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Sim-to-Real of Soft Robots With Learned
Residual Physics

Junpeng Gao , Mike Y. Michelis , Andrew Spielberg , and Robert K. Katzschmann , Senior Member, IEEE

Abstract—Accurately modeling soft robots in simulation is com-
putationally expensive and commonly falls short of representing the
real world. This well-known discrepancy, known as the sim-to-real
gap, can have several causes, such as coarsely approximated geome-
try and material models, manufacturing defects, viscoelasticity and
plasticity, and hysteresis effects. Residual physics networks learn
from real-world data to augment a discrepant model and bring
it closer to reality. Here, we present a residual physics method for
modeling soft robots with large degrees of freedom. We train neural
networks to learn a residual term — the modeling error between
simulated and physical systems. Concretely, the residual term is
a force applied on the whole simulated mesh, while real position
data is collected with only sparse motion markers. The physical
prior of the analytical simulation provides a starting point for the
residual network, and the combined model is more informed than
if physics were learned tabula rasa. We demonstrate our method
on 1) a silicone elastomeric beam and 2) a soft pneumatic arm
with hard-to-model, anisotropic fiber reinforcements. Our method
outperforms traditional system identification up to 60%. We show
that residual physics need not be limited to low degrees of freedom
but can effectively bridge the sim-to-real gap for high dimensional
systems.

Index Terms—Deep learning methods, modeling, control, and
learning for soft robots, dynamics, optimization and optimal
control, simulation and animation.

I. INTRODUCTION

W E present a data-driven approach for reducing the sim-
to-real gap in soft robotics. Despite soft robots’ promise

in solving tasks that are difficult for rigid robots to solve (e.g.,
delicate manipulation [1] and biomimicry [2]), modeling soft
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Fig. 1. Overview of the residual physics pipeline for high dimensional sys-
tems, demonstrated with a soft robotic arm. The learned residual force com-
pensates for state-to-state prediction errors, such that sparse motion markers in
simulation match those in reality.

robots remains computationally expensive and physically inac-
curate. This challenge hinders the application of computational
methods for downstream tasks such as optimal control and
design. By providing a generic means to improve simulation
accuracy that is system agnostic, we can unlock applications
across the diverse zoo of soft robotics.

Simulators that model soft robots commonly have limited
options for fitting physical parameters. Once a material model
is chosen, only a small set of parameters, such as material
density, stiffness, compressibility, friction, and damping, can be
tweaked to adjust the behavior of a soft body. In most practical
applications, such parameter tweaking is sufficient to better
match the simulated model with its real-world counterpart; this
process is referred to as system identification (SysID) [3], [4],
[5]. However, suppose the simulator’s physics does not match
the real world for reasons other than parameter mismatch, for
example, incorrect material model, overly coarse discretization
in time or space, or simulation artifacts (such as locking in finite
element methods). In this case, the expressivity of the simulator
may not suffice to cover the real-world dynamics.

We propose to combine deformable body simulators with
data-driven auxiliary models, as a means of reducing the sim-
to-real gap. We see this approach as a viable alternative to
tediously modeling every possible aspect of every continuum-
bodied robot, which would only grow with the creation of
further soft robotic systems. Our sparse residual physics learn-
ing framework is a hybrid formulation taking advantage of
a differentiable Finite Element Method (FEM) simulator and
deep learning. Our framework learns a residual body force
on the soft structure that captures the difference between the
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simulator and the real-world, directly minimizing the sim-to-real
error. This formulation combines the qualitative priors of a
coarse simulator, e.g., direction of bending and approximate
magnitude of deformation, with the fine-tuning derived from
real-world data. Unlike previous residual learning approaches
(e.g. [6], [7]) we operate in a regime of sparse observation
data, since continuum structures that cannot be fully sensorized
are inherently partially observable. Our approach regularizes
on system dynamics to create physically reasonable candi-
dates for target learned motions and provides a means for a
simulator to capture unmodeled robot dynamics and unseen
settings.

We provide a full pipeline1 from spatially sparse data to
dense residual force estimation (visualized in Fig. 1) and apply
our approach to both software and hardware experiments. Our
approach is easy to apply in practice and can improve soft
robotics engineering workflows through more reliable modeling.
In summary, we contribute:

1) Residual physics learning framework for soft robotics.
We design a hybrid learning framework that speeds up
simulation while increasing simulation accuracy in both
sim-to-sim and sim-to-real settings.

2) Dense residuals from sparse observations. We propose
a data pre-processing method to build an augmented
dataset from sparse real-world data (markers ∼ 101) for
learning residual physics on the discretized geometry of
deformable bodies (degrees of freedom ∼ 103).

3) Overcoming shortcomings of system identification.
We benchmark our framework on dynamical high-
dimensional systems, such as passive and actuated soft
robots, and show that even optimal tuning of physical
simulation parameters falls short in accuracy compared
to our approach.

II. RELATED WORK

Much effort has gone into developing more efficient and
accurate simulators for applications of deformable systems over
the years [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. The
consistent trend, however, has been a trade-off between speed
and accuracy. For the computer graphics community, a visually
plausible simulation for soft bodies usually suffices for appli-
cations in animation and digital gaming. Fidelity is sacrificed
for speed, enabling real-time simulation of deformable virtual
characters [8], [9], [10]. Within the soft robotics community,
much more emphasis is placed on the physical accuracy of the
model to match real-world experiments [13], [14], [15], [16],
[17]. Here, simulation is particularly important to test design
performance without the labor of physical manufacturing and to
derive optimal controllers on real-world systems.

Matching real-world experiments, or in other words, clos-
ing the sim-to-real gap, is traditionally done through SysID,
where a set of simulation parameters is tuned. In soft robotics,
these parameters often include material characteristics such
as stiffness and density. Gradient-free approaches are often

1All code and data used in this letter are available at https://github.com/srl-
ethz/residual_physics_sim2real

sample-inefficient and hence costly to run for larger sets of
parameters [3], [18], [19]. For this type of inverse problem,
gradient-based optimization through differentiable simulation
frameworks have offered significant improvement in conver-
gence time [3], [4], [18], [19], [20], [21], [22]. Differentiable
simulations provide analytical gradients for any measurable
quantity of a simulation with respect to any simulation pa-
rameter; such gradients are useful for inverse problems such
as trajectory-matching and system identification. While most
methods estimate the state of the system through sparse motion
markers, recent methods have integrated differentiable render-
ing pipelines to allow direct parameter matching from video
data [21], [22].

Since one notable limitation of SysID is the need to re-run the
procedure when characteristics about the system change, one
approach is to learn a generalizable mapping from one envi-
ronment to another, tuning these SysID parameters iteratively
in a fast and sample-efficient manner [23]. Yet an overarching
challenge for bridging the sim-to-real gap remains the many
real-world physical phenomena that are not explicitly modeled
by the underlying simulations, ranging from electric actuator
dynamics [24] to flying robot aerodynamics [25]. This need for
a more generalizable model for matching simulation and reality
has given rise to the field of residual learning [6], [7], [24],
[25], [26], [27]. Instead of learning the full system dynamics,
residual physics methods use deep neural networks to learn
only an error correction between an analytical simulator and
real-world physics. Previous work, however, has only worked
with low-dimensional state spaces, and it has yet to be scaled
up to the high degree-of-freedom meshes used in soft-body
simulations [28].

A valid alternative to the previous hybrid residual physics
simulations would be fully end-to-end learning-based simula-
tors [29], [30], [31], [32]. Although computationally efficient
at inference time, these data-driven methods lack generalizabil-
ity and robustness [6], [26]. This fragility can be ameliorated
by including constrained neural networks into hybrid simula-
tions [33]; the analytical solvers within such hybrid methods
guide the solution along a physically plausible prediction. How-
ever, such an approach is confined to a PDE’s structure and
cannot handle unmodeled phenomena.

III. SIMULATION PRELIMINARIES

We simulate our soft robots using DiffPD [18], a differentiable
FEM simulator based on projective dynamics. Each robot is
discretized as havingN nodes, where we denote the position and
velocity of nodes at time step twith qt ∈ RN×3 and vt ∈ RN×3

respectively. Using implicit Euler, the simulation is integrated in
time according to Newton’s second law of motion over fixed time
interval h. The resulting equations to the discretized dynamical
system can be formulated as

qt+1 = qt + hvt+1

vt+1 = vt + hM−1
[
f int (qt+1) + f ext

t

]
(1)

whereM is the mass-matrix, f int accounts for the sum of internal
forces and f ext

t for the sum of external forces. This results in
a system of equations solved as a sometimes numerically and

https://github.com/srl-ethz/residual_physics_sim2real
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Fig. 2. Pipeline of how the residual physics forces f res
t compensate the erroneous simulated next state st+1 to match the real observed marker state xt+1. Our

state st is defined by position qt and velocity vt, from which we extract the motion markers xt on the simulated mesh. The residual forces are predicted by a
neural network given state and external force f ext

t information (such as pressure actuation) as input. This network is trained on a labeled augmented dataset of
residual forces f res∗

t , collected through gradient-based optimization in our differentiable simulation.

physically stiff optimization problem. For the sake of clarity, we
simplify this forward solve as qt+1,vt+1 = Sim(qt,vt, f

ext
t ).

The deformable structures used in this letter, a passive beam
and a pneumatic arm, are both made from highly deformable sili-
cone elastomers, namely Smooth-On Dragon Skin 10 with Shore
Hardness 10A. As is common [18], we make a few modeling
simplifications to aid elastic simulation stability. First, we use
a corotational linear elastic material model. Second, silicone is
typically assumed to be completely or nearly incompressible [4],
i.e., Poisson’s ratio ν = 0.5 or 0.499. However, such Poisson’s
ratios are both unstable and time-stepping can take longer to
converge when simulated; we set ν = 0.45. We expect our
residual physics (ResPhys) framework to be able to compensate
for both the material model and compressibility assumptions. We
roughly use manufacturer-provided values for material density
and Young’s modulus (ρ = 1070 kgm−3 and E = 215 kPa),
which have less impact on time-stepping convergence [5].

IV. METHOD

The objective of our framework is to learn a mapping from the
state st, consisting of positionsqt and velocityvt, and the action
of the soft robot at time step t to an external residual body force
f res
t . The design of our framework is based on the assumptions

that 1) an external residual force in (1) can compensate for the
residual dynamics of the simulated deformable objects, and 2)
if the simulator can predict the next state precisely, the residual
force at each time step will follow similar distributions. This
assumption will make the chosen neural network smaller and
more efficient. In this section, we describe our procedure for
leveraging data to overcome the sim-to-real gap in soft robot
modeling, and illustrate the pipeline in Fig. 2. We begin by
considering a simplified sim-to-sim setting, in which full state
knowledge is available; we then relax this knowledge require-
ment to arrive at our method for sim-to-real, in which only partial
information with measurement error is given about the physical
world. Next, we describe the system identification we use as
a baseline. Lastly, we describe the neural network used for the
residual physics learning, how it is trained, and how we quantify
the prediction performance.

A. Sim-to-Sim Setting

By removing the influence of potential fabrication and
measurement errors, a sim-to-sim setting enables us to rigorously

validate and refine our framework at a relatively low cost. Such
a setting can provide essential insights and help pave the way
for real-world experimentation.

We define a function Simn that takes as input state st and
outputs position coordinates qt+1; the subscript n denotes a
particular parameterization of DiffPD. We define the state st as
a concatenation of qt and vt at time step t. We parameterize two
differentiable simulators Sim1, Sim2 with different parameter
configurations for sim-to-sim experiments. We aim to match the
dynamics of Sim2 by injecting external residual forces generated
from our framework into Sim1. Sim-to-sim scenarios provide
a privileged, fully-known robot state at a low cost, as we can
easily obtain the positions and velocity at each degree of freedom
(DoF). We collect a series of ground truth motion data by running
Sim2 offline.

We decompose the residual learning problem into two sep-
arate steps to ease the computational cost of rerunning each
specific step. First, we leverage the differentiable property of the
simulator to optimize for a dataset of external forces in Sim1 that
makes the simulated motion trajectory best match the results of
Sim2. Second, we perform supervised learning on this optimized
dataset of external forces to create a neural network mapping
between soft body state and residual forces. The network takes
an input of the state st and, if the structure is actuated, the
actuation forces, which are represented as external forces f ext

t

(such as pneumatic pressure forces). The output is the residual
force f res

t that helps the simulator correct the prediction. Note
that gravity is applied separately in all simulations, but it is not
considered as part of the external force input for the network.The
first step can be formalized as follows:

f res∗
t = arg min

ft

∥∥Sim1(st, f ext
t + ft)− qt+1

∥∥2
2
+ λ ‖ft‖22 (2)

where ft is the residual force we aim to optimize at time step
t, and qt+1 is the ground truth full state from Sim2 at the next
time step. We incorporate L2 regularization with a weight λ

so that the residual forces can help predict an accurate next
state while having a small magnitude, aiding simulator stability.
We leverage the differentiability from the simulator to solve
the above optimization problem using an efficient L-BFGS-B
minimization. In the first time step, we initialize a random
residual force f1 ∼ N (0, 10−4). In subsequent time steps, we
use the preceding ft as an initial guess for the ongoing step to
solve the problem iteratively.
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After we build a dataset of various trajectories over a fixed
number of time steps each, we perform mini-batch training with
batch-size M of the neural network NN with weights Θ based
on the loss function:

L :=
∑

i∈batch

∥∥NN (si, f
ext
i ; Θ)− f res∗

i

∥∥2
2
+ λ ‖Θ‖22 (3)

When we pass the state into the neural network, as a pre-
processing step, we subtract the undeformed static state from the
position q. After each epoch, we run validation with the same
loss function (3) on the validation set and save the model with
the smallest validation error. This two-step training method can
be thought of as a student-teacher formulation, in which residual
forces are generated from privileged information, from which a
residual network then learns with no privileged knowledge.

We test our trained model on R trajectories and evaluate the
performance on T timesteps for each trajectory with:

Eq :=
1

R · T ·N
R∑

j=1

T∑
t=1

N∑
i=1

∥∥∥qj
t,i − qj

t,i

∥∥∥
2

(4)

where qj
t,i and qj

t,i are the simulated position coordinates at
vertex i of Sim1 and Sim2 respectively, at the j-th trajectory and
time step t.

B. Sim-to-Real Setting

Under a sim-to-real scenario, measuring full-state information
is impractical, as it would require sensorizing every point of
the target object throughout its motion. In the sim-to-real sce-
nario, we record the motion of our robot with a marker-based
motion capture system, which provides us with sparse partial
information, but this data may lie in a different coordinate
frame than our simulation environment. Therefore, we perform
rigid registration to transform the frame of reference of the raw
measurement data. We first use the undeformed state marker
measurements of the object to define simulated marker loca-
tions. Subsequently, we estimate an optimal rotation matrix
and translation vector between the measured markers and the
recorded data at the corresponding undeformed state. Finally,
we apply this transformation to the collected data and interpolate
the transformed markers with

x(q) = αTe(q) + sn (5)

where n is the unit normal vector to the closest surface mesh
element, s is the distance between the transformed marker to
the element, α is a barycentric coordinate vector w.r.t. the
neighboring surface element nodes e. During forward passes
of the simulation we can compute simulated marker posi-
tions by interpolating the corresponding surface mesh element
with (5).

Next, we create our augmented dataset of reconstructed full-
state information from the sparse partial information, similarly
to (2):

f res∗
t = arg min

ft

∥∥x (
Sim(st, f

ext
t + ft)

)− xt+1

∥∥2
2
+ λ ‖ft‖22

(6)

where x returns the simulated markers from the returned full
state of the simulator, and xt+1 is the transformed real markers
at time step t+ 1.

With our residual force dataset now well-defined in the real-
world scenario, we have reduced our sim-to-real problem to
the same setting as that of the sim-to-sim problem. As such,
we solve the simplified problem directly, and train a residual
model with the loss as described in (3). As before, we assess the
model’s performance on the validation set after each training
epoch and save the model with smallest validation error. We
evaluate the saved model across R test trajectories and compute
the mean rollout error between simulated markers and their
real counterparts. We rollout the hybrid simulation with our
trained network in an auto-regressive manner; starting from the
same initial state as the ground truth motion, we feed in the
previous position and velocity solutions from the simulation,
and add the predicted residual physics to the next forward pass
of the simulation. The error is computed based on m markers as
follows:

Ex :=
1

R · T ·m
R∑

j=1

T∑
t=1

m∑
i=1

∥∥∥xj
t,i − xj

t,i

∥∥∥
2

(7)

where xj
t,i denotes the i-th marker position at the j-th trajectory

and time step t.

C. Residual Physics Learning

We divide the network architecture into blocks that each
contain Multilayer Perceptron (MLP), with skip connections
added between blocks. A layer-normalization and Exponential
Linear Unit (ELU) activation is applied to the output of each
linear layer except the last, and the network is trained based
on (3). The input layer takes in the positions, velocities, and
actuation forces of the simulated system; note that for unactuated
systems, the length of f ext will be zero. An overview of the
residual physics network is shown in Fig. 2. We standardize
each spatial dimension (x, y, z) of our datasets for positions q,
velocities v, and actuation forces f ext to zero mean and unit
standard deviation based on the training data, then apply the
same standardization during validation and testing.

We run the sim-to-sim network on the datasets described
in Table II and the sim-to-real network based on the datasets
described in Table III for 1000 epochs. We set the input and
output size of each block the same as our network output size. We
optimize the hyperparameters of the network through a Bayesian
optimization over the batch size, learning rate, scheduler gamma,
number of hidden sizes, forward layers per block, and the
number of blocks. The validation loss is used to determine
which network architecture to keep during this hyperparameter
optimization. Details on hyperparameter ranges can be found in
the code repository.

D. System Identification as Baseline

In the sim-to-real setting, we run SysID as a baseline to our
ResPhys approach. We optimize the Young’s modulus E and
Poisson’s ratio ν to minimize the following objective function
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TABLE I
PARAMETER CONFIGURATIONS FOR SIM-TO-SIM BEAMS

on the training dataset with R trajectories, based on the distance
between transformed real markers xt and simulated markers xt:

Ls :=
1

2R

R∑
j=1

T∑
t=1

∥∥∥x
(
Sim(sjt , f

ext,j
t ;E, ν)

)
− xj

t

∥∥∥
2

2
(8)

E. Sim-Free Method as Baseline

We use the network architectures described before in residual
physics, but instead of predicting corrective forces, this data-
driven baseline predicts the next state directly; a mapping from st
to st+1. This method serves as a direct baseline to showcase the
effectiveness of our model-based residual physics. We similarly
optimize the sim-free hyperparameters, and test the networks
with lowest validation error.

V. RESULTS

We discuss two continuum deformable structures in the
sim-to-real setting: A clamped soft beam and a soft robotic
arm called SoPrA [34]. The beam has measurements 10 cm×
3 cm× 3 cm, and the arm is 30 cm in length, with an outer tip
diameter of 3 cm. SoPrA is made with the same silicone elas-
tomer as the soft beam, and it has six fiber-reinforced chambers.
Fiber reinforcement structures are useful in preventing excessive
inflation of fluidic actuators but introduce composite material
anisotropy, making it an interesting application domain for our
residual physics framework.

All results were performed on a computer with a 32-Core
AMD Ryzen Threadripper 3970X CPU and an RTX 3090 GPU.
The GPU was used for training, while the CPU was used for all
inference scenarios to minimize overhead since DiffPD is a pure
CPU-based simulation framework.

A. Sim-to-Sim for Soft Beam

In our first experiment, we test to see if two soft clamped
beams, one with “correct” and one with “incorrect” material
parameters as shown in the Table I, can be translated between
each other via residual physics. Since we employ a linear coro-
tational model, the material is not particularly complex, and the
problem should be tractable. However, this setting also allows
us to analyze our algorithm with granularity.

We consider two motion patterns for the simulated clamped
beam displayed in Fig. 3. In the first one, we apply a force to the
tip of the beam, wait for it to reach a steady state, and release it
to observe the oscillations. In the second pattern, we twist the
beam at varying angles within the range of [π6 , π], then release
the beam. We apply the same tip forces for the oscillating beam
as the weights we use in the real experiments in Section V-C.

Fig. 3. Sim-to-sim experiments include oscillating and twisting beams, where
we either apply a weight at the tip or twist the beam and release this constraint
to observe a desired motion trajectory. The sim-to-real experiments show the
same passive oscillating beam and a pneumatic soft arm as an actuated robot.

TABLE II
SIM-TO-SIM EXPERIMENTAL CONFIGURATIONS AND RESULTS

We choose λ = 10−4 in (2) and (6) when we optimize residual
forces for all the beam experiments. We initialize our neural
network following the discussion of Section III.

In Table II, we report the mean rollout error in (4) for those test
trajectories. As expected, both purely data-driven and residual
physics approaches can learn these simple dynamics effectively,
though residuals are easier to learn and result in more accurate
final trajectories.

B. Full State Reconstruction From Sparse Markers

As we collect sparse partial information from a marker-based
system, we design an experiment in simulation to investigate
how the number of markers influences the reconstruction of the
full state information. The previous experiment in Section V-A
was performed using full state information; in the following, we
assume only to have access to a subset of surface vertices that
artificially represent the motion markers we would use in the
real world.

We choose a single trajectory with a tip force caused by a 50 g
mass for the oscillating beam. We solve (6) for an increasing
number of randomly sampled motion markers, starting from a
single marker and ending at 128 markers, where the total number
of surface vertices for this mesh is 140. We uniformly randomly
sample each subset of markers 10 times and optimize (6) from
scratch.

We observe in Fig. 4 that the median error drops below0.1mm
starting from 4 markers, though the spread stays high until 10
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Fig. 4. Box plot of displacement error in (4), varying the number of markers
that are available for the residual forces in (6). The orange line is the median
of 10 samples, and the box extends from the lower to the upper quartile of the
samples.

TABLE III
SIM-TO-REAL EXPERIMENTAL CONFIGURATIONS

Fig. 5. System identification performed with grid search.

markers. This sim-to-sim experiment was designed to verify that
our pipeline not only works for full-state information, but also
when only sparse observations are available, such as in the sim-
to-real scenarios that follow.

C. Sim-to-Real for Soft Beam

We set up a simulator for the beam following the parameters
in Table III. Our objective is to match the position of simulated
markers to the corresponding real markers. To collect motion
data of the beam, we attach a set of 17 known weights ranging
between 50210 to the tip of the beam. After the beam reaches
a steady state under the weight, we release it and let it oscillate
freely. To track the motion of the soft structures, we use a motion
capture system (Miqus M3, Qualisys) that runs at 100Hz.

We run SysID with a Youngs’ modulus within 0.052 and
Poisson’s ratio within −0.9990.499. Our final optimized param-
eters converge to 810 kPa and 0.499, respectively. The Young’s
modulus value is much larger than the value reported by the
manufacturers. Hence to validate and understand our findings,
we run a system identification grid search at resolution 10 kPa

TABLE IV
MEAN ROLLOUT ERROR BETWEEN SIMULATED AND REAL MOTION MARKERS

FOR PASSIVE AND ACTUATED SOFT STRUCTURES

Fig. 6. Sim-to-real results on the soft beam. (Left) Single test trajectory
showing displacement in axis of oscillation averaged over motion markers.
(Right) Mean and standard deviation of errors on all test trajectories plotted
over time.

as depicted in Fig. 5 on the left. The optimal Young’s modulus
value is obtained at 810 kPa, aligning with our gradient-based
optimization result and highlighting the flat nature of the ob-
jective landscape. The optimal value is far from ground truth,
highlighting the mismatch between the simulation and the phys-
ical world.

Building the augmented dataset described in Section IV-B
requires us to know the initial state of the beam under weights,
so for each weight, we start from an undeformed state s1 and
optimize a series of virtual forces fvt such that after Tv steps we
match the initial marker positions xinit:

Linit :=

Tv∑
t=1

‖x (Sim(st, f
v
t ))− xinit‖22 + λ

∥∥fv1...Tv

∥∥2
2

(9)

Tv should be chosen to reach a steady state, which we set to
Tv = 140. This is the static analog to (6). The solution to the
optimization problem sTv

is our ground truth’s initial position,
from which we build the augmented dataset and train the network
as described in Section IV-B.

A quantitative error evaluation between simulation and reality
is presented in Table IV. We show a significant improvement of
residual physics over system identification, not only via a lower
average error (decreased by 60.3%) but also a consistently more
robust performance through lower standard deviation in test
trajectories. We visualize one test trajectory in Fig. 6 on the left.
Our residual physics framework hereby helps to overcome the
numerical damping problem and captures real-world dynamics
better than SysID. We also plot the errors at each time step in
Fig. 6 on the right. Our framework reduces the error at each step
and has a smaller deviation than the simulation based on SysID.

Further, we find that our model can accelerate simulations
for stiff systems. Our framework allows us to use suboptimal
but non-stiff system parameters and correct the errors that these
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TABLE V
TIME BENCHMARK OF SIMULATION WITH SUBOPTIMAL PARAMETERS

(ORIGINAL), OPTIMAL PARAMETERS (SYSID), AND SUBOPTIMAL PARAMETERS

WITH RESPHYS

Fig. 7. Sim-to-real results on the soft arm. (Left) Single 5s-excerpt test trajec-
tory showing displacement in y-axis, averaged over motion markers. (Right) 3D
displacement plot of the same trajectory between 0 s and 0.46 s, with points
along the trajectory spaced 0.15 s apart. For this particular segment of the
trajectory, the average distance error for SysID is 1.34mm, for DD 1.40mm,
and for ResPhys 0.73mm.

parameters induce via the residual forces. From Table V, we
observe that achieving an accurate simulation using SysID slows
down the simulation by approximately 3.12×, yet for ResPhys,
it is only 1.96×, while achieving a much higher accuracy than
SysID. We note that the hybrid simulation has additional over-
head compared to the base simulation, due to the injected forces
adding numerical stiffening.

D. Sim-to-Real for Pneumatically-Actuated Soft Arm

We further test our framework on SoPrA [34], which presents
a more challenging scenario due to its increase in mesh size,
pneumatic actuation, hard-to-model anisotropic fiber reinforce-
ments around the actuation chambers, and a higher likelihood of
hardware fabrication errors. We actuate the arm using random
pressure sequences generated from a multivariate normal distri-
bution. We tune the covariance of the distribution such that the
resulting pressure trajectories are smooth. Between the collec-
tion of each trajectory, we ensure that the system has returned to
its unactuated steady state. We clip the commanded pressures to
20 kPa to avoid SoPrA inflating too much and prevent DiffPD
from diverging without modeling fiber reinforcements.

Similar to the sim-to-real beam experiments, we first per-
form rigid registration to transform motion marker data into
our simulation environment and then optimize the augmented
dataset by choosing λ = 10−5 in (6). However, different from
the beam experiment, we now have non-zero pressure actuation
forces f ext

t in the network input. These forces are computed from

Fig. 8. Mean and standard deviation over all test trajectories on the soft arm.
For readability, curves are smoothened using a median filter with a window size
of 1 s. (Left) Train/test trajectories are both 10 s. (Right) Train on 5 s and test
on extended 10 s.

TABLE VI
ROLLOUT ERROR OF MARKERS FOR 5 s (SAME LENGTH AS TRAINING

TRAJECTORIES) AND EXTRAPOLATED TO 10 s (DOUBLE THE TRAINING

LENGTH)

the pressure sequences and applied on the inner faces of the
pneumatic chambers of the arm.

The final optimized SysID Young’s modulus is 237630 and
Poisson’s ratio 0.4194, but we observe little improvement in the
error on test trajectories in Table IV. Using residual physics,
the error is reduced by 21.1%. The qualitative performance on
an example trajectory is shown in Fig. 7 and the average errors
over all test trajectories in Fig. 8 on the left. We note the poor
performance of the purely data-driven approach in this actuated
robotic setup, highlighting the benefit of the underlying simu-
lator for the residual physics approach in complex dynamical
scenarios.

Typically, machine learning models relying solely on data-
driven approaches struggle to predict results in unseen domains
accurately. We conduct an extrapolation experiment to test our
framework’s predictive capability on a longer time horizon. We
keep all the training parameters and network architectures the
same while only including each trajectory’s first 500 time steps in
the training set. Afterwards, we examine the model performance
in predicting the last 500 time steps. Though prediction accuracy
is decreased, our approach still outperforms both baselines as
shown in Table VI and Fig. 8 on the right. Our method shows
stable long-time horizon predictions but with slowly increasing
errors.

VI. CONCLUSION AND FUTURE WORK

We demonstrated a hybrid residual physics framework for
high-dimensional soft robots that combines numerical solvers
with deep learning for residuals. By leveraging differentiable
simulators and learned models, we eliminate the need for in-
tricate domain-specific knowledge and full-state information
about the robot. Instead, we shift our reliance to sparse marker
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data, simplifying the process for practitioners. Our framework
helps reduce simulation errors under sim-to-sim and sim-to-real
scenarios. We demonstrate its efficacy on passive and actuated
soft structures such as a beam and pneumatic arm, showing
that it consistently outperforms the system identification and
data-driven baselines.

One drawback of our framework is the computationally ex-
pensive optimization procedure in the data pre-processing phase.
This drawback, however, can be alleviated by more efficient
simulators and parallel solving of independent problems. A
second drawback is the generalization range of our method: if
test data is sufficiently out of distribution, learned dynamics do
not generalize. In additional experiments, we found that gener-
alization suffered on systems with 1.75× the internal actuation
pressure. Future work should examine how to generalize beyond
bounded training data and how to handle novel dynamical events,
such as contact interactions.

Our results reveal some potential directions for future explo-
ration. Since the network is provided a time sequence of motion
data and we autoregressively call the network at inference time,
we necessarily accumulate errors over longer trajectories. A
data-driven model for long sequences would be suitable to
address this problem, but due to the high DoFs of soft robots, it is
hard to train the sequence model directly on the state of the soft
robot. A powerful low-dimensional latent representation would
provide a promising future avenue for investigation. Lastly, the
question of generalizability should be addressed for varying
shapes of soft robots. Until now, residual learning frameworks
have been limited to single geometries. In future work, we
hope to develop a single residual physics network applicable
across various soft robot morphologies, proving the same level
of applicability as numerical solvers while easing the need for
laborious modeling.
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