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CAD2SLAM: Adaptive Projection Between CAD
Blueprints and SLAM Maps

Martin Bayon-Gutiérrez
Jos€é Alberto Benitez-Andrades

Abstract—Robotic mobile platforms are key building blocks for
numerous applications and cooperation between robots and hu-
mans is a key aspect to enhance productivity and reduce labor cost.
To operate safely, robots typically rely on a custom map of the envi-
ronment that depends on the sensor configuration of the platform.
In contrast, blueprints stand as an abstract representation of the
environment. The use of both CAD and SLAM maps allows robots
to collaborate using the blueprint as a common language, while also
easing the control for non-robotics experts. In this work we present
an adaptive system to project a 2D pose in the blueprint to the
SLAM map and vice-versa. Previous work in the literature aims at
morphing a SLAM map to a previously available map. In contrast,
CAD2SLAM does not alter the internal map representation used
by the SLAM and localization algorithms running on the robot,
preserving its original properties. We believe that our system is
beneficial for the control and supervision of multiple heterogeneous
robotic platforms that are monitored and controlled through the
CAD map. Finally, we present a set of experiments that support
our claims as well as open-source implementation.

Index Terms—Software architecture for robotic and automation,
computational geometry, mapping computational geometry.

1. INTRODUCTION

CCURATE and reliable mapping of the environment in

which a robot operates is fundamental for the use of such
platforms. To gather an initial map, in which to plan the missions
for the robot, many systems have been proposed since the
origin of the so-called Simultaneous Localization and Mapping
(SLAM) techniques in the 1980s [1]. SLAM systems use a
series of sensors, such as cameras, laser rangefinders or wheel
encoders, to estimate the ego-motion of the robot while a map
of the environment traversed so far is constructed [2], [3], [4].
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Fig. 1. CAD2SLAM adaptive projection in the DEMO environment. Poses in
the CAD blueprint (top) are projected to their corresponding pose in the SLAM
map (bottom).

For autonomous navigation, the map requires to be both
topologically consistent and show an accurate local geometry.
State-of-the-art SLAM pipelines provide locally accurate rep-
resentations of the navigation environment and by revisiting
places seen in the past they enhance the map’s global consistency
through the loop closures. However, depending on the shape of
the environment or operational restrictions in steering the robot,
loop closures may not be possible. In these cases the map might
exhibit the effects of the increasing drift affecting the open loop
estimator. The map built by a SLAM system is typically targeted
at localization, and it depends on the sensors used: in case a
Visual SLAM system is used, the map consists of 3D points
with the attached appearance, while LiDAR maps are typically
represented as occupancy grids. Furthermore, SLAM maps are
typically cluttered with noise and occlusions, that appear as
artifacts and render the map less intuitive to non-robotics experts,
or might not even resemble blueprints.

In contrast, Computer Aided Design (CAD) blueprints or
emergency evacuation plans are part of the common knowledge,
since people are typically exposed to these types of representa-
tion of buildings, and may contain useful semantic information
about the environment. However, CAD blueprints may lack the
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metrical accuracy needed for a robot to autonomously navigate
in the environment [5], [6].

The concurrent use of a SLAM map and a CAD blueprint
allows the robot to use path-planning and navigation tools in
its own internal representation of the environment while the
operator is able to visualize the state of the robot and issue
commands in an easy-to-understand blueprint. Moreover, the use
of a common CAD blueprint provides an excellent opportunity
to facilitate the collaboration of multiple robots that operate in
the same environment, each with its own sensor configuration,
SLAM map and navigation stack. By projecting the blueprint
into each of the robots internal map, and vice-versa, the CAD
blueprint can be established as the baseline for the collaboration
among the mobile platforms.

Previous works have studied the combination of two repre-
sentations of the environment by rigidly overlaying a blueprint
onto the SLAM map [7] or by the definition of localization
strategies using the robot sensor readings on a sketch of the envi-
ronment [8]. However, these approaches fail to accurately map
the environment when large distortions or noise are present on
the SLAM map. In alternative to these methods, we propose an
adaptive projection system which is able to robustly mitigate ef-
fects such as skewing, bending or shortening of corridors, typical
in SLAM maps, while preserving local consistency. In contrast
to other methods, our approach does not aim at compensating
the distortion of the map, but rather at seeking a function that
maps corresponding poses between different representations of
the environment. We represent the environment with a grid-mesh
covering the free space. The mesh itself is modeled as a non-rigid
body where the poses of the nodes are elements of SE(2)
and nearby nodes are connected by soft SF/(2) constraints that
preserve the initial configuration of the mesh. The mesh can be
warped by imposing the position of specific control points, that
are chosen to represent the same location in the SLAM maps and
in the blueprint. The problem of warping the mesh is modeled
as a Pose-Landmark Graph Optimization problem (PLGO) [9],
[10], [11] where the poses of the mesh represent the poses along a
virtual trajectory of the robot and the control points are modeled
as fixed landmarks. To use our approach, the installer is only
required to provide a set of corresponding points in the CAD
blueprint and the SLAM map. Since no specific assumptions
are made on the SLAM map, its representation can be arbitrary
as long as it is possible to identify correspondences in it, hence it
is sensor and robot independent. This facilitates, for example, the
collaboration between different types of robots, e.g., shelf carrier
robots and automated forklifts, equipped with LiDAR sensors
at different heights, thus perceiving different representations of
the same environment.

Qualitative and quantitative experiments have demonstrated
that our system is able to accurately and quickly project any
pose in the blueprint to the SLAM and vice-versa, which may
be useful in several environments that require the collaboration
between several robots and/or with human operators.

Fig. 1 presents a blueprint and its corresponding SLAM map,
in which the red arrows represent robot poses that are projected
from the CAD blueprint to the SLAM map, while preserving its
local consistency.
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The main contributions of this work are the introduction of the
problem of adaptive projection between two maps that represent
the same environment and the introduction of CAD2SLAM, a
methodology for its resolution, based on the use of a set of
correspondence points in both maps.

An open-source implementation of CAD2SLAM, as well as
the dataset used, extended experiments and additional informa-
tion is available at the project web page at: https://cad2slam.
martinbayon.com.

II. RELATED WORK

In the literature, the integration of a SLAM map with other
sources of information has been mainly addressed by using these
sources as a prior to be fed to the SLAM pipeline. Most of the
authors decided to adapt the SLAM map to a simple sketch of
the environment, with just a few details such as the position of
the corners of a room or some furniture elements.

One of the first works on the matter was proposed by Seta-
laphruk et al. [12], who described a navigation method aimed to
control a mobile robot by issuing commands on a floor map of the
environments. This system is based on the use of a topological
map in the form of a Voronoi diagram that allows the robot to
localize in the environment by detecting the intersection between
corridors. Subsequently, Mielle et al. [13] presented a similar
system to match a sketch map and a robot map.

Parekh et al. [14] presented an initial work on the adaptation
of SLAM and a sketch of an environment by modeling a cor-
respondence system for the objects present in the environment.
The authors made the assumption that the number of objects in
the sketch is the same as in the SLAM map, and do not provide a
method for mapping the free space of the environment, but only
the objects.

Behzadian et al. [8], Boniardi et al. [15] and Bowen-Biggs
etal. [5]investigated the use of hand-drawn maps of an indoor
environment for robot localization. Behzadian and Boniardi
modeled the sensor readings of the robot to the user map and
used Monte Carlo localization (MCL) to localize the robot. This
system is able to distinguish the room in which the robot stays,
but is unable to provide accurate localization. Alternatively,
Bowen-Biggs manually selected a set of corresponding points
in the blueprint and the SLAM map to optimize a system that
projects points in the reference frame of the blueprint to the
SLAM map reference frame. This system is used to specify
a no-go zone on the blueprint that is transformed to the robot
internal representation of the environment. However, the authors
do not provide details on the system, and just introduce it as a
one-to-one mapping with fairly minimal inaccuracies. Addition-
ally, the authors present a user study that supports the idea that
non-trained users are more comfortable working with a blueprint
than with a SLAM map of the environment.

Contrary to previous works, Boniardi et al. [6] aimed to
combine the CAD blueprint with SLAM by online augmenting
the floor map with a pose-graph LIDAR SLAM map, allowing
the robot to also navigate on environments that differ from the
blueprint.
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Kakuma et al. [16] and Li et al. [17] also proposed the
use of graph structures to align floor maps and SLAM maps.
The former used region segmentation and graph matching to
enrich the SLAM map with semantic information from the
floor map, while the latter develops a topometric map from the
environment that only requires high accuracy at selected regions
e.g., intersections of corridors.

A topometric approach was also employed by Mielle et al.
[18]. Authors developed a custom SLAM system that benefits
from matching between the corners and walls in an emergency
map and those detected by the robot to merge both means of
information into the resulting SLAM map. Authors also pro-
posed a subsequent work [19] in which they segment a sketch
map and SLAM map and match the corresponding regions using
environment descriptors.

More recently, Wang et al. [7] used Visible Light Positioning
(VLP) landmarks to align a layout map with a SLAM map. The
authors described the use of a rigid transformation matrix that
could translate, rotate and scale the layout map and result in the
alignment of both maps, which could be insufficient for large
environments where the SLAM map distortion is uneven along
the environment.

Shahbandi et al. [20], [21] presented a methodology for the
alignment of two maps of the environment by means of region
decomposition and a non-linear transformation. However, the
computational burden of the system renders it unsuitable for
real-world applications, as acknowledged by the authors.

Other topometric methods have proven to be locally accurate
for the localization of mobile robots [22], [23], [24]. However,
these techniques do not take into account the possibility of using
external sources of information, such as CAD blueprints, and are
limited to the information provided by the robot during the map
construction phase.

In contrast to previous works, our proposed method does not
directly combine the CAD and SLAM data, nor does it interfere
with existing SLAM pipelines, so it can even be used with
existing SLAM maps. Additionally, we are not limited by the
topological shape of the environment, as CAD2SLAM provides
a pose to pose projection.

Our contribution is in the domain of the adaptive projection of
a CAD blueprint onto a SLAM map and vice-versa. We present
a novel paradigm to quickly and reliably project a pose in the
reference frame of a blueprint to its corresponding pose in the
reference frame of a SLAM map, and provide a set of quantitative
experiments to evaluate the accuracy of the projection.

III. OUR APPROACH

We want to compute a function f : SE(2) — SE(2), that
projects a pose in the blueprint onto a pose in the SLAM map.
This projection is sufficient to issue location goals to the platform
on the blueprint map, and let its internal algorithms operate
on the richer and more up-to-date SLAM map. If we want
to monitor the current location of the platform on a blueprint
map, we need to apply the inverse mapping. We represent
f(-) as a set of samples X = {(X? X%)}. Here X" € SE(2),
and X® € SF(2) are two corresponding poses in the blueprint
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Fig. 2. Diagram of the proposed system. On top, the CAD Blueprint, the
SLAM map and the user-selected reference points are provided to the optimizer,
that produces the CAD2SLAM projector. On the bottom we represent the
pipelines for issuing navigation goals to the robot (red arrows) and announcing
the current position of the robot (blue arrows).
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and in the SLAM map respectively. We represent the elements
X € SE(2) with homogeneous transformation matrices [R. t],
where we omit the last row [0 1] for convenience.

To evaluate the value of X® = f(XP) at a query point X}
we proceed by interpolation. More in detail, we consider all
samples X, C X whose Euclidean distance from the query is
below a threshold as:

Xy = {(X7,X5) € X | |7 — ] €} @)

Once the neighbors X, of the query point X, are computed,
we determine the pose in the target map with respect to each
element in the set as:

Xy =X;-XpX) @)

That is, we compute the query pose in the reference frame of the
sample XP in the domain, and we apply this transformation to
the transformed element of the codomain X?.

We compute the final solution as the weighted mean of the
{X5*}. The weights are inversely proportional to the Euclidean
distance between the query point and the sample XP. The
translation of the result will be the weighted average of the
translations, whereas for the orientations we use circular av-
eraging [25].

A similar procedure can be applied to obtain a pose in the
blueprint reference frame given a pose in the SLAM map as
illustrated in Fig. 2.

Since R? is a subspace of the SE(2) group, the same proce-
dure can be applied to project 2D points in the environment, by
neglecting the § component.

With such a simplistic yet powerful representation we can
model arbitrary distortions that include shears, rotations or short-
ening of corridors, among other common phenomena present in
SLAM maps, while maintaining local and global consistency on
the projection.

To the best of the authors” knowledge, this is the first paper to
present a methodology for the adaptive projection between CAD
blueprints and SLAM maps representing the same environment
that relies on a graph structure and is supported by a set of
correspondence points.

A. CAD2SLAM Optimization

As presented in Section 111, the value of the (XP, X#) pairs is
the controlling parameter of the projection in the neighborhood
of a pose. In this work, we deterministically sample a number
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Fig. 3.  The CAD blueprint is used to define a non-rigid mesh (a) that is
augmented with anchor points in both maps (red circles). After optimization
(b), the mesh resembles the SLAM map and a pose in one map can be projected
to the other map.

of X} poses on the blueprint and we propose the use of some
reference points in both maps to account for distortions (See
Fig. 3).

To obtain the parameters of the set X we conduct an op-
timization process in which the value of {X$} is modeled
as a parameter of the optimization, under two types of soft
constraints:

o The shape preserving constraints, that ensure the local
structure to the poses { X3} to be similar to the structure to
their counterparts {XP?} in the blueprint.

e The anchor constraints, that enforce pairs of corresponding
control points to be the same after the projection is applied.

For convenience, we employ the optimization paradigm of
the factor graph [26]. In our problem, the variables of the
factor graph correspond to the poses in the blueprint {X?} and
the factors are of two types corresponding to the constraints
mentioned above.

B. Shape Preserving Constraints

We use a rasterized image of the blueprint and define a non-
rigid grid-like mesh for the free space, where each element of
the grid is included in the factor graph as {XP}.

To avoid large distortions of the global shape of the corri-
dors and rooms represented in the blueprint, we include a soft
constraint to enforce neighboring variables to preserve their
relative orientation. Fig. 3 presents an example of the grid mesh
on the blueprint and the constraints. We consider 4-neighbors
connectivity and model these constraints as pose-pose factors of
a pose-graph optimization problem [27] as follows:

e(X;,X;) =log (Z;;'X;'X;). 3)
Here X; and X ; represent two neighboring variables in the grid
representation and Z;; = XE’&X? denotes the relative pose
of X']? in the reference frame of XE in the blueprint, while
log(+) € R? represents the pose vector [z y 6] extracted from
the transformation matrix in the argument. These constraints
penalize the configuration of variables that during optimization
are moved too far apart w.r.t. their initial relative configuration
modeled by Z;;.

For each of these factors, we can also specify an information
matrix €2;; that models the error along different directions
depending on Z;;. We found it beneficial to allow the factors
to be softer along the tangential direction of the factor t;;, and
stiffer along the orthogonal direction tfj
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To this end, let 1., A, and A¢ be the longitudinal, transversal
and rotation components of an information matrix. We compute
the information matrix €2;; as:

A = diag(Ay,Ay)

1
R-:—[ti- tﬂ
Y Iyl LY

R;AR] 0

iy = 0 Ao
Experimental tests allowed us to validate that the use of this
information matrix can limit the occurrence of undesired ar-
tifacts, such as bending of the corridors, when A, =1 and
Ay = Ao = 10.
Fig. 3 presents the DEMO environment graph before and after
optimization.

C. Anchor Constraints

To account for arbitrary distortions between the blueprint
and the SLAM map, we rely on a set of reference points in
both maps that will constrain the optimization. Given rasterized
images of the blueprint and the SLAM map, an operator can
provide a number of points in both images that represent the
same position in the real world, such as corners or columns.
The more correspondence points in a region of the environment,
the more constrained the mapping in that region will be and,
consequently, more accurate. Based on this simple heuristic the
operator can add more points in those areas where the robot
has to carry on specific tasks that require the interaction with
other appliances or robots. Moreover, the reference points can
be added/removed dynamically, to control the outcome of the
optimization.

Visible Light Positioning (VLP) systems [28], fiducial mark-
ers [29] or corner detection systems [30], [31] could be used to
provide the reference points automatically.

Let ¢ = (p®, p*) be a pair of 2D reference points, where p”
denotes the point in the blueprint map and p?® its corresponding
pointin the SLAM map. Let XE’ be the pose variable on the graph
of the blueprint closest to p?, and let X; be the variable in the
SLAM map corresponding to XP. If the two maps were identical,
the points expressed in the reference frame of the observing
poses would be the same. Hence we can add a factor to the
graph modeling this constraint, as follows:

eq (Xi) =X, 'p* — X! 'p" 4)
As a result, the reference points pairs will enforce the opti-
mization process to account for the deformations present in the
SLAM map with respect to the blueprint map. Fig. 3 presents
the correspondence points pairs for the DEMO environment.

IV. EXPERIMENTAL EVALUATION

Once we have constructed our factor graph structure, we
employed the SRRG Solver [32] for the optimization by means
of Least Squares (LS), which results in the configuration of the
variables X, that minimizes (3) and (4).
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maps of the environments.

We have conducted a series of experiments to measure the
accuracy and validate the usefulness of our proposed method,
and we present both quantitative and qualitative results in several
test environments.

We equipped a mobile robot with a 2D LiDAR scan and we
evaluated CAD2SLAM in the following test scenarios:

o DEMO: A synthetically generated environment, designed
to prove the effectiveness of our system even in the most
challenging scenarios with arbitrary distortions.

® DIAG: Dipartimento di Ingegneria informatica, automatica
e gestionale, Second floor, Sapienza Universita di Roma,
Italy

e FEIII-0: Escuela de Ingenieria Industrial, Informatica y
Aeroespacial, Ground floor, Universidad de Ledn, Spain

e FEIII-3: Escuela de Ingenieria Industrial, Informética y
Aeroespacial, Third floor, Universidad de Ledn, Spain

e MIC: Médulo de Investigacién Cibernética, First floor,
Universidad de Leén, Spain

We employed Plug-and-Play SLAM [33] on the real environ-
ments to generate the SLAM maps, which are locally consistent.
However, its global consistency is affected by drift, generating a
bending effect that is more noticeable in the DIAG environment
because the environment does not have loops while constructing
the SLAM map.

Sapienza Universita di Roma provided a printed CAD
blueprint for DIAG environment, while Universidad de Le6n
provided digital CAD blueprints for EIII-0, EIIl-3 and MIC
environments. We preprocessed the CAD blueprints to only
include those regions of the building that are represented in the
SLAM map. Please note that for some of the environments, the
blueprint might lack much of the details of the SLAM map,
due to the environment being cluttered with objects that are
not represented in the blueprint, e.g., columns, chairs, cabinets,
ornamentation, etc. CAD blueprints and SLAM maps for these
environments are presented in Fig. 4.

A. Mapping Accuracy

Although we cannot directly measure the accuracy of our
system since neither the blueprints nor SLAM maps can be

(c) EII-0

(d) EIII-3 (e) MIC

Test environments used for the experiments. Top row presents the CAD blueprints of the environments, while the bottom row corresponds to the SLAM

defined as ground truths, we can indirectly measure the local
accuracy for a mapping pair X® = f(XP") by comparing two
virtual scans generated from the corresponding positions in
each map. The rationale behind this experiment is that, under
perfect circumstances, one should get identical observations,
hence measuring their difference gives a hint of the accu-
racy of the mapping f(-). Additionally, we seek to recreate
a realistic scenario for the use of CAD2SLAM in which a
robot is to be controlled by a human operator by issuing goals
in the CAD blueprint that are projected to the robot SLAM
map.

In this experiment, we ask ahuman operator to select (p?, p'g3>,
two poses on the CAD blueprint that correspond to the robot cur-
rent and goal positions respectively. We employ CAD2SLAM
as indicated in (2) to obtain (p;, pj), the projection of those
positions in the SLAM map. This process would be sufficient for
the robot to navigate to the desired goal using its own navigation
stack and SLAM map.

We use an off-the-shelf path planning algorithm to predict the
robot path on the blueprint map and applied again CAD2SLAM
for every intermediate position p} of the path to acquire the
projection of this path on the SLAM map, p§ as presented in
Fig. 5.

Given the path in both maps, we simulate SP and 8%, two
LiDAR scans from the blueprint and SLAM maps given at p?
and pj respectively.

We apply again CAD2SLAM for every point in S® to obtain
SP*, the LIDAR scan of the blueprint in the SLAM map reference
frame, and we compare that to S° by using a nearest neighbor
criterion:

B= Y[t st ®
1:N

Please note that the CAD blueprint and SLAM map may differ
significantly due to the environment being cluttered with objects
that are not represented in the CAD blueprint. To account for this
event, we employ a threshold value on the point-to-point com-
parison to reject the impact of outliers values in the evaluation.
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Fig. 5. Robot path on the DEMO and MIC environments. The path is planned
on the CAD blueprint (left) and projected using CAD2SLAM to the SLAM
map (right). LIDAR readings are simulated along the path on both maps and the
point-to-point error is calculated.

TABLE I
SUMMARY OF THE EXPERIMENTS PERFORMED IN EACH TEST ENVIRONMENTS

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 2, FEBRUARY 2025

TABLE III

POINT-TO-POINT DISTANCE OF THE PROJECTED SIMULATED SCANS

. Threshold Mean Std deviation .
Environment Outliers
(m) (m) (m)
0.01 0.007T 0.0016 353
0.05 0.0374 0.0050 327
DEMO 0.1 0.0638 0.0076 245
05 0.1570 0.0301 19
0.0 0.0067 0.0020 353
0.05 0.0315 0.0052 333
DIAG 0.1 0.0595 0.0093 278
05 0.02195 0.0389 58
0.0 0.0066 0.0020 357
—_— 0.05 0.0321 0.0055 331
0.1 0.0634 0.0121 278
05 0.1892 0.0371 58
0.0 0.0066 0.0021 353
BIIL3 0.05 0.0338 0.0063 341
0.1 0.0651 0.0100 304
05 0.2635 0.0977 168
0.0 0.0059 0.0014 355
MIC 0.05 0.0296 0.0024 271
0.1 0.0518 0.0084 189
05 0.1232 0.0288 39

Environment | Experiments | Mean LiDAR scans
DEMO 7 551
DIAG 5 2570
EIII-0 9 754
EIII-3 6 2152
MIC 6 665

The number of LiDAR scans depends on the size of the environment and
the resolution of the CAD blueprint.

TABLE II
SUMMARY OF THE EXPERIMENTS PERFORMED FOR EACH THRESHOLD VALUE

Threshold

Mean

Std deviation

(m) (m) (m) Outliers
0.01 0.0065 0.0019 355
0.05 0.0326 0.0057 327
0.1 0.0613 0.0106 278
0.5 0.2128 0.0772 107

Lower threshold values result in a higher number of points to be
consider outliers.

Table I presents an overview of the number of paths that were
used for evaluation in each environment and the mean number of
LiDAR scans simulated for each environment, while in Table III
we include the aggregated mean and standard deviation values
of the point-to-point comparison for every environment, as well
as the mean number of points that were considered outliers
depending on the threshold value.

For reference, Fig. 5 shows the result of one of the exper-
iments, evaluated on the DEMO environment with a point-to-
point threshold of 0.1 m and a resolution of 0.05 m/px. In this
environment, it is clearly visible a lower error in the proximity
of anchor points, as indicated in Fig. 3. However, the maximum
error along the entire path stays below 0.077 m, which demon-
strates the effectiveness of our method.

Table II summarizes the experiments performed with each
threshold. One can clearly note that the mean point-to-point error
increases as the threshold increases. This is due to discrepancies
between the real world, the CAD blueprint and the SLAM map,
as well as small imperfections on the maps. This effect is more
noticeable in the DIAG environment while EIII-3 offered the

worst results of the environments that were tested, because of
it representing an environment with two long corridors without
distinguishable elements to use as anchor points. We consider the
0.1 m outlier rejection threshold to be a good trade-off between
the outliers counter and the point-to-point error, allowing us to
robustly evaluate our method.

The complete experiments and the instructions on how to
replicate the results are available on the public project web page,
while in this paper we report the summary results.

B. Maps Overlay

To illustrate the usefulness of our method and the use cases
in which it might be of interest, we have designed a qualitative
evaluation in which we overlay the SLAM map with the CAD
blueprint of the environment and the projected version of the
CAD blueprint using CAD2SLAM.

Asintroduced previously, anumber of phenomena can happen
during the construction of SLAM maps, resulting in an altered
representation of the environment that does not correspond to
the real world nor the CAD blueprint. This effect is even more
noticeable when different robots traverse the same environment,
each of them with its own SLAM map. This situation is presented
on Fig. 6.

Similarly to the previous experiment, we applied
CAD2SLAM to project every point in the SLAM maps
onto the CAD reference system, so the CAD blueprint can
be considered the common interface of all the robots in the
environment. As the SLAM map is directly projected to the
CAD reference frame, no manual translation, rotation or scaling
of the map is needed. Our system also allows for the inverse
procedure. The results of this process are presented in the
bottom part of Fig. 6.

This map overlay representation is a byproduct of our adaptive
projection system, but it is not the target of our system. As
indicated previously, our system only requires the correspon-
dence points and the CAD blueprint to compute the projection,
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Tlustration of CAD2SLAM in two test environments. On the left, the CAD blueprint (red) is presented along 3 SLAM maps (blue, green, purple) that are

affected from different heavy distortions. The SLAM maps are projected onto the CAD reference frame and overlaid on top of the blueprint on the bottom of the
image. On the right, the CAD blueprint (red) is projected to the SLAM map (green) reference frame. The proposed method keeps both local and global consistency
when projecting every point of the CAD blueprint onto the SLAM map reference frame, or vice-versa, as can be observed in the zoomed region.

TABLE IV
RUNNING TIME FOR THE SETUP OF THE SYSTEM AND DURING ITS NORMAL OPERATION

Graph construction

Graph optimization

Projection mean time | Projection Std. deviation time

Environment || # Variables
(ms) (ms) (ms) (ms)

DEMO 1442 13.975 86.960 0.0429 0.0045
DIAG 2534 72.910 155.14 0.0647 0.0055
EII-0 715 29.557 29.338 0.0189 0.0019
EIII-3 1888 66.917 91.471 0.0503 0.0049

MIC 3752 59.866 542.05 0.1072 0.0119
Mean 2066 48.645 180.99 0.0568 0.0057

so the proposed method could work even if no SLAM map of
the environment is available. This experiment is intended to
showcase the ability of CAD2SLAM to adequately project a
pose in the CAD blueprint to the SLAM map even in the most
challenging environments.

C. Running Time

We performed a running time evaluation using an Intel Core
i7-9700 CPU (8 cores @ 3.00GHz) and 32GB of RAM.

The projection time, i.e., the time needed to transform a pose
in the blueprint to its corresponding pose in the SLAM map,
is critical in this system, as a slow projection could result in
important delays in the control and supervision of the robotic
platform. We evaluated the running time of our system by
measuring the time it takes to project 1000 random poses in
the blueprint to their corresponding pose in the SLAM map for
each test environment and we obtained the results presented in
Table IV. This time is negligible compared to the execution time
of the path planning algorithm, which can take up to 290 ms in
large real-world environments [34], hence using our projector
has virtually no impact on typical robotic platforms and is
suitable for online operation.

In contrast to the projection time, the graph construction
and optimization times are not relevant for the evaluation of
the method online, as it is a one-time operation. Still a slow
runtime might hinder the user experience when adding/removing
points to the GUI. Our current implementation allows to setup
CAD2SLAM in a few seconds even in the most challenging
environment, as presented in Table IV.

The time required in these stages clearly depends on the
number of variables and factors, that is controlled by the mesh
density (see Section III-B) and by the size of the environment.
Intuitively, a smaller tile size results in a higher resolution of the
projection, at the expense of increased graph construction and
optimization times. Similarly, the time required to optimize the
graph grows with the number of iterations of the Least Squares
solver [32]. For the MIC environment, we performed double the
iterations of the LS solver with respect to the other environments,
to exhibit that even under double the iterations, the optimization
is completed in a few hundred milliseconds.

V. CONCLUSION AND FUTURE WORK

In this paper we introduce the problem of the adaptive pro-
jection of a CAD blueprint onto a SLAM map and present
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an alternative solution to the problem of combining different
means of representation of an environment. To the best of our
knowledge, this is the first work to propose a system which is able
to combine a CAD blueprint with a number of SLAM maps from
different robots in a robust and efficient manner. We present a
novel methodology and an open-source implementation that has
been validated through our experiments. Our method robustly
compensates common phenomena present in SLAM maps and
provides an accurate projection between the two representations
of the environment in real time, even when large distortions
are present. In future work we will explore the use of corner
detection systems, VLP systems or fiducial markers as anchors
for our proposed method.

We have developed CAD2SLAM, an easy-to-use pipeline that
allows for the seamless projection of poses in the CAD reference
frame to the SLAM reference frame and vice-versa. Our system
accounts for any arbitrary distortion that may exist between the
CAD and SLAM maps even in the most challenging situations
and solves the problem of keeping a common reference frame
when human-robot or robot-robot cooperation is desired.

We consider that our work presents a novel research question
that deserves attention to further investigate the use of acommon
map to which several systems can project their own maps, in an
efficient and robust manner.
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