuples), which however might be not fully exploited if the
dynamic content of windows is implemented with continuous
allocation/deallocation in device memory and redundant data
transfers. SPRINGALD aims at providing an efficient solution to
such problems.

III. SPRINGALD OVERVIEW

SPRINGALD is part of the WINDFLOW library [25]. This section
provides an overview of WINDFLOW and SPRINGALD.

A. Data Pipelining With WINDFLOW

WINDFLOW is a C++17 library2 enabling DSP on multicores
and GPUs. It is based on the composition of a few components
called building blocks, which allows building graphs of opera-
tors communicating through Single-Producer Single-Consumer
(SPSC) lock-free queues [26].

2WINDFLOW and SPRINGALD are available in GitHub at https://github.com/
ParaGroup/WindFlow.

Fig. 3. A WINDFLOW data-flow graph composed of a Source, two intermediate
operators, and a Sink.

Fig. 3 shows a data-flow graph incorporating a Source (SRC),
a Sink (SNK), and two internal operators (OP1 and OP2). Each
operator has its own number of replicas to express data paral-
lelism. The graph is obtained by nesting all-to-alls, pipelines,
combiners (applying fusion of sequential functions), and nodes
recursively according to the regular grammar in [25]. In addition
to nodes implementing operators (OP) that execute user-defined
functions, the graph is further composed of nodes added by the
run-time system transparently to the user: they are emitter (E)
and collector (C) nodes performing data distribution policies
(e.g., load balancing, key partition) and data gathering strategies.

SPRINGALD is a novel operator incorporated in WINDFLOW,
which can be used at any point of the dataflow to provide
efficient massive window aggregation. The user is requested
to provide two device lambdas (i.e., lambda runnable on the
GPU). The first function lift(t : Inputt) : Aggt converts an in-
put into an aggregate of type Aggt. The second function
combine(a1 : Aggt, a2 : Aggt) : Aggt is associative and com-
mutative, and combines two aggregates into one resulting ag-
gregate value.

B. SPRINGALD Approach

SPRINGALD combines two existing techniques. The first is
pane-based processing [10], where the stream is logically par-
titioned into disjoint panes of length equal to p = gcd(w, s),
where w, s are the window length and slide respectively. By
computing a result per pane (so aggregating all the tuples falling
in the pane boundaries), we can reuse pane results shared by
multiple consecutive windows. However, if p is small (e.g., if
the slide parameter is small), this two-level aggregation approach
is not effective since the number of computations per window
is still proportional to w. For this reason, we integrate pane-
based processing with aggregation trees [12] (second technique),
where leaves are pane results and internal nodes are partial
aggregates built on top of pane results. So doing, internal nodes
can be reused to compute results of consecutive windows without
recomputing them from scratch, requiring a logarithmic number
of computations per window at the worst case.

Although these two techniques are used in the literature, and in
recent CPU implementations [22], we provide a novel design and

https://github.com/ParaGroup/WindFlow
https://github.com/ParaGroup/WindFlow
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Fig. 4. General design of SPRINGALD with PLS and WLS.

implementation able to address two important issues: i) the of-
floading of the pane processing and tree maintaining procedures
on the GPU; ii) the handling of out-of-order data streams, which
is implemented directly on GPU with minimal host intervention.
The three pillars of the SPRINGALD methodology are:

Overlapped data transfers: SPRINGALD makes use of prop-
erly designed emitter functionalities (Section III-A) capable of
overlapping the copies of a new batch in the device memory
with the preparation of the next batch with new data received
from the Sources. This allows masking the copy overhead and
exploits the available host-to-device memory bandwidth at best.

Out-of-order panes aggregation on GPU: Out-of-order data
streams require that several pane results cannot be considered
closed and must be kept in memory until a proper watermark
closes them. We engineer a new approach to keep pane results
in device memory in a circular buffer. When new batches are
received, they are pre-processed on GPU to pre-aggregate tuples
falling in the same panes. Then, those partial results are aggre-
gated with existing pane results in the circular buffer efficiently
and in parallel using the GPU.

GPU-oriented aggregation tree: Pane results that are com-
plete upon a new watermark arrival are copied by overwriting a
subset of the leaves of the tree. Our novel tree structure, called
Batched Pane-aggregation Tree, has a size-independent from
the specification of w and s and is based on a parameter Nw

indicating how many consecutive windows can be computed
using the leaves and internal nodes of the tree. This allows higher
opportunities to exploit data parallelism, since GPU processing
is used both for updating the tree upon new pane results arrival,
as well as to compute in parallel Nw windows using the internal
nodes.

In the next section, we provide an algorithmic description of
SPRINGALD.

IV. SPRINGALD DESIGN

From a structural viewpoint, SPRINGALD is a pipeline of two
stages named Pane-level stage (PLS) and window-level stage
(WLS), as in Fig. 4.

The two stages try each to solve the two main issues that
we considered in our work: the efficient processing of window
aggregates on GPU, and the management of out-of-order data
streams. The first problem is addressed mostly by the design
of the WLS. It keeps a proper aggregation tree where each leaf
corresponds to a complete pane result. Let w be the window
length and s the slide parameter, we define the pane length
as p = gcd(w, s), so panes are non-overlapped and adjacent,
and each tuple belongs to one pane only. The result of a pane

Algorithm 1. PLS Logic to Process a New Input.

is the aggregate computed over all tuples falling in the pane
boundaries. Every time a new pane is complete (no future tuple
falling in its boundaries is expected to arrive), the corresponding
leaf is updated and all the internal nodes affected by the change
are updated too. If a given number of new panes are completed,
the tree will be used to compute the final aggregates of a set of
contiguous windows without recomputing them from scratch,
so using partial aggregates corresponding to a portion of tuples
shared by consecutive windows.

Unfortunately, the presence of out-of-order streams poses ad-
ditional challenges. The tree structure must have a fixed size to be
efficiently stored in GPU memory. However, with out-of-order
streams, the number of active panes is not predictable since it
depends on the stream delay. The PLS addresses this problem by
keeping a dynamic set of pending pane results in device memory,
aggregating them efficiently as new batches of tuples are made
available by data sources, and by moving complete panes when
watermarks arrive at the WLS (where more leaves of the tree will
be updated triggering the computation of a new set of windows
that are now surely complete).

A. Pane-Level Stage

PLS receives a disordered stream of tuples and aggregates
them into pane results as in Algorithm 1. It keeps a hash table
H mapping each key onto a container Q. This container stores
non-complete pane results of the given key attribute (i.e., the
ones that cannot be considered complete according to the last
received watermark). The container allows different operations:
i) the access to a pane result at position i; ii) append(n, v) to
append n > 0 new pane results with the same initial value v
at the end; iii) erase(n) to delete the first n > 0 pane results
from the beginning. For each key k, H[k] keeps the identifiers
of the first pane result (first) and of the last one last stored in the
container. So, accessing position i of the container corresponds
to the pane result with identifier first+i.

The stage extracts the pane identifier corresponding to the
timestamp of the current tuple t, and its key attribute (lines 2-3).
Lines 4-7 handle the arrival of the first tuple of a given key,
while lines 8-10 append new pane results to the container. The
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Fig. 5. Size-4 PAT built over time-based windows with w = 8, s = 2 and
pane length p = 2 time units.

value ⊥ is the neutral element of the binary operator ⊕ used for
the aggregation. Line 11 applies the update of the pane result
corresponding to the received tuple (we use the attribute val
to compute the aggregate). Lines 12-18 describe the actions to
deliver complete pane results to WLS. This happens by using
the watermark conveyed by the tuple, which determines the
identifier of the last pane that can be considered complete (wp
in the code). Finally, the pane results transmitted to WLS are
removed from the container, and first and last are updated.

B. Window-Level Stage

This stage receives complete pane results and maintains a
binary tree for each existing key. Of such a tree, the leaves are
pane results, and intermediate nodes are partial aggregates built
on top of pane results. This structure is similar to the FlatFAT
proposed by Tangwongsan et al. [12]. However, while the Flat-
FAT structure was originally proposed for count-based windows,
our approach is suitable to represent time-based windows too.
Before introducing the definition of this tree, we first present a
simplified version of it called Pane Aggregator Tree (PAT).

1) PAT: We assume time-based windows of lengthw, slide s,
and pane length p = gcd(w, s) time units. Let n be the number
of panes of each window, so n = w/p. A size-n PAT for an
associative binary operator ⊕ : D → D is a complete binary
tree having n > 0 leaves denoted by L(0),L(1), . . . ,L(n− 1),
where L(i) ∈ D for i = 0..n− 1. For the moment, we assume
that n is a power of two. Fig. 5 shows the idea of a size-4
PAT applied to time-based windows with w = 8, s = 2 and
p = gcd(8, 2) = 2. In this part, we assume that panes results
coming from PLS all belong to the same key, so WLS keeps one
tree structure only.

The initial tree is built over the first n panes of the stream.
Leaf L(i) contains the pane result Pi ∈ D computed over the
tuples t whose timestamps t.ts fall inside the boundary of
the i-th pane, i.e., t.ts ∈ [i · p, (i+ 1) · p). For each internal
node v, it contains a partial aggregate T (v) ∈ D such that
T (v) = T (left(v))⊕ T (right(v)), where left(v) and right(v)
represent the left and right child of v respectively. By using
simple mathematical induction and the associativity of ⊕, the
root of the tree v stores the aggregate computed over all the
panes of the first window, i.e., T (v) = P0 ⊕ P1 ⊕ · · · ⊕ Pn−1.

The procedure to initialize the tree requires computing each
one of the n− 1 internal nodes, so with O(n) complexity. The

Fig. 6. Size-8 B-PAT over time-based windows with w = 4, s = 1, p = 1
time units, and nw = 5 windows.

aggregate over the whole window is stored in the root and can
be retrieved by the user in O(1). When s/p new pane results are
made available by PLS (one in the example), they will be stored
in the tree by replacing the oldest s/p leaves circularly, and
by updating the internal nodes affected by the changes. Fig. 5
shows this example, with the first s/p = 1 leaves updated by
replacingP0 withP4. This change requires updating the internal
nodes A and C. In general, with s/p updates of the leaves, we
needO(s/p+ log2(w/s) · s/p) calls of⊕ to update the internal
nodes, as demonstrated in [12].

2) B-PAT: The Batched PAT (B-PAT) is a generalization of
PAT to incorporate partial results useful to compute nw > 0
consecutive windows. This allows the B-PAT to be composed
of a sufficient number of internal nodes, so exposing high
parallelism regardless of the size of the windows which is an
application-dependent parameter.

A size-m B-PAT for an associative binary operator ⊕ : D →
D is a complete binary tree having m = w + (nw − 1) · s
leaves. For the moment being, we assume w, s, and nw such
that m results in a power of two. Fig. 6 shows an example
of a size-8 B-PAT for time-based windows with w = 4, s = 1,
p = gcd(w, s) = 1, and nw = 5 consecutive windows.

The initialization of the B-PAT is analogous to the PAT. The
main difference is that the computation of the partial aggregates
stored in the internal nodes can be limited up to level 2 in the
example of Fig. 6, since the node E stores the result of the
first window, while F the one of the fifth window, whereas
the root would contain an aggregate spanning more consecu-
tive windows, so it is never used. In general, the initialization
procedure of a size-m B-PAT initializes all the internal nodes
at level l ≤ log2(n), with n = w/p. Similarly to the PAT, when
the right amount of pane results are made available by PLS,
such new results will be stored in the same number of leaves
storing the oldest pane results, which requires updating some
internal nodes up to level l ≤ log2(n), as previously discussed.
We denote the number of pane results needed to update the tree
and to start computing the next nw windows as sb, which is
equal to (nw · s)/p. So, increasing nw increases the number of
complete pane results to receive from PLS to start the update
procedure of the B-PAT.

We focus on how to compute the final aggregate of a given
window in the B-PAT. To compute the aggregate over the second
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Algorithm 2. Functions Prefix and Range.

window in Fig. 6, we compute P1 ⊕B ⊕ P4, so re-using the
partial aggregate stored in one internal node to reduce the
number of ⊕ calls. To generalize this procedure, we introduce
some definitions. Let the k-th prefix be the aggregate computed
over the k > 0 leftmost leaves of the tree, while the k-th suffix
is the aggregate over the k > 0 rightmost leaves of the tree. The
algorithm to compute a prefix is in Algorithm 2 (lines 1-9). To
compute suffixes, we can use a call to suffix instead of prefix at
line 7, and compute the result of the aggregation between the
result of the recursive call of suffix applied to left(v) and the
partial result stored in right(v) (line 9).

These two algorithms are used by range(v, i, j), which is the
aggregate computed considering the leaves from L(i) to L(j)
where v is the root. For example, range(v, 2, 5) corresponds to
the result of the third window in Fig. 6. Although in Fig. 6 all
windows in the B-PAT have i < j, it is possible that windows
wrap around. In the example of Fig. 6, P8 and P9 are stored
in the first two leaves from the left, and the aggregate of the
sixth window is computed by calling range(v, 6, 2). As shown
in lines 12-13, the result is computed in this case by calling range
recursively in the sub-trees rooted at the left and right children
respectively.

Theorem 4.1. The range procedure described in Algorithm 2,
applied over a size-m B-PAT, takes O(log(m)) time.

Proof. Prefix traverses the tree following a root-to-leaf path.
At each level, it performs one ⊕ call at most. So the procedure,
as well as suffix that is symmetric, has logarithmic complexity.
The range procedure still traverses the tree top-down, finding
the least common ancestor (LCA) between L(i) and L(j). Once
found, the procedure calls suffix and prefix on the sub-trees
rooted at the left and right child respectively (line 23), which
have logarithmic complexity, as seen. So, the number of ⊕ calls
by range is logarithmic in the number of leaves. �

Arbitrary Window Parameters B-PAT is a complete tree, so
the number of leaves is a power of two. However, if w, s, and nw

are arbitrary values, m might not be a power of two. In that case,
we build a size-m′ B-PAT where m′ is the smallest power of two
greater or equal than m. Therefore, before initializing the tree,
we fill the unused leaves with a marker ⊥ serving as a neutral
element such that ⊥ ⊕ ⊥=⊥ and x⊕ ⊥= x for each x ∈ D.

Handling More Keys When multiple distinct keys are present
in the stream, PLS produces a stream of pane results Pk

i , with i
the progressive identifier of the pane and k the key attribute. In
such a scenario, WLS keeps a B-PAT for each existing key.

Count-Based Windows So far, we have always assumed time-
based windows in defining PAT and B-PAT. The approach
supports count-based windows as well, where w, s, and p are
expressed in a number of tuples.

V. IMPLEMENTATION

In this section, we provide the details of the CUDA imple-
mentation of SPRINGALD.

A. PLS Implementation

PLS receives tuples in batches allocated in device memory by
the preceding operator (see Section III-A). For each batch, PLS
applies a set of transformation steps on the GPU. Some trans-
formations have been directly implemented as CUDA kernels,
others are device primitives provided by THRUST.3 In the first
step, the pane identifiers are extracted from the tuples of the batch
in parallel through a first kernel called lifting. Let t be an tuple,
its pane identifier is �t.ts/p�, where p is the pane length. Then,
tuples are sorted in decreasing order of pane identifiers through
a thrust :: sortbykey primitive. Finally, tuples having the same
pane identifier are aggregated through a thrust :: reducebykey
using the binary operator ⊕ provided by the user.

PLS keeps the set of pane results that are not complete. They
are stored in a circular buffer pending, where numpending is
the number of stored pane results, while size is the capacity.
The variable tail points to the position of the oldest element
in the buffer (if not empty), while firstid is the identifier of
the oldest non-complete pane (it might be or not present de-
pending whether numpending> 0). PLS launches a kernel that
aggregates the partial pane results in the input batch after the
thrust :: reducebykey with the existing results having the same
identifiers stored in the buffer pending. Such a kernel is shown in
Fig. 7. Since we work with uni-dimensional arrays, we arrange
CUDA threads in a one dimensional grid of one-dimensional
blocks.

In the code, newpanes is the batch of pane results from
the previous steps (i.e., after the thrust :: reducebykey), while
numnew is its size. Threads of the kernel are assigned to the
results in newpanes using a grid-stride for loop. At line 10, each
thread computes for the pane result in newpanes at position i
its corresponding position in pending. If this position already
contains a partial aggregate for that pane (lines 11-13), it will

3THRUST is a C++ template library for CUDA based on the Standard Template
Library, https://github.com/NVIDIA/thrust

https://github.com/NVIDIA/thrust
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Fig. 7. CUDA kernel updating the pending pane results with the data in the
received batch after a reducebykey.

be updated by calling ⊕ at line 12. Otherwise (lines 14-30),
the aggregate is copied at that position of pending (line 15). At
lines 17-20, the thread computes how many new pane results
must be initialized. For example, if the aggregate at position i of
newpanes has identifier 9, and firstid+ numpending is equal to
6, the thread initializes the aggregates for panes with identifiers
6, 7, 8 in pending. This initialization is done at line 25, where
the default constructor of Aggt initializes the result to ⊥.

The capacity of the buffer, indicated by size, must accommo-
date all new pane results to be added with the batch computation.
This is done by checking the size before calling the kernel. In
case pending is not large enough, a resizing-up method is called.
The new size is the minimum between double of the current
capacity and the number of slots required to store all pending
results from firstid to the highest pane identifier seen in the batch
up to now. In order to regulate memory utilization and mitigate
excessive resource occupation, pending is resized down to half
of its current capacity if numpending/size is below 1/4.

B. WLS Implementation

WLS keeps a B-PAT structure for each key to compute win-
dow results. We show the memory layout, and the CUDA kernels
for building and updating the tree, and to compute all windows
in parallel.

Memory Layout We store a size-m B-PAT as a flat array T of
size 2m− 1, whose elements have type D. The first m positions
store the leaves (level 0), and the next m/2 positions the internal
nodes at level 1, up to level log(m) representing the last position
of the array that stores the root. Fig. 8 shows this layout for the
B-PAT in Fig. 6. With this design, the position of the parent of
the node at position i is computed as (i >> 1) | m, where
>> 1 is the logical shift right of one bit, while | is the bitwise
logical OR.

Fig. 8. Memory layout of the B-PAT in Fig. 6.

Fig. 9. CUDA kernel initializing level2 by reading the elements of level1 of
the B-PAT.

The size of T can be reduced by considering that we never
use the internal nodes at levels higher than log(n), as already
discussed (n is the number of panes per window). So, the actual
size can be bounded to

∑
log(n)�
i=0 m/2i.

Building the B-PAT The initialization of the B-PAT starts when
the first m pane results are available from PLS and written in
the first m positions of T (if m is not a power of two, the
remaining leaves are initialized to ⊥). The initialization consists
of launching a sequence of CUDA kernels to initialize all levels
of the tree. Each kernel is responsible for initializing level k by
reading the elements at level k − 1. So, kernels are sequentially
launched. Fig. 9 shows the code of the kernel where level1 is the
input level while level2 is the output level.

The code uses a binary operator op having signature Agg_t
(const Agg_t&, const Agg_t&,Agg_t&), so aggregating the
first two inputs and writing the result in the last input.

Updating the B-PAT When sb new pane results are made
available by PLS, they overwrite the positions of the array
corresponding to the oldest pane results. Furthermore, all the
internal nodes affected by such a change are updated. Again,
the CUDA implementation consists of a sequence of kernel
invocations one for each level. However, differently from the
initialization kernel, only a subset of the elements at level k − 1
are considered by updating a fraction of the element at level k
(i.e., only the ones affected by the changes). Fig. 10 shows the
code of the kernel.

In the code, the input sizeUpdate is the number of elements
of level2 to be updated, while offset is the position of the first
element to be updated. Since the internal nodes to update can
be contiguous in memory, or they can wrap around, we use the
modulo operation at line 12.

Computing Windows Fig. 11 shows the kernel to compute all
the windows stored in the B-PAT. The kernel takes in input the
number of leaves numLeaves of the tree and the value m cor-
responding to the number of panes composing nw consecutive
windows. As said, the two values differ if m is not a power
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Fig. 10. CUDA kernel updating the internal nodes of level2 after the modifi-
cation of the oldest sb leaves.

Fig. 11. CUDA kernel to compute the windows in the B-PAT.

of two, and numLeaves is the smallest power of two greater or
equal to m.

Each CUDA thread, assigned to the window starting with the
leaf at position wS, executes a while loop until there are pane
results to aggregate (variable panes). Initially panes is equal
to the number of panes per window n = w/p. Then, it finds
how many panes can be aggregated by looking at the ancestors
of the leaf at position wS. This is done by leveraging some
bitwise operations. The operation wS & -wS (line 14) returns
the greatest power of two that is a divisor ofwS. LetwS be 6,6 &
-6 = 110 & 010 = 010 = 2. This number represents
the largest sequence of panes starting from the one at position
wS that can be aggregated by an ancestor of the leaf at position
wS. By referring to Fig. 6, node D can be used as it stores the
aggregate of P6 and P7, while earlier ancestors store aggregates
computed considering other leaves preceding the one at position
wS. For all leaves having an odd position, this number is always
1 so the aggregate in the leaf is used directly. The leaf at position

0 is a special case. SincewS & -wSwould return zero, we force
this case (line 14) to return m (8 in the example), because the
aggregate of all the leaves is stored in the root. This number
minus 1 also indicates how many levels we have to climb to
find this internal node (while loop at lines 19-22). Once found
the position of that node (tn), we use its stored aggregate to
update the window result (line 23). Then, we update panes and
we repeat the loop until panes becomes zero.

C. Handling Multiple Keys

When more keys exist, WLS keeps an internal B-PAT for
each key. These structures are allocated in the device memory
once the first pane result associated with a new key reaches
completion, as determined by a watermark. Handling multiple
keys mainly affects the behavior of PLS, since separated buffers
of pending pane results are kept one per key. Once a new batch
has been received, a preliminary additional step is applied to
extract the key attributes (through a CUDA kernel), and the
sortbykey primitive described in Section V-A sorts the tuples
in order to group all tuples having the same key attribute in
contiguous positions (they are internally sorted in decreasing
order of pane identifier, as already discussed). Then, the same
steps are repeated for each portion of the batch having the same
key, in order to update different B-PAT structures by the WLS.

VI. EVALUATION

In this section, we first focus on the impact of different
parameters such as the number of CPU threads involved in
the processing, and the batch size, and we evaluate different
configurations in terms of window length and slide. Next, we
consider the impact of the aggregation function. Then, we study
the performance resilience of SPRINGALD with different levels
of stream disorder. Finally, an experimental comparison against
state-of-the-art competitors is given.

A. Experimental Setup

Hardware Platform We conduct all the experiments on a
machine running Ubuntu 22.04 with kernel 5.15.0-82. It
has two CPUs AMD EPYC 7551 with 128 GiB of RAM and 32
cores working at 2 GHz each. Each core has an L1D of 32 KiB,
an L2(I+D) of 512 KiB, and each group of four cores shares
an L3(I+D) of 8 MiB (for a total of 64 MiB). The machine
mounts a PCIe board with an NVIDIA Ampere30 GPU having
56 Stream Multi-processors, each with 64 FP32 cores and 32
FP64 cores, for a total of 5,376 FP32+FP64 cores. The amount of
GPU memory is 24 GiB of HBM2. The GPU works at 930 MHz
with a peak of 1,440 MHz of boost clock speed. In all our
experiments, hyper-threading has been disabled and we never
use more threads than CPU cores available.

Benchmarks We set up a synthetic experiment with a paramet-
ric number of sources, which generate tuples at their maximum
capacity, one instance of SPRINGALD, and a sink operator. The
sources generate synthetic data streams of 32-byte tuples, each
consisting of four 32-bit integer numbers, two single-precision
floating-point numbers, and a 64-bit timestamp. Integer and
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Fig. 12. Impact of the chosen batch size (left). Impact of the slide parameter of time-based windows adopted by SPRINGALD (center). Impact of the nw parameter
in the achieved throughput by SPRINGALD (right).

TABLE I
PARAMETERS CONSIDERED IN THE EXPERIMENTS

floating-point numbers are drawn from a uniform distribution
in the interval (0, 1000). One of the integers is interpreted as the
key attribute. Results produced by SPRINGALD are transferred
back to the host memory and read by a Sink operator. Each
experiment is run 10 times, and we report the 95th confidence
interval (shaded area in the plots). In addition to such synthetic
experiment, in the comparison with existing SPEs, we consider
the Yahoo Streaming Benchmark [27] (YSB) as a realistic appli-
cation. Such a benchmark emulates an advertisement application
consisting of a source, a filter, a map (joining with a static
table), a windowed aggregration and a Sink. It is configured
with w = 1 sec, s = 104 usec and 1,000 dinstinct keys drawn
from a uniform distribution.

Baselines We consider two existing frameworks that have sig-
nificant relationships with our work (justifications for this choice
will be given later in the text). The first is SABER [20], a system
targeting GPUs for accelerating sliding-window aggregates over
data streams. This system has been developed in Java using
OpenCL for GPU exploitation. It supports hybrid CPU+GPU
processing by computing the stream in batches. For each batch,
it computes partial aggregates for different window fragments
in parallel on CPU or GPU cores, which are aggregated into
window-wise results by a sequential merge phase. Differently
from SPRINGALD, SABER assumes the input stream rigorously
ordered by timestamps. The second baseline is SCOTTY [22], an
aggregation framework designed for out-of-order streams that
does not support GPU devices. Section VII will give further
details about these two systems.

Compilation Toolchain We use gcc version 12.3.0, and
nvccversion12.2. The machine uses the CUDA driver version
535.104.05. For the baselines, SABER uses Oracle JVM 8,
while SCOTTY runs on Flink 1.14.4.

Studied Parameters Table I lists the main configuration pa-
rameters and a short description of each of them.

B. Performance Analysis

The performance of SPRINGALD is affected by different
parameters. The first is the size of batches received by the
SPRINGALD operator in the data-flow graph. Fig. 12 (left)
shows the results of the first experiment conducted using fa˜ =
˜sum over highly-frequent time-based windows sliding every
100 usec. We study three window lengths equal to 1 sec, 100 ms,
and 10 ms, and we report the peak throughput measured with
different batch sizes ranging from 16 KiB to 4 MiB. In this set of
experiments, we set nw = 1. Furthermore, we generate a stream
without keys.

The results confirm that higher throughput is achieved with
smaller window lengths since fewer panes need to be aggregated
to compute window results. On average, the throughput with
windows of 10 ms is 17% higher and 33% higher than the one
measured with windows of 100 ms and 1 second respectively. In-
creasing the batch size has a remarkable impact since host-device
transferring overheads can be amortized. Increasing the batch
size from 16 KiB to 4 MiB yields to a throughput improvement
of 93×, 77×, and 62× with windows of 10 ms, 100 ms, and
1 second respectively. Batch sizes larger than 4 MiB do not
produce significant improvements since throughput reaches a
plateau near 90× 106, 68× 106 and 48× 106 inputs/sec with
the three window lengths respectively.

Observation 1. SPRINGALD needs proper batching of the
data stream to achieve high throughput and amortizing data
transfer costs. Bathes of a few megabytes are sufficient for
this purpose.

Fig. 12 (center) shows the results of the second experiment
where we fix the batch size to 4 MiB and we change the slide
parameter from 101 to 105 usec. The experiments consider
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the same window lengths of 10 ms, 100 ms, and 1 second,
and still nw = 1 windows in the B-PAT. With slides that are
greater than 1000, SPRINGALD achieves approximately the same
throughput for all the considered window lengths (nearly 220
million inputs/second). With small slides (i.e., more frequent
windows), the throughput is slightly lower with longer windows,
as expected. With a slide smaller than 1000 usec (shown in the
zoomed subplot in the same figure), throughput is 12% and 21%
lower with windows of 100 ms and 1 second compared with
smaller windows of 10 ms respectively.

Using nw > 1 has the advantage of increasing the amount
of data parallelism to effectively exploit the GPU device (i.e.,
B-PAT has more leaves and internal nodes). Furthermore, since
the B-PAT leaves are updated every time new sb = (nw · s)/p
complete pane results are made available by PLS, with higher
values of nw we can amortize the transferring cost between PLS
and WLS, and the overheads of the kernel in Fig. 10.

Fig. 12 (right) shows the results by varying the parameter
nw from 1 to 1000. We measure the throughput with a window
length of 1 second and four different slides of 101, 102, 103,
and 104 usec. We fix the batch size to 4 MiB, and we use
fa = sum without keys. As we can observe from the figure,
greater values of nw are useful to optimize throughput. This
is evident mainly with small slides. With a slide of 101 usec,
the initial throughput with nw = 1 is extremely limited: only
1.5 million inputs/sec, which increases up to 293 million in-
puts/second with nw = 1000. The improvement is remarkable
(197×), while it is still evident but smaller with greater slide
values: 4.3× with a slide of 100 usec, and of 15% with slides of
103 and 104 usec. This confirms that increasing the number of
consecutive windows represented in the B-PAT is pivotal.

Observation 2. SPRINGALD provides high throughput with
any configuration of (w, s) parameters provided that a prop-
erly sized nw value is chosen.

The last experiment of this part focuses on the impact of the
parameter t in Table I, i.e., the number of sources connected
to SPRINGALD (i.e., each running in a dedicated CPU thread).
More threads are of great importance to provide new batches
to compute, avoiding the generation phase of the stream being
a bottleneck. Fig. 13 shows the results by varying the threads
from 1 to 64 (filling all CPU cores of the machine). Results have
been collected with different batch sizes and fixing the window
length and slide to 1 second and 104 respectively. Data streams
in this experiment are still provided without distinct keys, using
fa = sum, andnw is set to 100 to achieve the highest throughput
possible, as previously discussed.

As we can observe, a proper combination of batch size and
parallelism allows SPRINGALD to achieve high throughput, up to
300 million inputs/second. With a small batch size of 256 KiB,
scalability is limited and the highest throughput is 50 million
inputs/second, using four threads generating data by partitioning
the input dataset. With a batch size of 4 MiB (already used in the
previous experiments as the default size), the highest throughput
is measured with 20 threads (showing a scalability of about

Fig. 13. Throughput provided by SPRINGALD by changing the number of
threads and using different batch sizes.

Fig. 14. Impact of the number of keys and their distribution.

14×). It should be observed that increasing the number of threads
beyond this limit does not pay off: the throughput provided by
SPRINGALD is limited by the PCIe bandwidth.

Observation 3. Batches need to be continuously provided
to SPRINGALD by parallel sources in the data-flow graph.
Parallelization of the input stream generation/reading (e.g.,
from files) is pivotal.

C. Impact of Keys

In this part, we analyze the impact of having more keys in the
stream.

Fig. 14 (left) shows the results conducted using fa = sum,
a window of length 1 second, and a slide of 104 usec. We vary
the number of distinct keys in the stream, from 1 to 500, and we
consider two distributions: uniform and a Zipfan distribution
with skewness parameter 0.9, which generates a highly skewed
distribution of keys in the stream. So, we can study the impact of
the number of keys and of their imbalance. The throughput with
more keys drops significantly. In the experiment with 500 dis-
tinct keys, throughput decreases by 4.54× (uniform) and 4.11×
(skewed) compared with the execution without distinct keys.
Throughput is lower with the skewed distribution compared with
the same execution with the uniform distribution of keys.
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Fig. 15. Peak throughput (in inputs/sec and in GiB/s) by SPRINGALD using
different aggregation functions.

Throughput can be improved with a proper batching strategy
performed by the Emitter nodes (see Section III-A), which
are the entities in charge of preparing batches transmitted to
SPRINGALD from the replicas of the preceding operator in the
data-flow graph. Instead of filling the batches in FIFO order,
as done in the previous experiment, we have designed a more
optimized approach where batches are prepared in order to
not contain more than δk > 0 different keys, where δk is a
user-defined parameter. Fig. 14 (right) shows the results by
repeating the previous experiment with the optimized Emitters
working with δk = 25. Throughput decreases smoothly with
more keys and then reaches a plateau with several hundreds of
keys. Throughput remains unaffected because optimized Emit-
ters keeps more pending batches and emit them once they have
been completely filled (however, they will have no more than δk
distinct keys each). The performance drop is now moderate: from
1 to 500 keys we lose −16% (uniform) and −17% (skewed).

The reason for the good performance of SPRINGALD with
skewed distributions and optimized batching is that tuples with
the same key are processed in parallel on the device owing to
the associativity of the binary window operator to compute.
Even if most of the tuples belonged to the same subset of keys,
input batches would be processed in parallel on the device. The
key distribution has instead effect on latency, since in case of a
skewed distribution more time is needed to buffer the required
number of tuples of those keys with a relatively low probability,
by delaying their computation until a sufficient threshold is
achieved.

Observation 4. SPRINGALD tolerates streams with hun-
dreds of different keys and skewed distributions with small
impact on the provided throughput.

D. Changing the Aggregation Function

The aggregation function plays a minor role in the achieved
throughput, although we have measured some differences.
Fig. 15 shows the peak throughput achieved by SPRINGALD

with different functions. We report over each bar the exploited
bandwidth in GiB/s. While sum provides the best result (very
similar to count, max and min), others achieve slightly lower
throughput (e.g., avg, maxcount and mincount). Lower results

Fig. 16. Performance of SPRINGALD with out-of-order data streams.

are achieved with sstd and pstd that require more calculations
per input to update each partial aggregate.

E. Impact of Out-of-Order Data Streams

SPRINGALD is the first GPU-accelerated sliding-window op-
erator working with out-of-order streams. Therefore, in this
part we evaluate its effectiveness in coping with disordered
streams, with a controlled average delay of tuples produced by
the sources. Results are reported in Fig. 16 (left), where we use
fa = sum, a window of 1 second, different slides of 101, 102,
103 and 104 usec, and a fixed batch size of 4 MiB. We vary the
average delay of tuples from zero (in order) to a large delay of
1 second. Delays are uniformly distributed.

As we can see in Fig. 16 (left), SPRINGALD processes out-of-
order data streams as fast as in-order streams. Indeed, throughput
remains constant by increasing the average input delay, since
SPRINGALD updates pane results efficiently by processing tuples
within each batch in an out-of-order fashion. The consequence of
the stream delay is instead evident in the memory consumption
of SPRINGALD, which is represented in Fig. 16 (right). We
measure the average number of pending pane results kept by the
PLS, which increases proportionally to the average delay since
more pending results need to be kept and updated. Then, when an
input watermark closes a set of pane results, they are copied in the
corresponding B-PAT by the WLS. This experiment confirms the
effectiveness of SPRINGALD in processing out-of-order streams
efficiently.

Observation 5. SPRINGALD is insensitive to the degree of
out-of-orderliness of the stream.

F. Speedup

We study the speedup of using the GPU compared with a
handmade C++ parallelization of the PLS and WLS stages
running in parallel on the CPU cores. Fig. 17 shows the results
of two experiments by variating two important parameters. The
first (left) shows the speedup by varying the slide parameter,
while the second (right) variates the number of distinct keys.
The CPU baseline and SPRINGALD are configured with the best
parameters in terms of batch size and parallelism degree. We
use fa = sum, nw = 100 (for SPRINGALD), and a window of
1 second.
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Fig. 17. GPU versus CPU speedup by varying the slide parameter (left) and
the number of keys (right).

Fig. 18. Profiling results with NVIDIA Nsight systems.

Fig. 17 (left) shows the results with different slides while
the number of keys is fixed to 100. With smaller slides, so a
more computationally-demanding scenario with very frequent
windows, the speedup in favor of GPU processing is generally
better. It ranges from 40× to 4.1× with the considered slide
values. Fig. 17 (right) shows the speedup by changing the
number of keys. The slide parameter has been fixed to 104 usec.
The highest speedup of 20.6× is obtained with one key, and
decreases with more keys with a minimum of 4.1× since the
number of keys expresses the parallelism exploitable by the CPU
baseline.

G. Profiling Results

We study the execution time breakdown of a short run of
SPRINGALD with windows of 1 second, slide of 104 usec, one
key, fa = sum, nw = 100, and the best batch size to achieve the
highest speedup. This analysis has been conducted by profiling
the execution with the Nsight Systems tool (nsys) provided by
NVIDIA. Fig. 18 shows two analyses corresponding to two
options provided to the profiler: –reportcudagpukernsum and
–reportcudaapisum. The first profiles the kernel execution times,
while the second the ones of the main CUDA API calls.

As shown in Fig. 18 (left), the kernels processing
batches (i.e., the ones used by the thrust :: sortbykey and
thrust :: reducebykey primitives, and the lifting kernel) are exe-
cuted more frequently and take a higher portion of the execution
time. As expected, the other kernels are executed less frequently
since they are launched to aggregate pane results (once they are
closed by a watermark) into window results. The contribution of
kernels used to build or update the B-PAT is instead negligible.
So, even if their parallelism exponentially decreases by raising
the levels of the tree, their impact is amortized with the chosen
nw value.

Fig. 19. End-to-end average latency evaluation.

Fig. 18 (right) shows the execution times of the main CUDA
API calls. The component with the highest contribution are the
API to launch kernels, while H2D and D2H memory copies (and
synchronization to wait for kernels completion) are below 20%
both, reflecting a good efficiency of SPRINGALD. Furthermore,
after an initial transient phase where the SPRINGALD implemen-
tation allocate GPU memory for each new key in the data stream,
the overall device utilization becomes stable and it is within the
range 90-96%.

H. Latency

Fig. 19 shows the results of the end-to-end latency (i.e.,
source-to-sink elapsed time). We consider windows of 1 second,
slide of 104 usec, 1,000 keys, fa = sum, nw = 100. In this
experiment, we change the batch size and the key distribution.
Latency increases with greater batches since the buffering delay
dominates. It is interesting that with a skewed distribution of
keys, latencies become higher with large batches. This is due to
the contribution of keys having a low probability, which spend a
large time in the emitter nodes responsible for properly buffering
them in sufficiently large batches. However, SPRINGALD always
provides bounded latencies in the order of a few hundred of
milliseconds, which is comparable with the latency of traditional
scale-out SPEs like Flink.

I. Comparison With State-of-the-Art

We compare SPRINGALD with two state-of-the-art (SOA)
competitors. For the first competitor, our goal was to select a
prototype allowing window aggregation on heterogeneous archi-
tectures comprising CPU+GPU devices. Our choice has fallen
on SABER [20] which, although limited to in-order streams only,
allows leveraging a GPU device to accelerate the aggregation
process. Other prototypes described in research papers (such as
the ones in [21]) did not provide a public repository or binaries.
About the second competitor, we looked for a prototype coping
with out-of-order streams. Since no GPU alternative is available
for such a scenario, we consider SCOTTY [22], an out-of-order
CPU-only window aggregator made available in different SPEs
(i.e., Flink, Storm, and Spark). Other CPU-only options like
the ones in [18], [19] still have in-order stream processing
constraints.
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Fig. 20. Comparison with SABER.

Fig. 21. Comparison with SCOTTY.

1) Comparison With SABER: Fig. 20 (left) shows the result
of the same experiment proposed in the paper of Koliousis et
al. [20] with fa = avg, count-based windows of 32 KiB (equal
to 1024 tuples of 32 bytes each) and a slide ranging from 64
bytes to 32 KiB. The general qualitative behavior for all SPEs
is that with larger slides throughput increases. For SABER, the
figure shows two independent lines: the first (GPU-only) is the
execution where only the GPU (and one host thread for launching
kernels and performing host-device data transfers) is employed
in the sliding-window execution; the second (hybrid) uses the
full potential of SABER, which processes sliding windows using
both CPU cores and the GPU.

As we can observe, the performance of SABER is mainly due
to the CPU contribution, since the GPU-only version achieves a
peak throughput of 2.3 GiB/s at most, while the hybrid version
reaches 5.34 GiB/s with large slides. SPRINGALD outperforms
both versions: it achieves a peak throughput of 7.30 GiB/s,
and it exhibits +260% and +24% higher throughput on av-
erage compared with SABER (GPU-only and hybrid versions
respectively) with the different considered slide values. We
further point out that the superior performance exhibited by
SPRINGALD comes with the additional feature of processing
out-of-order data streams efficiently, which is not supported by
SABER. As reported in Fig. 20 (right), the superior performance
of SPRINGALD is confirmed also with a real-world application
like the YSB, where the throughput improvement is of 68% in
the best conditions of both systems.

2) Comparison With SCOTTY: Fig. 21 (left) shows a compari-
son between SPRINGALD and SCOTTY. The latter is configured to

be used in Apache Flink. The experiment considers a time-based
window of 60 seconds and different sliding values ranging from
100 ms to 60 seconds. We use an average delay of 1 second to
emulate out-of-order streams that are supported by both SCOTTY

and SPRINGALD.
Although SCOTTY has several analogies with our design (it

is based on a slicer component similar to our PLS), it is im-
plemented in Java and for CPU processing only. Furthermore,
it leverages parallelism only by processing tuples of different
keys by different threads, while the ones with the same key are
processed sequentially. This leads to a significant improvement
in favor of SPRINGALD. The difference is of two orders of magni-
tude: SCOTTY processes at most 4 million inputs/second, while
SPRINGALD more than 300 million, exhibiting a stable behavior
with all the considered slides. The reasons for this improvement
are related to the GPU exploitation done by SPRINGALD. Fur-
thermore, SCOTTY inherits the overheads of Flink as studied by
Zhang et al. [28]. However, SCOTTY provides some features not
currently supported by SPRINGALD, such as running aggregates
using different window definitions simultaneously by sharing
partial results, a feature that we would like to add to SPRINGALD

in the future. Such a superior performance is shown also in the
YSB, with a significant improvement in throughput of 12.2×.

Observation 6. SPRINGALD revealed more efficient than
GPU-based SOA solutions for in-order stream processing.
Furthermore, its throughput is remarkably higher than CPU-
based out-of-order streaming aggregators integrated into
popular open-source SPEs.

VII. RELATED WORKS

Algorithms for Sliding-Window Aggregation Sliding-window
aggregation has been the subject of extensive research over the
years. The bucket algorithm [9] does not leverage partial overlap-
ping between consecutive windows, which are computed from
scratch. Techniques to share computations have been proposed
in the literature [10], [11], [29], [30], where partial aggregates
are stored in different data structures (e.g., binary trees [12],
stacks [15], deques [13]). The idea of sharing partial results
has been extended to the multi-query scenario [14], where more
queries apply different aggregates over sliding windows over the
same stream. Most of the previous approaches support in-order
streams (i.e., ordered by timestamps). Out-of-order data streams
pose additional challenges to sliding-window aggregation since
a window is considered complete only when the first watermark
closing it has been received. Techniques to deal with such a
scenario have been presented in [16], [31]. Scotty [22] is a recent
out-of-order operator supporting different window semantics
and aggregation functions in popular SPEs like Flink, Storm,
and Spark.

Type of Aggregation Functions Most of the research contri-
butions provide support for associative and commutative ag-
gregation functions, which represent the most common uti-
lization of aggregates. Other kinds of aggregation functions
exist, and they often pose additional challenges. FlatFat [12]
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supports non-FIFO windows with aggregation functions that can
be non-invertible and non-commutative. DIBA [15], providing
worst-case constant aggregation time complexity, requires the
aggregation function to be associative and the window semantics
to be FIFO. Associative but non-commutative aggregations are
also supported by SlickDeque [14], which however provides
different implementations for invertible and non-invertible func-
tions. Non-algebraic aggregates like holistic ones (e.g., count-
distinct, mode, and quantiles) pose serious challenges to be
computed incrementally since they need to maintain a global
state for the entire aggregation. An approach for a subset of
them has been also proposed [32].

Window-Based Semantics Count and time windows (both
tumbling and sliding), which are the ones considered in this
paper, adopt the FIFO semantics, i.e., the oldest input added to
the window is also the first one that will be evicted. Non-FIFO
semantics have been defined for specific use cases, such as delta-
based windows [33]. Windows can also be classified into for-
ward context-free (FCF) or forward context-aware (FCA) [23].
In FCF windows, the windows to which a new input belongs
can be determined at the instant when that input arrives at the
system. In FCA windows, this mapping cannot be established at
that time, since it depends on inputs that will arrive in the future.
Aggregates over FCA windows pose additional challenges to be
parallelized [34].

Hardware Accelerated Sliding-Window Aggregation The last
years have witnessed the rapid diffusion of SPEs accelerating
sliding-window computations. StreamBox [17] is an SPE target-
ing multicores, where relational operators are scheduled onto a
pool of workers for processing batches of data. The scheduling is
performed in a centralized fashion, using lock-based primitives.
Saber [20] is a relational SPE with support for both count and
temporal windows. It is considered highly efficient, owing to
its innovative support for hybrid architectures (it leverages both
CPU and GPU). Its recent extension, which however supports
only multi-core CPUs, is LightSaber [18]. Both Saber and
LightSaber processes streams that are produced in-order by
data sources. Grizzly [19] is a code generation approach to
generate efficient code for relational stream processing. It targets
sliding-window computations and does not provide support for
out-of-order data streams. A recent SPE targeting integrated
GPUs has been proposed [21]. Although it provides better
performance than SABER on integrated GPUs, a comparison with
it was not possible since the source code has not been publicly
released.

VIII. CONCLUSIONS AND FUTURE WORK

SPRINGALD is an operator processing count- and time-based
sliding windows on GPUs. It tolerates out-of-order data streams
in an effective manner. The experimental evaluation showcases
the effectiveness of SPRINGALD, which provides a novel contri-
bution since it accelerates sliding-window aggregates on GPU
devices while tolerating out-of-order data streams. In the future,
we plan to study the impact of GPU contention in scenarios
where multiple SPRINGALD instances are used in the same ap-
plication or in different applications running concurrently on
the same machine. Furthermore, SPRINGALD can be extended to

support multiple window definitions (i.e., with different length
and slide parameters) applied simultaneously over the same
stream.
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