
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024 8659

Generalized Synchronized Active Learning for
Multi-Agent-Based Data Selection

on Mobile Robotic Systems
Sebastian Schmidt , Lukas Stappen , Leo Schwinn , and Stephan Günnemann

Abstract—In mobile robotics, perception in uncontrolled envi-
ronments like autonomous driving is a central hurdle. Existing
active learning frameworks can help enhance perception by ef-
ficiently selecting data samples for labeling, but they are often
constrained by the necessity of full data availability in data cen-
ters, hindering real-time, on-field adaptations. To address this,
our work unveils a novel active learning formulation optimized
for multi-robot settings. It harnesses the collaborative power of
several robotic agents, considerably enhancing the data acquisition
and synchronization processes. Experimental evidence indicates
that our approach markedly surpasses traditional active learning
frameworks by up to 2.5 percent points and 90% less data uploads,
delivering new possibilities for advancements in the realms of
mobile robotics and autonomous systems.

Index Terms—Computer vision for transportation, deep
learning for visual perception, deep learning methods.

I. INTRODUCTION

IN the rapidly advancing field of mobile robotics, perceiving
the environment accurately is crucial to ensure safe robot

operations and the effective execution of tasks. Deep neural
networks often perform essential perception tasks like object
detection or semantic segmentation, drawing upon data from
different sensors, such as cameras and LIDAR sensors [1].
To ensure generalization across the input domain, robust algo-
rithms [2] and large data quantities are needed [3], [4].

Active learning emerges as a promising technique to address
this challenge, offering an intelligent approach to data sample
selection for labeling, with the model autonomously determining
the data it requires. This technique can be dissected further
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based on the scenario dictating data selection and the specific
method employed in choosing the data. According to Settles [5],
the existing scenarios are generally classified into stream-based
and pool-based active learning. The former presents data as a
continuous stream, necessitating immediate decisions on data
selection or disposal, whereas the latter assumes the avail-
ability of all data at a centralized data center, accessible at
any time. Query strategies typically fall into three categories:
uncertainty-based, diversity-based, and learning-based, each
with unique approaches to data selection and utilization [6].
Whereas uncertainty-based methods estimate the value for each
sample individually, diversity-based and learning-based meth-
ods utilize both labeled and unlabeled data to either enhance
dataset coverage or ascertain the estimated value of a sample
using a trained model.

Although active learning holds considerable potential in the
field of robotics, it also poses certain challenges in implementa-
tion. The prevailing pool-based scenario demands the centraliza-
tion of the entire dataset to select samples for labeling, a require-
ment that often proves infeasible due to logistical and financial
constraints. Although stream-based active learning is a viable al-
ternative, current research in this domain inadequately addresses
the multifaceted needs of robotic operations [7], especially in
the context of perception tasks and multi-robot deployments.
Furthermore, a significant gap exists in accommodating multiple
data streams simultaneously, which is crucial when coordinating
multiple robots.

Given the growing deployment of mobile robots in diverse
fields such as autonomous driving, supply delivery, and au-
tonomous hazard zone inspections, enhancing robotic percep-
tion remains a critical research frontier. Addressing this, our
work aims to devise strategies for efficient label selection to
facilitate improved perception, focusing particularly on fos-
tering collaboration among multiple robots in exploring and
annotating environments within an active learning framework.
We introduce a novel hybrid scenario that integrates the strengths
of stream-based and pool-based active learning, promoting ef-
fective multi-robot label collection and synchronization while
enabling multi-stream processing.

Our contributions can be summarized as follows:
� We propose a comprehensive, generalized formulation for

active learning scenarios, uniquely adapted to facilitate
multi-agent data collection, setting the stage for more
collaborative robotics systems.
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� Leveraging the aforementioned formulation, we introduce
a pioneering framework for Synchronized Multi-Agent-
Robotic AcTive Learning (SMARTL). This framework
efficiently adapts and fuses data selections from multiple
agents, optimizing both resource allocation and operational
effectiveness.

� Through rigorous experimentation, we substantiate the
versatility and efficacy of our newly devised framework,
showcasing its superior performance in advancing multi-
robotic active learning compared to existing stream- and
pool-based methods.

In the subsequent sections, we provide a detailed expo-
sition of these contributions, exploring the potential of the
SMARTL framework in a multi-robotic environment.

II. RELATED WORK

Research in the field of active learning has primarily fo-
cused on pool-based techniques. A limited number of studies
have ventured beyond this to explore different facets of active
learning, including alternative training strategies [8], and varied
scenarios [7].

For sample selection, early adaption of uncertainty methods
utilized sampling techniques such as Monte Carlo dropout [9]
and ensembles [10], assessing the uncertainty across multiple
forward passes or models using entropy or Bald [11] for each
sample individually. To increase the effectiveness of batch se-
lection, Kirsch et al. [12] introduced the joint uncertainty of
the batches as a selection metric. Latter research directions
employ Gaussian mixture models to asses uncertainty [13], [14].
Uncertainty methods have been applied and tailored to the tasks
of classification [7], [15], object detection [16], [17], 3D object
detection [18], [19], semantic segmentation [20] and graphs [21].

In contrast, diversity-based methods aim to represent the
dataset distribution more accurately using a limited number of
samples. A prominent representative of this category is Core-
Set [22]. Subsequent studies have endeavored to integrate diver-
sity and uncertainty metrics into a single cost function [23], [24].
Schmidt et al. [25] leveraged distance gradients for diversity-
based selection. Following the combination of uncertainty and
diversity, this field has given rise to task-agnostic active learning
frameworks specifically designed for 3D object detection [26],
[27]. Liang et al. [28] combined diversity metrics computed in
latent space with diversity metrics in 3D space and time.

Learning-based methods utilize an auxiliary model or exten-
sion to determine the utility of a sample, distinguishing them
significantly from the approaches mentioned above. Several
approaches have been explored, including the introduction of
loss prediction modules for ranking samples [29], the develop-
ment of variational adversarial active learning [30], [31], [32],
as well as teacher-student approaches [33], [34]. Caramalau
et al. [35] structured the latent space as a graph and trained
a graph convolutional network (GCN) to differentiate labeled
and unlabeled samples. Their CoreGCN applies CoreSet on the
GCN features, while UncertaintyGCN uses the uncertainty of
the GCN prediction.

Despite advancements in the aforementioned categories,
stream-based active learning remains relatively unexplored,

especially in the realms of perception and robotics. The pri-
mary focus in this sector has been on distribution shifts [36],
[37], [38], with significant theoretical contributions in submod-
ular optimization [39], [40]. Perception has been approached
with Mondrian forests [41]. In deep learning-based perception,
uncertainty-based methods have been implemented on a single
robot [42] or combined with submodular optimization [43]. In
subsequent work, Schmidt and Günnemann [7] exploited the
temporal characteristics of streams to enhance data selection.
Saran et al. [44] introduced a approximate volume sampling in
gradient space.

Beyond these areas of research, the emerging field of federated
active learning aims to select data from multiple distributed
data clients. On these clients, samples have been selected using
probabilities [45] or individual local acquisitions [46]. Ahn
et al. [47] compared the scores of the local models for a global
data selection. Later, Kim et al. [48] expanded upon this by bal-
ancing the data subsets of the different clients. In robotics, active
learning can be additionally used for control and reinforcement
learning [49], whose methodologies differ substantially from
their perception counterparts.

However, a significant research gap remains in tailoring these
methods to multi-robot scenarios, where centralized training and
data storage are the norm, but decentralized computation and
storage are restricted. The current literature scarcely addresses
active learning scenarios involving multiple agents outside the
context of federated active learning.

III. TWO STAGE ACTIVE LEARNING WITH DISTRIBUTED

AGENTS

In this section, we first introduce the setting in which our
SMARTL framework operates. From highlighting the limita-
tions of contemporary approaches, we derive a novel generalized
active learning formulation. Subsequently, we refine this concept
to develop the SMARTL framework.

Preliminaries: Active learning fundamentally involves the
selection of a subset DL of a dataset D that should be labeled.
The dataset D is assumed to be a sample from some (unknown)
distribution of perception scenarios denoted as D ∼ Ω. Concur-
rently, an unlabeled subset DU exists, satisfying the condition
DL ∪ DU = D. The overarching goal of this process is evaluated
by the performance of a trained model F (ω|DL) parameterized
by its weights ω while maintaining a minimal size for DL.
The active learning process is iterative, encompassing N cycles,
wherein each cycle i selects a new batch Dl of size b. A pool-
based query QP leverages the current label Di

L and unlabeled
set Di

U as well as the model weights to select the new batch Dl

of size b for annotation:

Di+1
l = QP (Di

U ,Di
L, ω

i, b) (1)

Di+1
L = Di

L ∪QP (Di
U ,Di

L, ω
i, b) (2)

Di+1
U = Di

U \ Di+1
l (3)

DL =
n⋃

i=0

QP (Di
U ,Di

L, ω
i, b) (4)
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The pool-based scenario assumes all data to be present in the
data center such that a full-scale selection can be conducted,
including diversity-based and learning-based methods relying
on extensive calculations using all unlabeled and labeled data.

In robotics, unlike other applications where data is primarily
stored in a data center, data is initially stored on the robot
during the collection and operational phase. If the dataset is
not considered to be comprehensive before the robot’s operation
commences, recorded data from an operation Dt

O is added to the
data pool, such that Di+1

U = Di
U ∪ Dt

O \ Di+1
l , where Dt

O ∼ Ω.
For the sake of simplification, we presuppose that the operations
t are synchronized with the cycles i, thus i = t.

However, this scenario has significant downsides for mobile
robotics. It assumes the transfer of all data to the data center,
which may not always be feasible, depending on the type of
data transfer. Additionally, storing all data during the operation
puts additional hardware requirements in place.

In contrast to the pool-based scenario, the stream-based sce-
nario dictates that the samples are not retained. Instead, they
are either earmarked within an internal storage of size b in the
streambatch scenario [7], [43] or instantaneously marked for
labeling. Since the samples are not stored, the query function
QS(

−→DU , ω, b) is restricted to evaluate each sample once, in-

dicated with an arrow
−→DU . This method has the advantage of

facilitating selection online at the mobile operator level, ensuring
only necessary data is saved. Nonetheless, this assumes a single
agent overseeing data collection and cannot reflect multiple
robots.

Multi-Agent Formulation: To address the aforementioned
challenges, we introduce a hybrid two-stage scenario that scales
to multiple agents by effectively preventing information overlap
among various agents and simultaneously minimizing the re-
quirements for data storage and uploads. It is crucial to consider
that mobile robots frequently operate in non-isolated environ-
ments and may receive overlapping information. In this setup,
we consider j agents engaged in data collection. Given the
impracticability of storing and uploading all the data collected
by a large number of agents, a stream-based selection becomes
indispensable. Each agent j encounters in each cycle i a sensor
stream, denoted as

−→D i,j
O , embodying potential candidates for

labeling.
To mitigate the data upload problem, a subset Di,j

c ⊂ −→D i,j
O of

size bjs for each agent j is selected on the agent, which can be
expressed for a single cycle i as follows:

Di,j
c = QS(

−→D i,j
O , ωi, bjs) (5)

Di
C =

m⋃
j=1

QS(
−→D i,j

O , ωi, bjs); bs =

m∑
j=1

bjs (6)

Upon aggregating the uploaded data Di
C , we encounter a

predicament where the information content from two distinct
agents overlaps, implying Di,j

c ∩ Di,j′
c �= ∅, ∀i ∈ N . To resolve

this, we delineate a secondary stage executed at the data center to
select bp samples by definingDi

C as an addition for the unlabeled

TABLE I
PARAMETER SETS FOR OUR GENERALIZED ACTIVE LEARNING FORMULATION

TO DESCRIBE DIFFERENT ACTIVE LEARNING SCENARIOS

pool comprehensively defined as:

Di+1
l = Qp(Di

C ,Di
L, ω

i, bp) (7)

Di+1
U = Di

U ∪ Di
C \ Di+1

l (8)

DL =
n⋃

i=0

Qp(Di
C ∪ Di

U ,Di
L, ω

i, bp) (9)

Combing the onboard and data center selections given in (6),
(9), the full framework composes to:

DL =
n⋃

i=0

QP

⎛
⎝

m⋃
j=1

QS(
−→D i,j

O , ωi, bs) ∪ Di
U ,Di

L, ω
i, bp

⎞
⎠

(10)
Through this formulation, we have created two distinct stages
represented by QP and QS . The query function QS operates
in real-time, independently on each robotic agent. Conversely,
QP functions centrally at the data center, orchestrating the
subsequent layer of data processing and selection. A visual rep-
resentation of our framework is shown in Fig. 1. The illustrated
two-phase query process begins with the stream-based queryQS

on the agents (1) and the upload of DC from the first selection
phase (2). Afterward, follows the pool-based query QP on the
data center (3). To close the cycle, the data Dl is sent to a human
annotator (4) and added to the labeled pool (5). Subsequently,
the network is trained with the updated labeled pool (6), and the
agents are synchronized with the newly refined model (7).

Generalized Active Learning Formulation: In our pursuit
to establish (10) as a generalized expression of active learn-
ing, we introduce a fundamental component, the identity query
QI . This query function is designed to select all data, thereby
satisfying S = QI(S) for any dataset S. Consequently, this
identity element permits the representation of both stream-based
or pool-based scenarios [5], [7] as special instances encapsulated
within (10), underlining the entitlement as generalized scenario
formulation. To substantiate this claim, we provide the corre-
sponding parameters to generate the plurality of active learning
scenarios in Table I.

Framework Definition: Enabled by the generalized active
learning formulation, we introduce a comprehensive and adapt-
able hybrid scenario active learning framework:

Stage 1 - Mobile Operator Data Stream Processing: This
stage primarily concerns onboard data streams from sources
like cameras and LiDAR sensors on the robots. Each robot or
agent acts individually in this stage, only involving the deployed
perception neural network. Given the stream-based setup in-
herent to online robotics selection, the query function at this
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Fig. 1. Multi-Robot Active Learning Framework. Left: Selection on the individual robots. Middle: query to synchronize and filter the uploaded samples. Right:
send labels to human annotator for labeling, update training set, and train neural network.

stage is restricted to evaluating only the current sample, which
limits them to loss learning and uncertainty-based methods like
Monte Carlo dropout. However, SMARTL is agnostic among
this group of methods, enabling flexibility in the first stage. We
highlight different selection methods in Section IV. As this can
cause overlaps in the selection, we set bs > bp to collect more
uncertain samples for succeeding diversification.

Stage 2 - Data Center Pool Processing: Subsequent to the
mobile operator stage, a post-operation initiates a pool-based
selection and synchronization phase. After the robots upload bs
samples, a diversity-based method is employed to accurately
reflect the relationship between the newly acquired data and the
data previously uploaded to the system, optimizing coverage
over the entire dataset. The diversity-based state queries bp sam-
ples, so possible information overlaps of samples are mitigated.
This can be achieved by minimizing a set of latent space features
f using a pairwise distance function d. In our approach, we adopt
the greedy L2 distance metric of the CoreSet approach [22] and
enrich it with metadata, which has been successfully presented
by Liang et al. [28]. The metadata contains the information about
the selecting robot and whether it is in the labeled or unlabeled
pool. We concatenate the normalized metadata to feature vectors
f to reflect the relationship of samples collected by one robot in
contrast to those collected by different agents.

Application Example: Consider a large-scale active learning
scenario with hundreds of autonomous vehicles, representing an
exemplary mobile robot type, acting as agents. In this scenario,
each vehicle is equipped with a computer vision system com-
prising a camera sensor and a computing unit running a deep
neural network.

Implementation of SMARTL: Importantly, SMARTL is agnos-
tic with respect to the applied uncertainty estimation technique.
It allows employing methods based on minor neural network
modifications [7], [29] or multiple [9], or temporal network
forward passes [17] that are most feasible for the existing
computing unit and task. We will highlight this flexibility in
the experiments and refer to original works for details on imple-
mentation. Additionally, data storage for bs samples is required.

As SMARTL has no real-time requirements, the samples can be
uploaded via any protocol or transferred via physical devices at
hubs. This flexibility ensures that SMARTL operates without
any latency dependencies. In our example, we assume that
collected data is transferred daily. Furthermore, the number
of agents can be adjusted dynamically, as data collection is
decentralized with inter-robot dependencies, enhancing scala-
bility. Since SMARTL modifies only the data collection phase,
it does not affect the data labeling processes used in traditional
frameworks.

Relation to existing frameworks: Traditional active learning
frameworks primarily assume the presence of all data on a
data center, requiring each agent to store all data collected and
subsequently transfer it to a centralized data center for selection.
Given the use of high-definition cameras, this approach could
demand several GB per hour per agent, resulting in substan-
tial data storage and transfer challenges. SMARTL considers a
selection and collection outside the data center, enabling data
selection at the individual agent level. This approach removes
the need to gather all data at a centralized data center before
the selection process and eliminates most storage and transfer
costs. The second selection phase on the data synchronizes
the selection of the individual agents and removes overlaps,
leveraging scalability.

IV. EVALUATION OF TWO STAGE ACTIVE LEARNING

In the subsequent section, we evaluate the performance of our
hybrid active learning framework. To showcase the versatility
of our approach, we conduct experiments involving various
tasks and datasets. We evaluate classification with the GTA V
streets (GTAVs) dataset [7] and CIFAR-100 [50] to validate our
approach’s efficacy for environments with a larger number of
classes. Furthermore, we validate the semantic segmentation
task on A2D2 [51] and CityScapes [1]. Given that distributed
multi-agent collection stands as a central pillar of our framework,
we concurrently process multiple streams during each active
learning cycle as depicted in Fig. 1.
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Fig. 2. Comparison of various active learning configurations on GTAVs, highlighting standard errors. Dotted lines represent stream-based selections, while
dashed lines indicate pool-based methods that upload all data.

We postulate the existence of a set of mobile robots en-
gaged in data acquisition from multiple streams, with subse-
quent synchronization occurring at the data center. This scenario
is compared to a purely pool-based data center selection, as
well as isolated steam-based selection processes undertaken by
individual robots. Importantly, we monitor the data saved during
the data upload process, as minimizing the volume of uploads
constitutes a relevant objective of our methodology.

In our experiments, we compare our method against sev-
eral baselines. As other methods cannot leverage a two-stage
selection, we added the identity query QI in the data center
phase for stream-based selections and in the agent selection
phase for pool-based methods. Note that this grants a consid-
erable advantage of a full data upload for pool-based methods.
We consider the Badge [23], CoreSet [22], CoreGCN [35]
and UncertaintyGCN [35] as pool-based baselines. As stream-
based baselines, we consider active learning on edge devices
(ALED) [43], Monte Carlo dropout Entropy (Ent) [9] and Bald,
loss learning (LLoss) [29] and a Random selection.

Classification: For the classification task, we utilize a
ResNet18 [52] model and the GTAVs dataset [7], specifically
designed for operation domain detection. This dataset encom-
passes seven distinct routes. In our setup, ten selection agents are
deployed, each encountering an alternating segmented subset
of the current route. We use the setting and routes presented
in [7], but start the early stopping after 50 epochs. Given its
unstructured nature, which is atypical in robotic applications,
the CIFAR-100 dataset is partitioned randomly. This deliberate
selection compensates for the limited class variety encoun-
tered in operation domain detection datasets. For CIFAR-100,
we followed the parameters in [53] that are provided in the
benchmark repository.1 We additionally used the augmentations
LLoss guidelines established for CIFAR-10 in [29]. During each
cycle, 10000 samples are presented in partitions of 1000 to
each agent in a stream-based manner, with a selection size of
bp = 25%. In contrast, the GTAVs dataset saw a more conserva-
tive selection of bp = 5% per cycle, adhering to the experimental

1[Online]. Available: https://github.com/weiaicunzai/pytorch-cifar100

TABLE II
COMPARISON OF UPLOAD FREQUENCIES ACROSS DIFFERENT METHODS FOR

CLASSIFICATION EXPERIMENTS REVEALS THAT OUR SMARTL , FUNCTIONING

AS A HYBRID MODEL, REQUIRES SIGNIFICANTLY FEWER UPLOADS THAN

POOL-BASED METHODS

setup described in [7]. We choose our mobile operator selection
size to bs = 2 · bp and all bjs to be equal. The robot executes a
LLoss with modifications of [7] for GTAVs and an Ent query
for CIFAR-100. We conduct two distinct experiments to simu-
late the behavior of autonomous agents traversing overlapping
routes: One scenario with no overlap (0%) and another with sig-
nificant overlap, constituting 30% of the routes. For an overlap,
we appended samples of the previous and subsequent subsets of
one robot to that of another robot, which increased the stream
size and, consequently, the number of selected samples.

The experiments conducted on the GTAVs dataset, as illus-
trated in Fig. 2, demonstrate that our method achieves stronger
performance with fewer queries and matches the performance
of the fully trained model earlier. While the LLoss with the
modifications of [7] exhibits good performance in the second
cycle, the lack of robot synchronization caused the performance
to drop again. For the overlap experiment in Fig. 2(b), a notice-
able increase in performance is observed, as our method attains
a performance level comparable to the CoreGCN approach.
Furthermore, a review of the data uploads presented in Table II
reveals that our SMARTL significantly reduces the number of
uploads by 90% for the GTAVs dataset. It should be noted
that since all uploaded samples are available for pool-based
methods, these techniques can capitalize on interesting scenarios
that might be overlooked by methods that select directly on the

https://github.com/weiaicunzai/pytorch-cifar100
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Fig. 3. CIFAR-100 with overlap on ResNet18, with highlighting standard
errors. Stream-based selections in dotted, pool-based methods that upload all
data in dashed.

robot. As the Dl is limited by bp, stream-based methods can
reduce uploads compared to SMARTL.

As depicted in Fig. 3, our SMARTL consistently exhibits
robust performance throughout all cycles on CIFAR-100, with
only CoreSet marginally outperforming it in the final cycle. No-
tably, CoreGCN encountered memory issues while handling this
dataset, a drawback attributable to its reliance on distance-based
calculations, which become intractable for a larger amount of
uploaded samples. This scenario highlights the versatility of
our framework, which is adept at accommodating multi-class
datasets - a theoretical exploration that holds promising rele-
vance for diverse and practical applications in robotics.

Our ambition is not to overshadow existing state-of-the-art
performances but to align with them, showcasing efficiency
through a significant reduction in the number of necessary
uploads. In addition to assessing the commonly evaluated metric
of performance gain in an active learning setup, we are also keen
on scrutinizing the volume of data transfer in order to furnish a
comprehensive analysis of our system’s efficacy and efficiency.

Semantic Segmentation: To validate our framework on a
more challenging task, we use the CityScapes [1] dataset and
A2D2 [51]. Both datasets contain different drives in different
cities. We assume four and three robots operate concurrently in
separate cities or drives for CityScapes and A2D2, respectively.
For our experiments, we used a DeepLabV3+ [54] model out-
fitted with a ResNet34 backbone, utilizing pre-trained weights
provided by PyTorch. Regarding the Cityscapes dataset, we
adhered to the parameter settings outlined in [55], with the
exception of the resize crop parameters, where we adjusted the
factor to a range of 0.5 to 1 and set the resized dimensions to
256 × 512. For A2D2, we followed the guidelines established
in [7] but decreased the learning rate to 0.01 for the backbone.
We use an auxiliary loss with an FCN head at the third ResNet34
block to improve the diversity-based selection within our data
center query, delivering the diversity calculation features. Our
framework utilizes Monte Carlo Dropout Ent for QS in the
A2D2 dataset and BALD for the Cityscapes dataset with max
accumulation. We further select bp = 20% of each stream with

Fig. 4. Active learning comparison on A2D2. Stream-based selections as
dotted lines, pool-based methods dashed.

TABLE III
COMPARISON OF UPLOAD FREQUENCIES ACROSS DIFFERENT METHODS FOR

CITYSCAPES (CS) AND A2D2 HIGHLIGHTING THE UPLOAD EFFICIENCY OF

SMARTL AGAINST POOL-BASED METHODS

bs = 2 · bp . As for classification, we conduct two different
experiments where we model the behavior of overlapping routes
of the autonomous agent: One with 0% overlap and one with 30%
overlap between the agents.

In Fig. 5, we present the evaluation of our experiments con-
ducted on the CityScapes dataset. As depicted in Fig. 5(a), our
method demonstrates superior performance, improving faster
and surpassing all other methods. This is particularly evident
when compared to stream-based selections, where our approach
excels in effectively synchronizing data. However, in the overlap
experiments depicted in Fig. 5(b), the overlap weakens the indi-
vidual robots’ selection process, narrowing the performance gap
between our method and the CoreSet approach, which uploads
all data. In our A2D2 experiments, we observed similar trends,
substantiating our initial findings. Notably, A2D2 offers a larger
pool of selectable samples, 4510, compared to CityScapes’
2245. In Fig. 4, it is evident that while our SMARTL approach
initiates with a slightly subdued performance compared to pool-
based methods, it gains momentum over subsequent cycles,
ultimately eclipsing the performance of all other contenders.
Conversely, the stream-based approaches lag, showcasing a
weaker performance trajectory. Since A2D2 recordings around
Munich are not overlap-free, SMARTL confirms its robustness
in the overlap scenario.

Upload Volume Analysis: To examine the influence on
the different query sizes bs and bp, we compare different ra-
tions in Table IV. Our results indicate that the sizes balance
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Fig. 5. Comparison of different active learning methods - mIoU over used data with indicated standard errors. Dotted lines represent stream-based selections,
while dashed lines indicate pool-based methods that upload all data.

TABLE IV
PERFORMANCE (MIOU) COMPARISON OF DIFFERENT SELECTION BUDGETS FOR

CITYSCAPES (CS) AND A2D2. STANDARD ERROR TO THE LAST DIGIT IN

BRACKETS

between uncertainty- and diversity-based selection in the dif-
ferent phases. The bs can be reduced for CityScapes with
more diverse and overlap-free routes, while for the overlapping
A2D2, a higher bs leads to a performance increase. Following
this SMARTL can effectively combine the strengths of both
uncertainty- and diversity-based strategies.

Our experiments demonstrate that the distributed structure of
our approach seamlessly integrates the uncertainty and diversity
components of active learning query functions. SMARTL ef-
fectively reduces the number of required data uploads, as
shown in Table III, while maintaining the highest perfor-
mance over all experiments. This preserves even in scenar-
ios with overlapping operations. Due to the absence of inter-
robot dependency SMARTL is seamlessly scalable to any num-
ber of robots. The openness in the uncertainty stage and the
embedding space distance calculation enabled SMARTL to
outperform existing methods on various tasks on established
benchmark datasets. As these characteristics are shared for all
computer vision tasks SMARTL is not limited to presented
tasks.

V. CONCLUSION

In this study, we have introduced SMARTL, a pioneering active
learning framework that facilitates simultaneous data collection
from multiple mobile agents, addressing the existing gaps in
modeling multi-agent active learning scenarios. By deriving a
general active learning formulation, we pave the way for novel
active learning scenarios. A central feature of our SMARTL

framework is its ability to strategically branch out the active
learning query into two components: an uncertainty-based query
managed by the robot and a diversity-based query conducted at
the data center. This division allows for a scalable integration
with an arbitrary number of agents, with minimal adaption
of the perception model. The flexibility in the uncertainty es-
timation component allows task-specific adaption, amplifying
scalability.

Our extensive experiments underscore the framework’s ef-
ficacy, demonstrating a significant reduction in data upload
volumes while surpassing the label selection performance of
conventional pool-based active learning methods, necessitating
complete data transfer to the data center. In future work, we
plan to expand the capabilities of the diversity-based query
component by incorporating metadata more extensively to fur-
ther capitalize on the distributed nature of multi-robot setups.
Besides, we intend to investigate robot synchronization to tackle
overlapping routes and include an unsupervised learning phase
in our framework.
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