8218

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

DrPlanner: Diagnosis and Repair of Motion
Planners for Automated Vehicles Using
Large Language Models

Yuanfei Lin

Masayoshi Tomizuka ", Life Fellow, IEEE, Wei Zhan

Abstract—Motion planners are essential for the safe operation
of automated vehicles across various scenarios. However, no mo-
tion planning algorithm has achieved perfection in the litera-
ture, and improving its performance is often time-consuming and
labor-intensive. To tackle the aforementioned issues, we present
DrPlanner, the first framework designed to automatically diagnose
and repair motion planners using large language models. Initially,
we generate a structured description of the planner and its planned
trajectories from both natural and programming languages. Lever-
aging the profound capabilities of large language models, our
framework returns repaired planners with detailed diagnostic de-
scriptions. Furthermore, our framework advances iteratively with
continuous feedback from the evaluation of the repaired outcomes.
Our approach is validated using both search- and sampling-based
motion planners for automated vehicles; experimental results high-
light the need for demonstrations in the prompt and show the ability
of our framework to effectively identify and rectify elusive issues.

Index Terms—Automated software repair, integrated planning
and learning, intelligent transportation systems, large language
models, motion and path planning.

I. INTRODUCTION

OTION planners for automated vehicles are responsible

for computing safe, physically feasible, and comfortable
motions [1]. A major challenge is the excessive manual effort
required to tune motion planners, which entails diagnosing the
planner based on a variety of critical test scenarios and eval-
uation metrics. To address this, we establish a framework that
leverages the remarkable emergent abilities of large language
models (LLMs) [2], [3], [4] to automatically provide and apply

Manuscript received 12 March 2024; accepted 22 July 2024. Date of publi-
cation 9 August 2024; date of current version 16 August 2024. This letter was
recommended for publication by Associate Editor Harold Soh and Editor Hanna
Kurniawati upon evaluation of the reviewers’ comments. The work was support
in part by the German Federal Ministry for Digital and Transport (BMDV) for the
project KoSi, in part by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) in part by SFB1608, under Grant 501798263, and in part
by the Berkeley DeepDrive. (Corresponding author: Wei Zhan.)

Yuanfei Lin and Matthias Althoff are with the School of Computation,
Information and Technology, Technical University of Munich, 85748 Garching,
Germany (e-mail: yuanfei.lin@tum.de; althoff @tum.de).

Chenran Li, Mingyu Ding, Masayoshi Tomizuka, and Wei Zhan are with
the Department of Mechanical Engineering, University of California, Berke-
ley, CA 94720 USA (e-mail: chenran_li@berkeley.edu; myding @berkeley.edu;
tomizuka@berkeley.edu; wzhan @berkeley.edu).

Digital Object Identifier 10.1109/LRA.2024.3441493

, Graduate Student Member, IEEE, Chenran Li

, Mingyu Ding ", Member, IEEE,
, Member, IEEE, and Matthias Althoff Y, Member, IEEE

Imperfect Motion Planner

Critical Scenario {

obstacles

goal region

Ninitial state

L
(71:/‘ DrPlanner

&

Diagnosis: Cost calculation includes negative value
Prescription: Ensure cost is non-negative by including condition that sets cost
to zero if negative

Repaired planner: def heuristic_function(...)/cost_function(...)/...

Fig. 1. Anexample usage of DrPlanner: In a critical scenario, our imperfect
motion planner plans a trajectory. The description of the trajectory and the
planner is then fed into DrPlanner. By harnessing the strengths of LLMs,
we adeptly diagnose and repair the deficiencies within the planner.

diagnostic solutions for a motion planner of automated vehicles,
as illustrated in Fig. 1.

A. Related Work

Although many motion planning algorithms can tackle a
diverse range of tasks, they often face issues related to prob-
abilistic completeness, computational complexity, or real-time
constraints in finding the optimal solution [1], [5], [6], [7],
[8]. Besides, guaranteeing safety, rule compliance, and social
compatibility of motion planners remains a challenge [9], [10],
[11], [12]. To provide an overview of how one can improve and
repair such planners, we first survey methods from automated
software repair, followed by summarizing contributions based
on LLMs.

1) Automated Software Repair: With the increasing com-
plexity and size of software, automatic debugging and repair
techniques have been developed to reduce the extensive manual
effort required to fix faults and to improve quality [13]. For
instance, human-designed templates are used to repair certain
types of bugs in code [14], [15], [16], [17], [18], but their
effectiveness is often limited to hard-coded patterns. To over-
come these limitations, deep-learning-based approaches utilize
neural machine translation [19] to learn from existing patches,
treating the repaired code as a translation of the buggy one [20],
[21], [22], [23]. However, the performance of these approaches
is limited by the quality and quantity of the training data as

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2859-0095
https://orcid.org/0000-0003-0231-7741
https://orcid.org/0000-0001-6556-8359
https://orcid.org/0000-0003-0206-6639
https://orcid.org/0000-0002-1474-1200
https://orcid.org/0000-0003-3733-842X
mailto:yuanfei.lin@tum.de
mailto:althoff@tum.de
mailto:chenran_li@berkeley.edu
mailto:myding@berkeley.edu
mailto:tomizuka@berkeley.edu
mailto:wzhan@berkeley.edu

LIN et al.: DRPLANNER: DIAGNOSIS AND REPAIR OF MOTION PLANNERS FOR AUTOMATED VEHICLES USING LARGE LANGUAGE MODELS

well as its representation format [24]. As LLMs have shown
emergent abilities in solving programming tasks [25], [26], [27],
[28], [29], they are applied for generating program patches [30],
[31], [32], self-debugging [33], [34], and cleaning code [35].
Unlike simply maintaining functional equivalence, we aim to
both rectify imperfections and boost the performance of the
planning algorithms. Although the aspect of linking text with
code aligns with [29] and the focus on performance improvement
with [36], our work uniquely addresses the challenges posed
by the larger and more intricate codebases of motion planners.
Another branch of work focuses on repairing the outcome of
given software [37], [38], [39] or addressing specified diagnostic
criteria [40].

2) Language Models for Motion Planning: With their in-
dispensable role of common sense reasoning and generaliza-
tion [41], [42],[43], LLMs have been applied in motion planning
for autonomous driving to make high-level decisions [44], [45],
[46], [47], [48], generate driving trajectories [49], [S0] or provide
control signals directly [51], [52], [S3]. However, the refinement
of motion planners themselves is still driven by the nuanced intu-
ition of humans and by real traffic data. In this work, LLMs serve
to bridge this gap by emulating human-like problem-solving
strategies, offering strategic guidance in analyzing complex
motion planners.

B. Contributions

In this work, we introduce DrPlanner, the first framework
to autonomously diagnose and repair motion planners for auto-
mated vehicles, harnessing the power of LLMs that improve
as they scale with additional data and model complexity. In
particular, our contributions are:

1) establishing a structured and modular description for mo-
tion planners across both natural and programming lan-
guage modalities to exploit the capabilities of LLMs for
diagnosis and repair;

2) leveraging the in-context learning capabilities of LLMs by
providing demonstrations to the model at the point where
it infers diagnostic results; and

3) enhancing the understanding of underlying improvement
mechanisms by generating continuous feedback in a
closed-loop manner.

The remainder of this work is structured as follows: Section 11
lists necessary preliminaries. The proposed framework for diag-
nosing and repairing motion planners is described in Section III.
We demonstrate the benefits of our approach in Section IV and
conclude the letter in Section V.

II. PRELIMINARIES
A. Motion Planning for Automated Vehicles

We refer to the vehicle for which trajectories are planned as the
ego vehicle. As illustrated in Fig. 2, motion planning algorithms
are tasked with ensuring that the ego vehicle travels from an
initial state to a goal region within a specified time [54]. The
motion planner typically minimizes a given objective function
J(x), e.g., by penalizing the travel time or passenger discom-
fort [1, Sec. IV]. Simultaneously, the solution, denoted by Y,

8219

(= ») future initial goal
w3 obstacles “** movement state region
]
e | §
/N

Nt

Fig. 2. Exemplary motion planning problem, where the ego vehicle needs to
travel from its initial state to reach the goal region safely and efficiently.

must satisfy common and safety-relevant requirements, such
as being drivable, collision-free, and rule-compliant [38], [55].
Subsequently, we denote a motion planner by M and a motion
planning problem by P.

B. Prompt Engineering for LLMs

The technique of using a textual string ¢ to instruct LLMs
is referred to as prompting [56, Sec. 4]. This approach enables
LLMs to be pretrained on a massive amount of data [56, Sec. 3]
and subsequently adapt to new use cases with few or no labeled
data. To enhance the in-context learning capabilities, the prompt
may include a few human-annotated examples of the task,
known as few-shot prompting [2], or utilize chain-of-thought
reasoning [41], [57]. We divide the input prompt ¢ into two
components: the system prompt £syscm, Which outlines the task
for the LLMs, and the user prompt ¢y, providing context for
the diagnostic task. The labels, manual inputs, and automatically
generated content within the prompt are marked with angle
brackets, square brackets, and curly brackets, respectively. The
output consists of both a list of diagnosis-prescription pairs
and patched programs, collectively denoted by £4, and p,. It
is important to consider that LLMs have a limit on the number
of tokens they can process [58], which imposes a maximum
length on the prompt and prevents us from including extensive
code within a single prompt.

III. DRPLANNER

This section presents our prompt engineering with a nuanced
diagnostic description. We begin by introducing the overall
algorithm, followed by a more detailed presentation.

A. Overall Algorithm

A general overview of using DrPlanner is presented in Fig. 3
and Algorithm 1. Before initiating the process, the user fills
in the placeholders enclosed in square brackets. For a given
scenario, the motion planner M is first deployed to address the
associated planning problem P (see line 1). Subsequently, the
planned trajectory x is evaluated using the objective function
J (see line 2). Following this, a diagnostic description £,
encompassing the diagnostic instructions, the description of
the planner, the evaluation of the trajectory, and the few-shot
examples are formulated (see line 3). This description, along
with the system prompt £ yem, is fed into the LLM (see line 6).
The structure of the input prompt is illustrated in the center
of the framework in Fig. 3. Afterwards, the obtained patched
programs are applied to the motion planner by integrating the
modifications into the existing codebase (see line 7).

8220

Tt T
SCC réggfilo Leaderboard S&%m on % a
) <system> Lsystem
S B s e e
l J* <instructions> (cf. Sec. III-B1) Luser

key components

helper functions Jrep

<motion planner> (cf. Sec. III-B2)
<planned trajectory> (cf. Sec. III-B3)
<few-shots> (cf. Sec. III-B4)

<feedback> (cf. Sec. III-C)

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

diagnosis

prescription

f<system>: You are an expert in diagnosing motion planners for automated vehicles. Your task is to identify diagnoses and recommend \
prescriptions for the motion planner, with the objective of enhancing its performance.

step-by-step action plan. [other instructions]

<instructions>: Before you start, it is important to understand and adhere to the instructions:
- Ensure that the improved code is free from errors and that all modifications positively impact the final outcome.
- The diagnosis should concisely pinpoint each issue, using only a few words for clarity and brevity. For each prescription, provide a detailed,

- Adhere strictly to all specified instructions. In case of a contradiction with your knowledge, offer a thorough explanation.

[general description] {code} + {detailed description}; ...

<motion planner>: The [planning algorithm] is employed in trajectory planning to navigate the vehicle from an initial state to a
designated goal region by [principle]. The key components of the planner to be diagnosed and repaired are: [key component] -

{weight}; {component}, valued at ...

<planned trajectory>: The goal is to adjust the total objective function of the planned trajectory to closely align with the desired
value [J*]. The current total objective function is calculated to be {J}, includes {component}, valued at {value} with a weight of

{method definition + docstring}, [examples]; ...

<few-shots>: There are also some pre-defined helper functions that can be directly called in the [key component]: [helper functions] -

<feedback>: Diagnoses and prescriptions from the iteration {number of iteration}: {diagnoses and prescriptions}. After applying
this diagnostic result, {error messages} / the updated total objective function is {Jrep }, which includes {details of the updated objective
kcomponents}. The performance of the motion planner is getting {worse / better}.

2/

Fig. 3.

Overview of the DrPlanner framework. The process starts with obtaining a planned trajectory for the planning problem with the given motion planner.

Then, the planned trajectory is evaluated by the objective function. Afterwards, the description for the planner is generated and used to prompt an off-the-shelf
LLM to generate the diagnoses and prescriptions for the planner, along with the patched programs. After applying the patches, the evaluation of the updated planner
is incorporated back into the prompt as feedback to continuously enhance the diagnostic performance (marked by dashed arrows).

Algorithm 1: DIAGNOSEANDREPAIRPLANNER.

Input: planning problem P, motion planner M, target value
J*, system prompt {gygem, LLM

Output: diagnoses and prescriptions ij, repaired planner
M:ep

1: x < M.plan(P)

2: J < evaluate(y)

3: lyser + describe (M, J, J*)

4t Juin = J, £y — 0, M, 0

5: while not reachTokenLimit(LLM) and J,;, — J* > €

do

> Sec. III-B

6: (Lap, pp) +— LLM.query ({system, luser) > Sec. III-C
7: Mygp ¢ repair(M, p,)
8: X ¢ Mep.plan(P)
91 Jyep + evaluate(y)
10: Lyser +— addFeedback (Luser, J, Jrep, Lap) > Sec. III-C
11: if Jiep < Jimin then
12: Jmin — Jrep, EZIP — de, M:ep
13: end if
14: end while

15: return £5,, My,

< Miep

However, it is important to note that the output generated
may include errors such as hallucinations and inaccurate anal-
yses [59]. To mitigate these issues, we employ an iterative
prompting strategy, repeatedly refining the process. The iteration

is terminated when a notable improvement in the planner is
observed, e.g., when the difference between the current best
performance J,;, and a target value J* is smaller than a thresh-
old e € R, or when the token limit of the LLM is reached (see
lines 5—14). Finally, the repaired planner demonstrating the best
improvement, if any, along with the corresponding diagnoses
and prescriptions, is returned (see line 15).

Another regime is to finetune the LLM to the given task.
However, to date, there exists no open-source dataset containing
input-output examples of motion planners. Additionally, fine-
tuning usually only provides modest improvements in solving
challenging and complex tasks compared to in-context learn-
ing [34], [35], [57]. Regardless of the approach, when deploy-
ing the repaired planners on roads, a safety layer is always
required [12].

B. Diagnostic Description

As discussed in Section II-B, prompt design is challenging,
particularly when considering the limited information about the
diagnostic object in the pretrained LLM. To enhance conclu-
sions, we design a structured and comprehensive description of
the motion planner, emulating the process of a real doctor. Its
overall skeleton is depicted in the lower part of Fig. 3. As we
assume that the motion planner internally handles goal-reaching
and drivability-checking of the trajectory in the scenario (cf. Sec-
tionII-A), a detailed description of the scenario, motion planning

LIN et al.: DRPLANNER: DIAGNOSIS AND REPAIR OF MOTION PLANNERS FOR AUTOMATED VEHICLES USING LARGE LANGUAGE MODELS

problem, and trajectory states is omitted in the prompt. Alterna-
tively, these tasks can be addressed by additional modules, such
as those employing LLM-embedded agents (cf. Section I-A2).

1) Instructions: The instruction provides general guidance
for the LLM, detailing the expected output and reasoning con-
straints. In addition, we can include the commonly used rule-of-
thumb from expert knowledge. For instance, “merely adjusting
the weighting or coefficients is often cumbersome and not very
effective’.

2) Motion Planner: The description of the motion planner
begins with the selection and a brief introduction to the planning
algorithm. This is followed by a general description of the key
components that primarily affect the performance of the planner.
To gain a better understanding of how the algorithm is practically
implemented, we also include the code of the key components
as an additional input modality. As mentioned in Section I-A1,
the LLM is then able to generate repaired programs given
corresponding instructions. Motivated by the chain of thought
(cf. Section II-B), we incorporate existing explanations found
within the docstrings of subfunctions to provide natural language
summaries for the code blocks. The description adheres to the
format of {subfunction name} followed by its {docstring}. For
instance, an automatically generated {detailed description} is:
“self.calc_angle_to_goal returns the orientation of
the goal with respect to current position,... ” (cf. Fig. 6(a)).

3) Planned Trajectory: There are various measures to quan-
titatively evaluate the planned trajectory and track its improve-
ment. These measures include the cost function [54], criticality
measures [60], courtesy to other traffic participants [61], and
degree of traffic rule compliance [11], [38]. To align the LLM
with the desired behavior, we present not only the evaluation
results for the selected measures but also incorporate the target
value J*, which can be, e.g., sourced from the motion planning
benchmark leaderboard. In addition, the numerical data of the
values and weights of the objective components is translated into
a narrative description by mapping them to their corresponding
placeholders.

4) Few-Shots: As it is not necessary for LLMs to have prior
knowledge of the other part of the large-scale motion planner,
we provide existing helper functions and their exemplary usage
in the prompt. Furthermore, several human-annotated examples
for improving the performance of the specific type of motion
planner can be added here, with examples available in Fig. 4.

C. LLM Querying and Iterative Prompting

When querying the LLM, it is essential to specify the desired
output format. To achieve this, one can guide the LLM by
emphasizing the diagnoses, prescriptions, and key components
of the planner (cf. Section II-A) in the prompt as desired
responses or employ other third-party tools such as LangChain.'
Consequently, the structured patched results can directly replace
the original elements to repair the planner.

Motivated by how LLMs are utilized in improving technical
systems [34], [45], [62], [63], we examine the repaired planner
by executing it and then pass the evaluation result back to the

![Online]. Available: https://www.langchain.com/

8221

There are some pre-defined helper functions that can be directly called
in the heuristic function:

def calc_acceleration_cost (self, path: List[KSState]) -> float:
"""Returns the acceleration costs."""
Examples:

(input)

def heuristic_function(self, node_current: PriorityNode) -> float:
cost = angle_to_goal
return cost

(output)

Diagnosis: the acceleration is not considered

Prescription:

def heuristic_function(self,

add the acceleration cost to the heuristic function
node_current: PriorityNode) -> float:
acceleration_cost =

self.calc_acceleration_cost (node_current.list_paths[-1]

cost = angle_to_goal + acceleration_cost

return cost
Feasible motion primitives with the same name format that you can
directly use:

"V_0.0_20.0_Vstep_1.0_SA_-1.066_1.066_SAstep_2.13_T_0.5_Model_BMW_3201i",
"V_0.0_20.0_Vstep_2.0_SA_-1.066_1.066_SAstep_0.18_T_0.5_Model BMW_320i",
Fig. 4. Snippet of the few-shot prompting used for the search-based planner.

LLM. In case of compilation or execution errors, the previous
diagnostic result is combined with the information indicating
where the error occurred and what it entails. Otherwise, the
combination is made with a comparison of the performance
between the updated planned trajectory and the original one.

IV. EVALUATION

We evaluate our approach using the open-source motion plan-
ners from the CommonRoad platform [54], which are written in
Python. As CommonRoad provides customizable challenges
and annual competitions, where users can compete against each
other on predefined benchmarks, we can continuously integrate
enhancements into DrPlanner based on insights from a broad
user base. Furthermore, we choose GPT-4-Turbo? as our LLM
and use its function calling feature to generate structured out-
puts. It should be noted that our framework is not limited to
GPT-4-Turbo and can be easily adapted for use with other LLMs
by modifying the interface. The patched programs are then
stringified in a JSON object and directly parsed to the motion
planner, followed by execution through the exec function in
Python. The token limit is set to 8,000, the threshold e is equal
to 10, and we choose the sampling temperature of the LLM at
0.6 (cf. [26, Fig. 5]). Code and exemplary prompts are available
at https://github.com/CommonRoad/drplanner.

A. Setup

1) Search-Based Motion Planner’: We adapt the anytime A*
search algorithm using lattice-based graphs [64]. This imple-
mentation features a time-limited search cut-off and employs
a cost function and an estimated cost to the goal, namely, a
heuristic function, to guide the search process. The graph is
constructed with motion primitives—short trajectories generated
offline through a forward simulation of a given vehicle model.
The number of explored nodes in the graph is denoted as N,,.

2ID gpt-4-turbo-preview in the API of OpenAl
3[Online]. Available: https://commonroad.in.tum.de/tools/commonroad-
search

https://www.langchain.com/
https://github.com/CommonRoad/drplanner
https://commonroad.in.tum.de/tools/commonroad-search
https://commonroad.in.tum.de/tools/commonroad-search

8222

Motion primitives are typically referenced by IDs encoded with
configurable parameters:*

MP = "V_ Umin _ Umax _Vstep_ Av _SA_ dmin _ Omax _

SAstep_ Ad _T_T7 _Model_m ",

where vy, and vy, are the sampling velocity limits, i
and d,,, are the sampling steering angle bounds, Av and Ad
specify their respective step sizes, 7 is the time duration of
each motion primitive, and m is the model identifier of the ego
vehicle. Therefore, the heuristic function and motion primitives
constitute the key components. We provide the entire code block
of the heuristic function along with descriptions of the involved
subfunctions in natural language. In the description of motion
primitives, the explanation includes the naming convention,
followed by their ID.

2) Sampling-Based Motion Planner’ : Similarly, we evaluate
our approach on the sampling-based motion planner of [65],
which computes jerk-optimal trajectories using polynomials to
connect sampled end states with the initial state. From the set
of feasible trajectory samples, the optimal trajectory is selected
based on a cost function. Consequently, the cost function and
sampling configurations, such as the sampling time horizon ¢,
are the key components.

3) Measures of the Planned Trajectory: To evaluate the qual-
ity of the planned trajectory, we utilize the standardized objec-
tive function Jsy® from CommonRoad [54, Sec. VI], which
includes the cost for acceleration, steering angle, steering rate,
distance and orientation offset to the centerline of the road, and
velocity offset to the desired value.

4) Few-Shots: To gain a deeper insight into the planner, we
include method definitions and docstrings for existing helper
functions within the planner class. For instance, as shown in
Fig. 4, we also provide a list of IDs corresponding to offline-
generated motion primitives from which the LLM can select for
the search-based planner.

B. Case Study

We choose an intersection scenario from the CommonRoad
platform (cf. Fig. 5), which is generated by the scenario factory
for safety-critical traffic scenarios [60], [66]. In the urban en-
vironment, the motion planners are responsible for navigating
the ego vehicle from the initial state for 3.3 s without colliding
with any obstacles. The time increment of the scenario is 0.1 s.
In both planned trajectories by the initial planners configured
as shown in Fig. 6, the ego vehicle brakes and steers slightly to
the right, leading to high values of Jgy; (cf. Table I). The target
value of Jsy is extracted from the CommonRoad benchmark
leaderboard® and is J§y;, = 0.16.

The diagnostic results for the search-based planner using
our approach are illustrated in Fig. 7. In the first iteration,

4 All parameters are given in SI units.

5[Online]. Available: https://commonroad.in.tum.de/tools/commonroad-
reactive-planner

The objective function can be adapted or replaced as needed.

7CommonRoad-1D: DEU_Guetersloh-15_2_T-1

8[Online]. Available: https://commonroad.in.tum.de/solutions/ranking

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

future

) ego _initial planned
movement @ vehicle

(=) , .. - ; ;
_— obstacles state eeess=* frajectories

initial planner

(b) Sampling-based motion planner.

Fig.5. Critical intersection scenario’ in which the ego vehicle needs to safely
drive for 33 time steps. For clarity, the planned trajectories for the ego vehicle
from different planners are marked with different colors and labels.

I def heuristic_function(self, node_current: PriorityNode) -> float:

2 path_last = node_current.list_paths[-1]
3 angleToGoal =
self.calc_angle_to_goal (path_last[-1])
4 orientationToGoalDiff = self.calc_orientation_diff (angleToGoal,

path_last[-1].orientation)
5 cost_time = self.calc_time_cost (path_last)
6 if self.reached_goal (node_current.list_paths[-1]):
7 heur_time = 0.0
8 if self.position_desired is None:
9 heur_time = self.time_desired.start —
node_current.list_paths[-1][-1].time_step
10 else:
11 velocity = node_current.list_paths[-1][-1].velocity

12 if np.isclose(velocity, 0):
13 heur_time = np.inf

14 else:

15 heur_time =

self.calc_euclidean_distance (current_node=node_current) /

velocity
16 cost = 20 % orientationToGoalDiff + 0.5 % cost_time + heur_time
17 if cost < 0:
18 cost = 0
19 return cost
MP = "V_0.0_20.0_Vstep_4.0_SA_-1.066_1.066_SAstep_0.18_T_0.5_Model_\
BMW_320i"

(a) Search-based motion planner.

I def evaluate(self, trajectory: TrajectorySample) -> float:

2 cost == 0.0
3 cost += CostFunction.steering_velocity_costs (trajectory)
4 cost += CostFunction.path_length_costs(trajectory)
5 return cost
planning:
dt: 0.1

replanning_frequency: 3
time_steps_computation: 20

(b) Sampling-based motion planner.

Fig. 6. Key components used in the initial planner.

TABLE I
COMPARISON OF THE PLANNED TRAJECTORIES BEFORE AND AFTER REPAIR

Type Item Initial Repaired Planner

P Planner 1. Iter. 2. Iter. 3. Iter. 4. Iter.
Search- Jsmi 4606.93 752.56 -

based Nn, 11 9 -

Sampling- Jsv; 2614.76 169.49 = 305.42

based ts 2.0s 3.0s 2.5s

The lowest values of the objective function are marked in bold.

https://commonroad.in.tum.de/tools/commonroad-reactive-planner
https://commonroad.in.tum.de/tools/commonroad-reactive-planner
https://commonroad.in.tum.de/solutions/ranking

LIN et al.: DRPLANNER: DIAGNOSIS AND REPAIR OF MOTION PLANNERS FOR AUTOMATED VEHICLES USING LARGE LANGUAGE MODELS

8223

1 def heuristic_function(self, node_current: PriorityNode) -> float:

6 + acceleration_cost = self.calc_acceleration_cost (path_last)

7+ path_efficiency = self.calc_path_efficiency (path_last)

8 + steering_angle_cost = self.calc_steering_angle_cost (path_last)

9 + steering_velocity_cost = self.calc_steering_velocity_cost (path_last)
10 if self.reached_goal (node_current.list_paths[-1]):

1= heur_time = 0.0

11 + return 0

16 if np.isclose(velocity, 0):

17 = heur_time = np.inf

17 + heur_time = 10 # Instead of np.inf, assign a high but finite
cost

20 = cost = 20 x orientationToGoalDiff + 0.5 % cost_time + heur_time

20 + cost =
heur_time + acceleration_cost + path_efficiency +

10 = orientationToGoalDiff + 0.5 * cost_time +

steering_angle_cost + steering_velocity_ cost

MP = "V_0.0_20.0_Vstep_4-82.0_SA_-1.066_1.066_SAstep_0.18_T_0.5_Model \

BMW_3201"
Diagnosis Prescription
Orientation weight too high Adjust the weight for orientation to goal dif-
ference

Include acceleration cost in heuristic
Include path efficiency in heuristic
Include steering angle cost in heuristic

Missing acceleration cost
Missing path efficiency

Missing steering angle cost
Missing steering velocity cost
Infinite heuristic for zero velocity
Sparse motion primitives

Include steering velocity cost in heuristic
Handle zero velocity case appropriately
Recommend motion primitives with higher
branching factor

(a) 1. iteration.

KeyError: 'repaired_heuristic_function'

(b) 2. iteration.

1 def heuristic_function(self, node_current: PriorityNode) -> float:

6|+ acceleration_cost = self.calc_acceleration_cost (path_last)|

path_efficiency = self.calcﬁpathﬁefficiency(pathﬁlast)|

+
8|+ steering_angle_cost = self.calc_steering_angle_cost (path_last)|
+

steering_velocity_cost = self.calc_steering_velocity_cost (path_last)‘

10 = if self.reached_goal (node_current.list_paths[-1]):
10 + if self.reached_goal (path_last) :

11 heur_time = 0.0

12 = if self.position_desired is None:

12 + elif self.position_desired is None:

13 = heur_time = self.time_desired.start -
node_current.list_paths[-1][-1].time_step

13 + heur_time = self.time_desired.start - path_last[-1].time_step

14 else:

15 = velocity = node_current.list_paths[-1][-1].velocity

15 + velocity = path_last([-1].velocity

16 if np.isclose(velocity, 0):

17 = heur_time = np.inf

17 + heur_time = 1le6 # A large but not infinite cost

20 |- cost = 20 * orientationToGoalDiff + 0.5 * cost_time + heur_time|

20 |+ cost = 10 x orientationToGoalDiff + 0.5 x cost_time +
heur_time + acceleration_cost + path_efficiency +
steering_angle_cost + steering velocity_ cost

MP = "V_0.0_20. o,\/stepwskq .066_1.066_SAstep_0.18_T_0.5_Model\
_BMW_320i"

Diagnosis

Orientation weight excessive
Heuristic excludes costs

Zero velocity infinite cost
Motion primitives high branching
KeyError in heuristic function

Prescription
Decrease orientation weight in heuristic

Incorporate all costs into heuristic

Refine zero velocity case handling
Optimize motion primitives branching
Ensure correct key for improved heuristic

(c) 3. iteration.

Fig. 7. Diagnostic and repair result for the search-based motion planner in
Fig. 6(a). The identical program patches in the first and third iteration are
highlighted with black borders in (c). For the second iteration, we omit the
diagnoses and prescriptions since it leads to an error.

the provided helper functions are automatically included in the
heuristic function by the LLM (cf. Fig. 7(a)). Meanwhile, some
hyperparameters are adjusted, such as the orientation weight
and the heuristic for zero velocity, and new motion primitives
are selected. Considering all the above factors, the repaired
planner results in a decrease in Jsy; of the planned trajectory,

——

0% 20% 40% 60% 80% 100%
Decrement of Jsy
Fig. 8. Benchmarked reduction of Jsy; across scenarios using DrPlanner .

For better visibility, outliers in the box plot are not shown.

1 def evaluate (self, -> float:

3= cost += CostFunction.steering_velocity_costs (trajectory)

trajectory: TrajectorySample)

3+ cost += CostFunction.acceleration_costs(trajectory) * 25
4+ cost += CostFunction.steering_velocity_costs (trajectory) * 25
54 cost += CostFunction.longitudinal_jerk_costs (trajectory) * 10

planning:
time_steps_computation: 2830

Diagnosis

Acceleration cost weight too high
Steering velocity cost weight too
high

Inclusion of jerk costs

Prescription

Reduce the weight of the acceleration cost
Consider reducing its weight to better bal-
ance the cost function

To add nuance to the trajectory evaluation,
include jerk costs in the cost function
Increase the planning horizon

Planning horizon too short

Fig.9. Diagnostic and repair result of the third iteration for the sampling-based
motion planner in Fig. 6(b).

particularly in the acceleration cost. Additionally, it allows the
vehicle to travel further forward with fewer explored nodes in
the search graph due to the coarser motion primitives applied (see
Table I and Fig. 5(a)). In contrast, the diagnostic result from the
second iteration leads to a KeyError (cf. Fig. 7(b)), indicating
that the repaired heuristic function is not provided by the LLM.
With the iterative prompting, the error message is incorporated
as feedback into the prompt for the third iteration. As shown in
Fig. 7(c), our approach not only helps the LLM avoid the errors
from previous iterations (cf. the diagnosis “KeyError in heuristic
function”) but also retains the previous diagnostic results that
lead to a positive impact on the planner. As a result, the planner
significantly improves its performance, with a substantial reduc-
tion in Jgpy from 752.56 to 4.65, achieved by further balancing
the objective components (cf. Table I). Moreover, it can be
observed from Fig. 7 that DrPlanner can provide fine-grained
diagnoses and prescriptions based on both the prompt design
and fundamental aspects of programming, such as aliasing (cf.
lines 10, 13, 15 in Fig. 7(c)). The resulting patched programs
align precisely with these diagnoses and prescriptions.

The initial configuration snippet of the sampling-based plan-
ner is shown in Fig. 6(b). A similar repair pattern to the
search-based planner can be observed in Table I and Fig. 5(b).
For brevity, we only show the diagnostic details for the third
iteration in Fig. 9, which achieves the best performance among
all iterations. The cost function improves through weight tuning
and adding more items, and a larger ¢ is selected, leading to a
noticeable reduction in Jgy;.

C. Performance Evaluation

We further evaluate the performance of DrPlanner by an-
alyzing 50 randomly selected critical CommonRoad scenar-
ios, along with 50 A*-search-based motion planners in vari-
ous setups from the CommonRoad challenges. The former is
benchmarked against the search-based planner configured as
shown in Fig. 6(a). The latter evaluation utilizes the scenario

8224

TABLE I
PERFORMANCE EVALUATION AND ABLATION STUDIES ACROSS PLANNERS ON
THE DESIGN OF DrPlanner

Method k=1t best k=107 Avel S D
Genetic [14] 0.8% 0.4% 7.7% 0.1% 1.6%
w/o Few-Shots 0.0% 0.0% 0.0% 0.0% 0.0%
w/o Feedback 45.4% 86.2% 92.0% 49.6% 36.3%
DrPlanner 68.0% 95.1% 98.0% 54.5% 34.9%

Values in bold denote the best performance.

illustrated in Fig. 5 and employs the pass@k metric. We use
its unbiased version as proposed in [26, Sec. 2.1], defined as
the probability that at least one of the top k¥ € N generated
code samples for a problem passes the given tests. Here, we
use a decrease of Jgy for the returned planner as the criterion
for passing. As a baseline, the performance of DrPlanner is
compared with a genetic approach [14], where the program
of the heuristic function is repaired to minimize Jgy;. The
solution space consists of 10 chromosomes, and the process runs
for 100 generations. Additionally, we conduct ablation studies
to examine the impact of omitting two specific components
within the framework across different planners: few-shots and
feedback. For each study, we execute the framework 10 times to
collect solution samples.

Fig. 8 and Table II present the results of the performance
evaluation. Overall, DrPlanner effectively diagnoses and re-
pairs motion planners under various setups, outperforming the
baseline approach in all metrics, with a pass rate of 98.0%
at k =10 and an average reduction of 54.5% in Jgy;. The
benchmark results in Fig. 8 further indicate robust performance
across diverse scenarios, with an average Jsy; decrease of
90.76%. Note that, similar to the case study in Section IV-B,
the value of Jgy; does not converge with the iterations due
to diagnostic inaccuracies. However, the average number of
iterations required to observe its first decrease is 1.4.

Moreover, the ablation studies demonstrate that both
the few-shot learning (cf. Section III-B4) and the iterative
prompting (cf. Section III-C) play crucial roles in enhancing
the effectiveness of DrPlanner. In particular, the few-shots
prompting is more effective since the LLM is intrinsically
unaware of the other supportive components of the planner, e.g.,
the available motion primitives. Additionally, since the initial
planners are not buggy but underperforming, the results without
using few-shots show that they cannot be easily improved with
only the descriptions of the planner and the planned trajectory.
Likewise, this applies to the baseline, which only optimizes the
existing code that already works.

V. CONCLUSION

We present the first framework for diagnosing and repairing
motion planners for automated vehicles that leverages both
common sense and domain-specific knowledge about causal
mechanisms in LLMs. Through a modular and iterative prompt
design, our approach automates the generation of descriptions

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 10, OCTOBER 2024

for the planner and continuously enhances diagnostic perfor-
mance. The major limitation of our approach is that the im-
provement of the planner cannot be guaranteed. However, as the
capabilities of LLMs advance, we anticipate the paradigm to
enhance significantly over time. Future work will involve con-
ducting additional tests across various application domains and
developing datasets by monitoring user submissions over time.
Additionally, we plan to extend the few-shot component with a
memory module to leverage experiential learning. We encourage
researchers using DrPlanner to refine their motion planners
and contribute towards establishing a large-scale framework that
encompasses a variety of planner types for diagnostic and repair
tasks.

ACKNOWLEDGMENT

The authors kindly thank Sebastian Illing for implementing
the experiments for the sampling-based planner. The work was
developed during Y. Lin’s visit to the University of California,
Berkeley.

REFERENCES

] B. Paden, M. Cép, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33-55, Mar. 2016.

[2] T. Brown et al., “Language models are few-shot learners,” in Proc. Adv.
Neural Info. Process. Syst., vol. 33, 2020, pp. 1877-1901.

[3] L. Ouyang et al., “Training language models to follow instructions with
human feedback,” in Proc. Adv. Neural Info. Process. Syst., vol. 35, 2022,
pp- 27730-27744.

[4] OpenAl, “GPT-4 technical report,” 2023, arXiv:2303.08774.

[S] M.Zuckeretal., “CHOMP: Covariant hamiltonian optimization for motion
planning,” Int. J. Robot. Res., vol. 32, no. 9-10, pp. 1164-1193, 2013.

[6] T. Gu, J. M. Dolan, and J.-W. Lee, “Runtime-bounded tunable motion
planning for autonomous driving,” in Proc. IEEE Intell. Veh. Symp., 2016,
pp. 1301-1306.

[7] S. Aradi, “Survey of deep reinforcement learning for motion planning of
autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 2,
pp. 740-759, Feb. 2022.

[8] S. Liu and P. Liu, “Benchmarking and optimization of robot motion
planning with motion planning pipeline,” Int. J. Adv. Manuf. Technol.,
vol. 118, pp. 949-961, 2022.

[9] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning for
autonomous lane changing using set-based prediction,” in Proc. IEEE Int.
Conf. Intell. Transp. Syst., 2020, pp. 1-7.

[10] L. Wang, L. Sun, M. Tomizuka, and W. Zhan, “Socially-compatible

behavior design of autonomous vehicles with verification on real human
data,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 3421-3428, Apr. 2021.
Y. Lin, H. Li, and M. Althoff, “Model predictive robustness of signal
temporal logic predicates,” IEEE Robot. Automat. Lett., vol. 8, no. 12,
pp- 8050-8057, Dec. 2023.
[12] N. Mehdipour, M. Althoff, R. D. Tebbens, and C. Belta, “Formal methods
to comply with rules of the road in autonomous driving: State of the art
and grand challenges,” Automatica, vol. 152, 2023, Art. no. 110692.

[13] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” IEEE Trans. Softw. Eng., vol. 45, no. 1, pp. 34—67, Jan. 2019.

[14] C.Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A generic
method for automatic software repair,” IEEE Trans. Softw. Eng., vol. 38,
no. 1, pp. 54-72, Jan.-Feb. 2012.

[15] D.Kim,J. Nam,J. Song, and S. Kim, “Automatic patch generation learned
from human-written patches,” in Proc. IEEE Int. Conf. Softw. Eng., 2013,
pp. 802-811.

[16] X.Liuand H.Zhong, “Mining StackOverflow for program repair,” in Proc.

IEEE Int. Conf. Softw. Anal., Evol. Reengineering, 2018, pp. 118—129.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “TBar: Revisiting

template-based automated program repair,” in Proc. ACM Int. Symp. Softw.

Testing Anal., 2019, pp. 31-42.

[

[11]

[17]

LIN et al.: DRPLANNER: DIAGNOSIS AND REPAIR OF MOTION PLANNERS FOR AUTOMATED VEHICLES USING LARGE LANGUAGE MODELS

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Koyuncu et al., “FixMiner: Mining relevant fix patterns for automated
program repair,” Empirical Softw. Eng., vol. 25, pp. 1980-2024, 2020.
D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. Int. Conf. Learn. Repre-
sentations, 2015.

T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “CoCoNut:
Combining context-aware neural translation models using ensemble for
program repair,” in Proc. ACM Int. Symp. Softw. Testing Anal., 2020,
pp. 101-114.

Q. Zhu et al., “A syntax-guided edit decoder for neural program repair,” in
Proc. ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Foundations Softw.
Eng., 2021, pp. 341-353.

N. Jiang, T. Lutellier, and L. Tan, “CURE: Code-aware neural machine
translation for automatic program repair,” in Proc. IEEE/ACM 43rd Int.
Conf. Softw. Eng., 2021, pp. 1161-1173.

H. Ye, M. Martinez, and M. Monperrus, “Neural program repair with
execution-based backpropagation,” in Proc. IEEE/ACM Int. Conf. Softw.
Eng., 2022, pp. 1506-1518.

C. S. Xia and L. Zhang, “Less training, more repairing please: Revisiting
automated program repair via zero-shot learning,” in Proc. ACM Joint Eur.
Softw. Eng. Conf. Symp. Foundations Softw. Eng., 2022, pp. 959-971.

Z. Feng et al., “CodeBERT: A pre-trained model for programming and
natural languages,” in Proc. Conf. Emperical Methods Natural Lang.
Process., 2020, pp. 1536-1547.

M. Chen et al., “Evaluating large language models trained on code,” 2021,
arXiv:2107.03374.

J. Austin et al., “Program synthesis with large language models,” 2021,
arXiv:2108.07732.

D. Fried et al., “InCoder: A generative model for code infilling and
synthesis,” in Proc. Int. Conf. Learn. Representations, 2023.

J. Liang et al., “Code as policies: Language model programs for embodied
control,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp. 9493-9500.
S. D. Kolak, R. Martins, C. Le Goues, and V. J. Hellendoorn, “Patch
generation with language models: Feasibility and scaling behavior,” in
Proc. Int. Conf. Learn. Representations: Deep Learn. Code Workshop,
2022.

J. A. Prenner, H. Babii, and R. Robbes, “Can OpenAI’s Codex fix bugs? An
evaluation on QuixBugs,” in Proc. Int. Workshop Automated Prog. Repair,
2022, pp. 69-75.

C. S. Xia, Y. Wei, and L. Zhang, “Practical program repair in the era of
large pre-trained language models,” in Proc. Int. Conf. Softw. Eng., 2023,
pp. 1482-1494.

N. Shinn, F. Cassano, A. Gopinath, K. R. Narasimhan, and S. Yao,
“Reflexion: Language agents with verbal reinforcement learning,” in Proc.
Adv. Neural Info. Process. Syst., no. 377, 2023, pp. 8634-8652.

X.Chen, M. Lin, N. Schirli, and D. Zhou, “Teaching large language models
to self-debug,” in Proc. Int. Conf. Learn. Representations, 2023.

N. Jain, T. Zhang, W.-L. Chiang, J. E. Gonzalez, K. Sen, and I. Stoica,
“LLM-assisted code cleaning for training accurate code generators,” in
Proc. Int. Conf. Learn. Representations, 2024.

A. Madaan et al., “Learning performance-improving code edits,” in Proc.
Int. Conf. Learn. Representations, 2024.

Y. Lin, S. Maierhofer, and M. Althoff, “Sampling-based trajectory repair-
ing for autonomous vehicles,” in Proc. IEEE Int. Conf. Intell. Transp. Syst.,
2021, pp. 572-579.

Y. Lin and M. Althoff, “Rule-compliant trajectory repairing using satisfi-
ability modulo theories,” in Proc. IEEE Intell. Veh. Symp., 2022, pp. 449—
456.

S. Maierhofer, Y. Ballnath, and M. Althoff, “Map verification and repairing
using formalized map specifications,” in Proc. IEEE Int. Conf. Int. Transp.
Syst., 2023, pp. 1277-1284.

A. Pacheck and H. Kress-Gazit, “Physically feasible repair of reactive,
linear temporal logic-based, high-level tasks,” IEEE Trans. Robot., vol. 39,
no. 6, pp. 4653-4670, Dec. 2023.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language
models are zero-shot reasoners,” in Proc. Adv. Neural Info. Process. Syst.,
vol. 35, 2022, pp. 22199-22213.

S. Yao et al., “ReAct: Synergizing reasoning and acting in language
models,” in Proc. Int. Conf. Learn. Representations, 2023.

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

8225

E. Kiciman, R. Ness, A. Sharma, and C. Tan, “Causal reasoning and large
language models: Opening a new frontier for causality,” 2023. [Online].
Available: https://openreview.net/forum?id=mqoxLkX210

H. Sha et al., “LanguageMPC: Large language models as decision makers
for autonomous driving,” 2023, arXiv:2310.03026.

L. Wenetal., “DiLu: A knowledge-driven approach to autonomous driving
with large language models,” in Proc. Int. Conf. Learn. Representations,
2024.

W. Wang et al., “DriveMLM: Aligning multi-modal large language
models with behavioral planning states for autonomous driving,” 2023,
arXiv:2312.09245.

C. Sima et al., “DriveLM: Driving with graph visual question answering,”
in Proc. Eur. Conf. Comput. Vis., 2024.

C. Cui, Y. Ma, X. Cao, W. Ye, and Z. Wang, “Drive as you speak: En-
abling human-like interaction with large language models in autonomous
vehicles,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2024,
pp. 902-909.

J. Mao, Y. Qian, H. Zhao, and Y. Wang, “GPT-driver: Learning to drive
with GPT,” 2023, arXiv:2310.01415.

J. Mao, J. Ye, Y. Qian, M. Pavone, and Y. Wang, “A language agent for
autonomous driving,” 2023, arXiv:2311.10813.

Z. Xu et al., “DriveGPT4: Interpretable end-to-end autonomous driving
via large language model,” 2023, arXiv:2310.01412.

L.Chenetal., “Driving with LLMs: Fusing object-level vector modality for
explainable autonomous driving,” in Proc. IEEE Int. Conf. Robot. Autom.,
2024, pp. 14093-14100.

H. Shao, Y. Hu, L. Wang, S. L. Waslander, Y. Liu, and H. Li, “LMDrive:
Closed-loop end-to-end driving with large language models,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2024, pp. 15120-15130.
M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable
benchmarks for motion planning on roads,” in Proc. IEEE Intell. Veh.
Symp., 2017, pp. 719-726.

C. Pek, V. Rusinov, S. Manzinger, M. C. Uste, and M. Althoff, “Com-
monRoad drivability checker: Simplifying the development and validation
of motion planning algorithms,” in Proc. IEEE Intell. Veh. Symp., 2020,
pp. 1013-1020.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural
language processing,” ACM Comput. Surv., vol. 55, no. 9, pp. 1-35,
2023.

J. Wei et al., “Chain-of-thought prompting elicits reasoning in large
language models,” in Proc. Adv. Neural Info. Process. Syst., vol. 35,2022,
pp. 24824-24837.

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Info.
Process. Syst., vol. 30, 2017, pp. 5998-6008.

J. Yang et al., “Harnessing the power of LLMs in practice: A survey on
ChatGPT and beyond,” ACM Trans. Knowl. Discov. Data, vol. 18, no. 6,
pp. 1-32,2024.

Y. Lin and M. Althoff, “CommonRoad-CriMe: A toolbox for criticality
measures of autonomous vehicles,” in Proc. IEEE Intell. Veh. Symp., 2023,
pp. 1-8.

W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus,
“Social behavior for autonomous vehicles,” Proc. Nat. Acad. Sci., vol. 116,
no. 50, pp. 24972-24978, 2019.

Z. Liu, A. Bahety, and S. Song, “REFLECT: Summarizing robot experi-
ences for failure explanation and correction,” in Proc. Conferene Robot
Learn., 2023.

M. Skreta et al., “Errors are useful prompts: Instruction guided
task programming with verifier-assisted iterative prompting,” 2023,
arXiv:2303.14100.

M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state
lattice motion primitives,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2011, pp. 2172-2179.

M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frénet Frame,” in Proc. [EEE
Int. Conf. Robot. Autom., 2010, pp. 987-993.

M. Klischat, E. I. Liu, F. Holtke, and M. Althoff, “Scenario factory:
Creating safety-critical traffic scenarios for automated vehicles,” in Proc.
IEEE Int. Conf. Intell. Transp. Syst., 2020, pp. 1-7.

https://openreview.net/forum{?}id$=$mqoxLkX210

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

