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Characterizing Manipulation Robustness Through
Energy Margin and Caging Analysis

Yifei Dong , Xianyi Cheng , Member, IEEE, and Florian T. Pokorny, Member, IEEE

Abstract—To develop robust manipulation policies, quantifying
robustness is essential. Evaluating robustness in general manip-
ulation, nonetheless, poses significant challenges due to complex
hybrid dynamics, combinatorial explosion of possible contact inter-
actions, global geometry, etc. This paper introduces an approach
for evaluating manipulation robustness through energy margins
and caging-based analysis. Our method assesses manipulation ro-
bustness by measuring the energy margin to failure and extends
traditional caging concepts for dynamic manipulation. This global
analysis is facilitated by a kinodynamic planning framework that
naturally integrates global geometry, contact changes, and robot
compliance. We validate the effectiveness of our approach in sim-
ulation and real-world experiments of multiple dynamic manipu-
lation scenarios, highlighting its potential to predict manipulation
success and robustness.

Index Terms—Dexterous manipulation, in-hand manipulation,
contact modeling, manipulation planning.

I. INTRODUCTION

HUMAN manipulation is intriguing due to its dexterity,
simplicity, and remarkable robustness. Consider picking

up a thin object from a table: this involves complex interactions
between the object, table, and hand, yet it remains robust and
fast. The robustness of human manipulation is often attributed
not to precise control over or knowledge of contact interactions
but to factors like hand kinematic configurations, environment
geometry, joint compliance, material softness, and so on. An
empirical study in [1] discovers similar robustness in in-hand
manipulation with a soft robotic hand.

Nonetheless, there is a lack of methods in the literature for
evaluating such general robustness. Existing research studying
similar robustness problems can generally be categorized into
three areas: grasp quality metrics, control stability analysis
(including contraction analysis [2], Lyapunov functions [3]
and barrier functions [4]), and caging. Most quality metrics in
grasping [5] and non-prehensile manipulation [6] often define
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robustness through object position or wrench space margins
based on first-order analysis. Control stability methods assess
robustness by examining system evolution from initial states,
offering a local perspective that struggles to account for the
robustness under the combinatorial explosion of possible contact
interactions, the resulting hybrid dynamics, and global geomet-
ric properties. In contrast, caging approaches, which confine an
object within a bounded space to prevent escape, offer a more
global geometric analysis of robustness.

This paper proposes an approach to characterize robustness in
manipulation via energy margins (Fig. 1). Our approach expands
on prior quasi-static cage [7] and soft fixture [8] analyses by
adapting classical caging concepts to a kinodynamic context,
where dynamically feasible escape paths are considered. Utiliz-
ing forward simulation enables natural consideration of contact
changes, robot joint stiffness, complex geometries, and system
kinodynamics. This methodology introduces a new lens by eval-
uating the robustness of manipulation strategies through energy
margins and broadens the applicability of caging concepts to
dynamic scenarios.

The main contributions of this paper are: 1) We propose to
characterize more general robustness in manipulation with en-
ergy margins and caging analysis. This approach evaluates ma-
nipulation strategies that consider global geometry, kinodynam-
ics, and complex contact events. 2) We develop a sampling-based
kinodynamic planning framework for dynamic caging analysis
and energy margin calculation, designed to be inherently effi-
cient in dynamic, contact-rich environments. 3) Through exper-
imental validation in both real-world and simulated settings, we
demonstrate the practicality and effectiveness of our approach,
showcasing its benefits over a wrench-based baseline method.

II. RELATED WORK

A. Caging

Classical caging focuses on preventing an object from es-
caping using geometric constraints. This foundational concept,
as introduced by Kuperberg [9] and further developed by Ri-
mon et al. [10], [11], Maeda et al. [12], explores how robots
can effectively constrain objects, without necessitating force
closure or form closure. Rodriguez et al. [13] demonstrate uti-
lizing caging to achieve immobilizing grasps. Energy-bounded
caging [14], [15] relaxes complete geometric caging and con-
siders the work done by external forces, such as gravity [14]
and planar friction [15], as a source to cage objects. Caging
has also been leveraged in the robust manipulation of biological
cells using optical tweezers [16], [17]. Our previous work on
soft fixtures [8] presents sampling-based methods to search for
upper-bound estimates of escape energy in higher-dimensional
configuration spaces, such as simplified deformable objects. Our
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Fig. 1. Inspired by caging analysis (A, left), we propose to characterize the robustness of manipulation actions using energy margins (A, right) from failure
regions (pink). Given prescribed trajectories of manipulation tasks (B, planar pushing as an example), we use sampling-based kinodynamic planners to compute
the metrics (C), which are used to predict manipulation robustness and success under uncertainty.

approach presents a new perspective that enables caging analysis
to be used to characterize general manipulation robustness. It
also extends caging into dynamic settings, bridging the gap
between static caging theories and the dynamic nature of robotic
manipulation.

B. Robustness and Quality Metrics

Most research in manipulation robustness focuses on grasp
quality measures. A comprehensive review by Roa et al. [5]
categorizes classical quality measures based on contact config-
urations and wrench space profiles. Many metrics are derived
from Grasp Wrench Space (GWS) [18], which constructs a
wrench cone formed by grasping contacts, such as the volume
of the GWS [19], the largest perturbation wrench the grasp
can resist in any direction [20], etc. Lin et al. [21] introduce a
task-specific grasp quality criterion based on the distribution of
task disturbance, exemplifying the importance of task-specific
optimization of grasps. Xu et al. [22] propose minimal work
as a grasp quality metric to plan grasps for 3D deformable
hollow objects considering wrench resistance. Machine learn-
ing approaches are also employed to predict grasp success
based on data labels derived from analytic quality metrics [23].
For non-prehensile manipulation, a framework of quasi-static
wrench-based analysis is presented for balancing grasps in [24].
Makapunyo et al. [25] employ sampling-based methods to
determine a quality metric for partial caging. While previous
work mostly focuses on first-order and instantaneous analysis to
quantify how good an action is under position or object wrench
uncertainty, we use caging to characterize robustness through
a more global analysis, with the ability to take into account
many hard-to-model effects, such as contact changes and friction
uncertainty.

III. PRELIMINARIES

A. Nomenclature

We denote by X ⊂ SE(3) the configuration space (C-space)
of a 3D rigid object. The set of time derivatives of the object
configuration is denoted by Ẋ ⊂ TSE(3), where TSE(3) is
the tangent space associated with the Lie group SE(3). The
C-space of a robot end-effector and surrounding static obstacles
is denoted by Y ⊂ SE(3)× Rnr , where SE(3) denotes the
base pose, and nr refers to the number of joints. Its set of
time derivatives is denoted by Ẏ ⊂ TSE(3)× Rnr . Y might

degenerate when, for example, the base of the end-effector is
fixed, and then Y ⊂ Rnr . For planar manipulation, X and Y
degenerate to SE(2) and SE(2)× Rnr . An element x ∈ X ,
described as x = (rx, qx), encompasses the position rx of the
Center of Mass (CoM) and orientationqx (a unit quaternion). An
element ẋ ∈ Ẋ is described as ẋ = (ṙx, q̇x), which comprises
the CoM linear velocity ṙx and the derivative of quaternion q̇x.
Similarly for y ∈ Y and ẏ ∈ Ẏ , we have y = (ry, qy,αy) and
ẏ = (ṙy, q̇y, α̇y), where αy and α̇y refer to the joint position
and velocity of the end-effector. ry and qy denote the position
and orientation of the end-effector.

B. Cage and Soft Fixture

Here, we revisit the concept of caging. The free C-space Xfree
indicates a set of configurations for which the object does not
penetrate any of the bodies (the end-effector or obstacles) in the
workspace.

Definition 1: A cage occurs when an object configuration
xinit ∈ Xfree is situated in a bounded path component of Xfree.

An object in a cage thus indicates its limited capacity to
freely move beyond a certain proximity to its starting configu-
ration. Caging was relaxed as partial caging by allowing escape
paths through narrow passages in the free space [25]. Partial
caging further extends to energy-bounded caging [14] and soft
fixtures [8] that consider both geometric and potential energy
constraints, as introduced below.

Definition 2: In scenarios where only conservative forces
act within a quasi-static system, an object at an initial con-
figuration xinit ∈ Xfree possesses potential energy E(xinit). Its
escape energy E(xinit) refers to the supremum of e such that
the path component PCxinit(Xe(xinit)) of a sublevel set Xe(xinit)
containing xinit is bounded:

E(xinit) = sup {e ≥ 0 : PCxinit(Xe(xinit)) is bounded} , (1)

where

Xe(xinit) = {x ∈ Xfree : E(x) ≤ E(xinit) + e}. (2)

The object is deemed to be in a soft fixture if E(xinit) > 0. Note
that E(xinit) is defined only if PCxinit(X0(xinit)) is bounded.

In practice, sampling-based approaches can approximate a
close upper bound of E(xinit) by utilizing a goal region (Fig. 1-A,
left) sufficiently far away from the obstacles with relatively lower
energy values and searching for geometrically feasible escape
paths with lowest energy cost [8].
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C. Assumptions

We introduce the assumptions that this paper relaxes com-
pared to our prior work [8].

1) System Motion: While the previous work only considers
quasi-static conditions, here we account for the movement of
both the object and the end-effector, while keeping other envi-
ronmental elements static. We introduceZ = X × Ẋ × Y × Ẏ ,
whereZfree represents penetration-free space. In this context, the
energy function E is the system’s total mechanical energy (sum
of kinetic and potential energy).

2) Non-Conservative Forces: Given the existence of non-
conservative forces, such as friction, the previous definition of
escape energy in Def. 1 is problematic. Consider the example
of planar pushing (Fig. 1-A, right), assuming the tabletop with
a rough surface is infinitely large. The escape energy E(xinit)
is always infinite in this scenario because the object overcomes
friction along any escape path to a point that is arbitrarily far
away. To utilize escape energy for more general cases like this,
we define a capture set Zcap(zinit) ⊂ Z instead,

Zcap(zinit) = {z ∈ Z : f(z) ≤ c1(zinit), g(z) = c2(zinit)}.
(3)

The constraints above are task-specific, refraining the system
from transitioning to failure modes. For instance, in the pushing
task (Fig. 1-A, right), Zcap(zinit) contains positional constraints
that prevent the object from slipping away from the end-effector.
A system state z ∈ Zcap(zinit) indicates the object as dynam-
ically controllable by the end-effector for achieving specific
tasks. The effort of the object to escape from Zcap(zinit) thus
indicates manipulation robustness, implying an energy margin
from failure. Several examples of task-specific Zcap(zinit) can
be found in Section VI-A and Fig. 2.

3) Dynamic Escape Paths: We consider dynamically feasi-
ble escape paths that lead the object out of the capture set
Zcap(zinit). A dynamically feasible path σ : [0, 1] → Zfree, such
that σ(0) = zinit and σ(1) = zgoal, is generated by applying ran-
dom wrenches to the object to mimic perturbation or uncertainty
during the manipulation. Here, zgoal ∈ Zgoal and Zgoal is a goal
set of escape.

Besides the assumptions above, we only consider rigid ob-
jects under potential energy fields, though our framework can
potentially be extended to scenarios with articulated or multiple
objects with more computational costs caused by the increased
degrees of freedom of the system.

D. Problem Statement

We tackle the following problem: Given a manipulation task
objective and the state zinit of a rigid object and an end-effector
in motion, which is subject to the assumptions in Section III-C,
1) Define metrics to characterize robustness in manipulation
based on energy margins to failure (Section IV). 2) Compute
the robustness metrics using kinodynamic motion planning and
evaluate their performance (Sections V and VI).

IV. ENERGY MARGIN DEFINITIONS

We quantify robustness with two methods based on energy
margin: the effort of escape (the ease of failure) and the capture
score (the probability of staying safe).

A. Effort of Escape

The effort of escape calculates the minimal effort required to
exit the capture set.

Definition 3: The minimal effort of escape is the minimal
integral of the absolute power |Ẇext(σ(t))| of the external work
Wext(σ(t)) required to be done to help the object escape from
the capture set Zcap(zinit):

Ωesc (zinit) = min
σ∈Σ(zinit,Zgoal)

∫ 1

0

|Ẇext(σ(t))|dt, (4)

where

Ẇext(σ(t)) =
dE(σ(t))

dt
− Ẇfri(σ(t)). (5)

dE(σ(t))
dt is the instantaneous rate of change of the mechanical

energy of the system, and Wfri(σ(t)) represents the work done
by friction at the instantaneous state of the system. We denote
Σ(zinit,Zgoal) as the set of all escape paths starting from zinit
terminating in Zgoal, where Zgoal = Zc

cap(zinit) (the complement
set of the capture set).

Equation (5) follows the law of conservation of energy. We
employ the absolute value of the power |Ẇext(σ(t))| as a measure
of the total control input that we want to minimize because, for
example, both speeding up and slowing down a vehicle require
fuel, and we might want to minimize the total fuel used over a
journey. Since paths in the path space Σ(zinit,Zgoal) can hardly
be enumerated or optimized analytically given the complexity
introduced by friction, we employ kinodynamic sampling-based
planners to filter candidate paths that upper bounds Ωesc(zinit).

B. Capture Score

The capture score estimates the likelihood of remaining within
the capture set. We consider an energy cost field and its cor-
relating probabilistic distribution of the system. Specifically,
a sequence of random wrenches applied on the object at zinit
lead it to z0 with a cost of total effort c0. By repeating the
process M times from zinit, the system terminates in a list
of states {z0, . . .,zM} with corresponding costs {c0, . . ., cM}.
Data pairs in {(z0, c0), . . ., (zM , cM )} constitute an energy cost
field that demonstrates the state space reachability in terms of
energy cost from zinit. We provide a probabilistic interpretation
of the likelihood of reaching each state zm ∈ Z by introducing
a probability mass function L : Z → R+,

L(zm) =
e−λ(cm−cmin)∑M

m=0 e
−λ(cm−cmin)

, (6)

where cmin = min0≤m≤M cm and λ is a hyper-parameter. The
softmax function in (6) is ideal for modeling hybrid continuous-
to-discrete mappings in such stochastic systems [26]. The ap-
proximated likelihood function indicates some states with lower
costs are probabilistically more reachable.

Definition 4: The capture score is defined as the sum of
likelihood values of samples in a capture set Zcap(zinit),

Ωcap(zinit) =

M∑
m=0

δ(zm ∈ Zcap(zinit)) · L(zm), (7)

where δ(·) is an indicator function that equals 1 if the condition
inside the brackets is satisfied and 0 otherwise.
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Similarly, we define a task success set Zsuc ⊂ Z independent
ofzinit, indicating the set of states symbolizing the object accom-
plishes the manipulation objective. A capture score of success
is thus given by

Ωsuc(zinit) =

M∑
m=0

δ(zm ∈ Zsuc) · L(zm), (8)

which is essentially a predictor for fulfilling a task-specific ob-
jective from the state zinit. In practice, we employ kinodynamic
motion planners rather than repetitive Monte Carlo rollouts
from zinit. Sampling-based kinodynamic motion planners are
in general more time- and memory-efficient by using strategies
such as biased sampling and caching explored nodes.

V. COMPUTING ENERGY MARGIN THROUGH KINODYNAMIC

PLANNING

We develop kinodynamic motion planning algorithms to com-
pute the scores in Section IV. We calculate the effort of escape
Ωesc(zinit) by an iterative tree search algorithm (Section V-B).
We calculate the capture scores Ωcap(zinit) and Ωsuc(zinit) by
growing an expansive tree and approximating its correlating
probabilistic distribution (Section V-C).

A. Planning Objectives

We consider a system with an object, an end-effector, and the
environment. The system state at time k is

z(k) =
[
x�(k) ẋ�(k) y�(k) ẏ�(k)

]�
. (9)

A manipulation trajectory is denoted by {(k,z(k)) : k ∈
[0,K]}, complying with the system dynamics z′(k) =
F (z(k),φ(k)).φ denotes the robot control. The system dynam-
ics is rolled out through physics simulation. For each state z(k)
along the trajectory, Algorithm 1 computes the minimal effort of
escapeΩesc(z(k)), and Algorithm 2 computes the capture scores
Ωcap(z(k)) and Ωsuc(z(k)). We assume that the end-effector is
not actuated in the short period when computing the metrics so
as not to introduce extra energy sources to the system.

Algorithm 1: Compute Effort of Escape.

B. Computing Effort of Escape

We frame finding the minimum effort to escape from the
capture set Zcap(zinit) as an optimal kinodynamic motion
planning problem P of which the goal set is the complement set
of the capture set (Zgoal = Zc

cap(zinit)). We employ the AO-x

meta algorithms [27], which are asymptotically optimal motion
planners that decompose P into feasible motion planning
problems in the state-cost space. They iteratively find an upper
bound approaching the minimum effort of escape by running as
subroutines feasible kinodynamic planner x, such as Expansive
Space Tree (EST) [28] or Rapidly-exploring Random Tree
(RRT) [29] algorithms.

The optimal motion planning problem P = (Q,Zfree,U ,
zinit,Zgoal,Zb,Ub, G) produces a trajectoryσ(t) : [0, 1] → Zfree
and control u(t) : [0, 1] → U that minimizes the objective func-
tional:

C(σ) =

∫ 1

0

Q(σ(t),u(t))dt =

∫ 1

0

|Ẇext(σ(t))|dt. (10)

Here, Q denotes the incremental cost (terminal cost is 0) follow-
ing (4). C(σ) thereby refers to the total effort of transitioning
from σ(0) to σ(1). Ub is the set of control constraints and
u ∈ Ub ⊂ U . Zb refers to the set of kinematic constraints and
z ∈ Zb ⊂ Zfree. The dynamics is subjected to z′ = G(z,u).
The control input u = [ f� τ� ]� refers to a wrench (force
f applied at its CoM and torque τ ) applied on the object,
mimicking an external perturbation.

Given the optimal motion planning problem P , a feasible
motion planning problem Pc̄ = (Zfree × R+,U , (zinit, 0), Ẑ c̄

goal,

Zb × R+,Ub, Ĝ) is solved at each iteration. Pc̄ augments the
state in P by an auxiliary cost variable, which measures the
accumulated cost from the root zinit, i.e. cost-to-come. Here,
Ẑ c̄

goal = {(z, c) : z ∈ Zgoal, c ∈ [0, c̄]} denotes the augmented
goal set with the range of cost space upper-bounded by c̄, and
Ĝ refers to the augmented dynamics

ẑ′ =
[
z′
c′

]
=

[
G(z,u)
Q(z,u)

]
. (11)

We solve P by converting it to a series of feasible motion
planning subproblems Pc̄ and iteratively lowering the cost space
upper bound c̄ utilizing a well-behaved, probabilistically com-
plete feasible motion planner A (EST or RRT). Informally, a
planning algorithm is well-behaved [27] if it can determine a
feasible solution in finite time if it exists, and incrementally
improves the cost of any found solution by a nonneglegible
fraction in each further iteration.

Specifically, we first run the subroutine algorithmA(P∞)with
infinite cost space upper bound c̄ = ∞ to find the first escape
path σ0 by growing a tree rooted at zinit (Algorithm 1, Line 2).
The tree expands a new node z′ by enforcing a randomized
controlu based on algorithm-specific strategies from an existing
node z, complying with the system dynamics G. The forward
integration is performed in a physical simulator that allows
rebounding after a collision. A new extension is valid if z′ abides
by the augmented kinematic constraints (z′, c(z′)) ∈ Zb × R+.
If a path does not exist, it indicates the effort of escape is infinite
Ωesc(zinit) = ∞ (Line 3-5). Once we found a path σ0 with cost
c0 = C(σ0), we solve a second subproblem Pc0 (Line 8) that
shrinks the cost space by lowering the upper bound from ∞ to
c0. The tree in the previous subproblem is cached and optionally
pruned (discarding the nodes with costs higher than c0) such that
we do not grow a new tree from scratch. A(Pc0) results in a new
escape pathσ1 with cost c1 (Line 9), and so on and so forth. Given
the well-behavedness of A, the cost ci approaches the optimal
cost c∗ as the total number of iterations approaches infinity.
Therefore, we can approximately upper-bound the minimum
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Algorithm 2: Compute Capture Scores.

effort of escape Ωesc(zinit) in finitely many (n) iterations. In
practice, we consider EST or RRT as the subroutine algorithms
A. RRT randomly samples a state in the state space and extends
toward the sampled state from the nearest neighbor node in the
tree. EST prioritizes extensions in the area with less density of
existing nodes in the tree.

C. Computing Capture Scores

To approximate the capture scores, we construct an energy
cost field through kinodynamic tree expansion. Achieving an
evenly distributed sampling of state space around the initial
state zinit is critical for this purpose. EST is thereby selected for
its efficacy in promoting uniform distribution across the state
space through inverse density weighting, unlike RRT, which
may lead to uneven exploration. As detailed in Algorithm 2,
we consider the cost-augmented unbounded feasible motion
planning problemP∞ (Line 2-3) with the same settings as in Sec-
tion V-B except a sufficiently far away goal setZgoal = Z∞ ⊂ Z
with unconstrained kinematics Zb = Zfree. EST terminates after
growingM nodes in the tree. We thus obtain an energy cost field
of M state-cost pairs, {(z0, c0), . . ., (zM , cM )}. We thereafter
approximate the probabilistic distribution (Line 4-8) and com-
pute the scores Ωcap(zinit) and Ωsuc(zinit) (Line 9-11) following
the procedure in Section IV-B.

VI. EVALUATION

This section aims to validate the practicality and effectiveness
of our metrics and algorithms by conducting simulation and
real-world experiments. Our key assumption is that energy mar-
gins and caging analysis can effectively characterize robustness
in manipulation. To verify this, we designed four simulated
manipulation tasks and used our metrics to predict their robust-
ness and task success. More specifically, we generated multiple
trajectories of the tasks and recorded their system kinematic
information and ground-truth labels of robustness and success.
We computed the metrics offline, used them to make predictions
and compared the results with the ground-truth labels. Through
the experiments, we validated the reliable prediction capability
of our metrics in environments with complex contact events. Fur-
thermore, we verify the efficiency of our kinodynamic planning
algorithms and the robustness against different model parameter
errors.

Fig. 2. Examples of manipulation primitives. The capture sets Zcap (blue) and
task success sets Zsuc (gray) are marked.

A. Task Description

Inspired by the manipulation primitive taxonomy in [30], [31],
we design examples covering planar pushing, balanced trans-
port, toppling, and grasping from a table.

1) Planar Pushing: We consider the planar manipulation
problem of pushing an object on a horizontal plane towards a
wall (Fig. 2-i). The task is considered successful if a state z ∈
Zsuc lies in the task success set Zsuc = {z ∈ Z : rx ∈ Rsuc},
and Rsuc ⊂ R2 refers to the set of object positions where the
longest edge of the convex hull of the object aligns with the
wall. The capture set Zcap(zinit) = {z ∈ Z : rx ∈ Rcap(zinit)}
includes state z ∈ Z such that the CoM position of the object
rx lies insideRcap(zinit) ⊂ R2.Rcap(zinit) indicates the circular
sector region that the end-effector will sweep over given the
current instantaneous rotation center of the end-effector.

2) Balanced Transport: We aim to balance a cube on a
steep slope with a rectangular support surface so that it avoids
the failure mode of falling off and is transported to a target
region (Fig. 2-ii). Similar to the selection of the capture set
Zcap(zinit) and the task success set Zsuc above, we add con-
straints on the object CoM position rx such that the capture
condition (maintaining on the support surface, Rcap(zinit)) and
the task success condition (reaching a goal region Rsuc) are
satisfied.

3) Toppling: We consider the 2D task of toppling a box on the
table using a spring-like fingertip manipulator (Fig. 2-iii). The
task is accomplished when the box rotates by π/2 rad pivoting
on one corner in contact with the table, i.e. Zsuc = {z ∈ Z :
p(qx) = π/2}, where p(qx) is the SO(2) orientation of the box
in Euler angle. It often fails when sliding occurs on the table
contact. The capture set is defined as Zcap(zinit) = {z ∈ Z :
‖ṙx,pivot‖ ≤ 0.1}, i.e. the magnitude of the sliding velocity of
the table contact is smaller than 0.1 m/s.

4) Grasping from a Table: The task of grasping a box lying
on the desktop is considered here, using a Robotiq three-finger
adaptive robot gripper withnr = 12 revolute joints in the fingers
(Fig. 2-iv). The task is successful when the box of edge length
10 cm is lifted above the desktop by 10 cm, while it fails if it slips
and falls from the gripper. The position-controlled compliant
gripper poses an external energy bound for the box to escape.
Constraints on the object CoM position rx are considered simi-
larly as in the first two examples in selecting the sets Zcap(zinit)
and Zsuc.
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Several other tasks with evaluations of simultaneously manip-
ulating multiple objects, including pushing and scooping, can be
found in our recent workshop contribution.1

B. Baseline

We compare our approach with a manipulation score in [6],
which is designed to measure the robustness to maintain de-
sired contact modes (sticking, sliding, etc) against disturbance
forces and avoid failure contact modes (e.g. avoid slipping
for sticking contacts). However, our energy margin approach
quantifies manipulation robustness more globally and allows
changes of contacts. To make a fair comparison, we design
a hybrid force-based score Ωforce with a weighted sum of the
engaging score Ωengage, the sticking score Ωstick and a kinematic
heuristic Ωdist - the minimum distance between any two points
on the object and the end-effector. Ωengage uses the magnitude
of the contact normal force λ⊥ to evaluate how much normal
disturbance forces a contact can withstand, Ωengage = λ⊥. Ωstick
refers to the minimal amount of disturbance force required to
transition the sticking contact into sliding, which is the distance
between the contact force and the friction cone edges (i.e., a
wrench margin away from failure):

Ωstick =
(
μλ⊥ − |λ//|

)
cos(arctanμ), (12)

where μ refers to the static friction coefficient.

C. Data Generation and Implementation

We collected trajectories and per-frame system states of the 4
tasks to compute their energy margins offline and compare them
with ground-truth robustness and success labels.

1) Software: Our code can be found here.2 Pybullet served
as the platform for forward simulation. All experiments are
performed on an Intel Core i9-12900H processor with 14 cores
and speeds up to 5.0 GHz.

2) Ground-truth Data Generation: In the simulation, we gen-
erated and recorded 50 trajectories for each of the four examples
in Fig. 2 by randomizing the initial states of the object and the
end-effector, the friction coefficients, etc. 10 frames (K = 10)
are evenly selected from each trajectory and the system states
across the trajectory zk, k ∈ {1, . . .,K} are recorded. As an
instance, two of such scripted trajectories with three states each
are illustrated in Fig. 3. The hybrid force-based score Ωforce(zk)
is computed by recording the friction coefficient μ, the contact
normal force λ⊥ and lateral force λ// in each frame. A trajectory is
labeled 1 (successful, e.g. Fig. 3, Trajectory 2) if the task objec-
tive is accomplished in the last recorded frame, i.e. zK ∈ Zsuc,
otherwise 0 (Fig. 3, Trajectory 1); and a state in a frame zk is
labeled 1 (captured) if the state is contained in the capture set for
the current and subsequent k̂ recorded frames zk′ ∈ Zcap(zk′)

fork′ ∈ {k, . . ., k + k̂}. We collected 108 successful trajectories
and 92 failed trajectories.

3) Implementation Details: To analyze the effectiveness of
our proposed metrics in predicting the robustness and success
of manipulation tasks, we utilized the Area Under the receiver
operating characteristic Curve (AUC) and the Average Precision
(AP) as evaluation tools. We run the algorithms in Section V and
obtain Ωesc(zk), Ωcap(zk) and Ωsuc(zk) for each recorded state

1https://yifeidong0.github.io/assets/pdf/ICRA2024_Multi_Object.pdf
2https://github.com/yifeidong0/EnergyMarginDynCage

Fig. 3. Qualitative evaluation for the planar pushing example. Data in the
subfigures indicate (Ωsuc,Ωcap). (i) and (ii) refer to a failed and a successful
trajectory of pushing a rectangular box (yellow) to the wall (black). Three
screenshots are taken along each trajectory, for which we run Algorithm 2 and
visualize the expansive tree after running 100 iterations. The nodes on the tree
are shown in colored dots (CoM position of the box) ranging from blue to red,
implying the energy cost field. More reddish dots indicate nodes with higher
cost-to-come c. Box and circular end-effector (green) configurations of three
random nodes on the tree are visualized in partial transparency. Note the capture
set Zcap (light blue) and the task success set Zsuc (gray).

TABLE I
ENERGY MARGINS EVALUATION IN SIMULATION (AUC/AP)

zk in each trajectory of the examples. The hybrid force-based
scoreΩforce(zk) is computed by recording the friction coefficient
μ, the contact normal force λ⊥ and lateral force λ// in each
frame. We thereafter compare the scores with ground-truth labels
using AUC and AP, where higher values indicate better perfor-
mance across all possible classification thresholds. In Fig. 3,
we demonstrated the expansive trees after running Algorithm 2.
The distribution of the energy cost field with respect to the
capture set Zcap and the task success set Zsuc directly indicates
the corresponding quality score values and energy margins. To
demonstrate the capability of predicting task success using the
capture score of successΩsuc(zk), we designed a trajectory-level
score Ωsuc(z, k̄) which is the weighted average of Ωsuc(zk) of
only the last k̄ states with an increasing weight from k = 1
to k = k̄. We thereby have, for each scenario, a dataset com-
prising 500 state-level data points (Ωesc(zk),Ωcap(zk)) and 50
trajectory-level data pointsΩsuc(z, k̄)with corresponding labels.

D. Quantitative Analysis

1) Overall Performance: Upon examination of the dataset
for each example in simulation (Fig. 2), AUC and AP were
computed for the robustness predictions (Ωcap, Ωesc and Ωforce,
Table I left) and the success predictions (Ωsuc, Table I rightmost
column). The results indicate a high level of predictive capability
of our metrics. The AUC/AP values for the robustness predic-
tions using our methods (Ωcap, Ωesc) consistently exceed 0.9

https://yifeidong0.github.io/assets/pdf/ICRA2024_Multi_Object.pdf
https://github.com/yifeidong0/EnergyMarginDynCage
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Fig. 4. Time efficiency and performance (AUC/AP values for Ωsuc(z, k̄)) of
Algorithm 2 in a planar pushing task.

Fig. 5. Robustness evaluation of Algorithm 2 under various modeling errors:
This plot shows the algorithm performance against different estimation errors of
various types, including friction coefficient (µ), velocity (ẋ, ẏ), relative position
(rx,ry), and contact forces (λ//, λ⊥). The graph demonstrates how AP values
for the capture score Ωcap (blue, orange and green) and the force-based baseline
(BL) score Ωforce (red) vary given increasing maximal error thresholds (ēmax).

across all examples, demonstrating strong discriminative power
over the baseline Ωforce. Here, Ωesc is computed by employing
both RRT and EST as subroutine algorithms A for Algorithm 1.
The values for the success predictions given k̄ = 5 indicate
reliable predictions of successful trajectories using the scoreΩsuc
we proposed.

2) Algorithm Efficiency: We examined the time efficiency of
Algorithm 2 with respect to the number of iterations and the
task success predictions (AUC/AP values for Ωsuc(z, k̄)) as an
ablation study. Fig. 4 illustrates that it takes about 1.75 sec
to finish 1000 iterations in the simulated planar pushing task
(Fig. 2-i). The AUC/AP values increase given more iterations of
the algorithm, which is expected because of more nodes on the
tree and better state space coverage. AUC/AP values reach 0.9
given only 100 iterations and about 0.2 sec of runtime, which
confirms the time efficiency of our algorithm.

3) Robustness against Different Model Parameter Errors:
A study was conducted (in Fig. 5) on the robustness of our
algorithms given different model parameter errors, such as the
positions rx, ry and the velocities ẋ, ẏ of the object and the
end-effector, the contact forces λ//, λ⊥, the friction coefficient
μ, etc. For instance, we simulated perturbed friction coefficient
μ̂ by adding a perturbation μe randomly, uniformly sampled
from the interval [0, emax] on the true values μ, where emax is the
maximal perturbation, i.e. μ̂ = μe + μ.

For the simulated planar pushing task, we randomized
the perturbed values μ̂ given increasing thresholds emax ∈

Fig. 6. Real-world experiments settings. (i) The planar pushing task using an
Interbotix WidowX-200 robot arm with a top-view camera. (ii) 5 3D-printed
objects and 2 end-effectors. (iii) Replication in the simulation of the scene in (i)
for computing the energy margins. (iv) and (v) Screenshots of a failed/successful
trajectory from the camera view.

{0, e1max, . . ., e
s
max} for each trajectory z. We then ran Al-

gorithm 2 and obtained the capture score Ωcap(zk) and the
AP values with respect to scaled maximal thresholds ēmax ∈
{0, e1max/e

s
max, . . ., 1} given the ground-truth labels (Fig. 5).

We generated the perturbed positions r̂x, r̂y and the perturbed
velocities ˆ̇x, ˆ̇y for each state-level data point zk and the cor-
responding AP curves of velocity and position. Similarly, the
perturbed contact forces λ̂//, λ̂⊥ are generated for the force-based
scoreΩforce(zk)with the AP curve of force. Since different types
of error have different units, we scaled their maximal thresholds
esmax to ēmax so they can be shown on one figure. While higher
modeling errors do affect the prediction capability, our methods
(the friction, velocity, and position curves) demonstrate better
robustness against model parameter errors than the baseline (the
force curve). This is because our method inherently captures
many hard-to-model effects through rollout and energy analysis.

E. Real-World Experiment

1) Setup and Data Collection: We conducted real-world ex-
periments using an Interbotix WidowX-200 robot arm (Fig. 6-i)
for the planar pushing task of various geometric shapes of
3D-printed objects (five shapes) and end-effectors (two shapes)
(Fig. 6-ii). The arm has a position error between 5-8 mm, pro-
viding a testbed to evaluate our scores under system uncertainty
as in Section VI-D-3. We used a joystick to manually control
the end-effector positions to perform the planar pushing task in
the horizontal desktop plane. Visual markers were attached to
the object and the end-effector to record their poses over time
using a Realsense D415 camera.

We considered ten combinations of objects and end-effectors.
For each combination, we collected 12 trajectories, with 100
recorded states for each trajectory. The velocities were computed
from the poses and the frequency of the recording (33 Hz). A
human observer provided success labels of the task objective.
Failed (Fig. 6-iv) and successful (Fig. 6-v) trajectories are illus-
trated. Given the recorded states and system kinematic and dy-
namic parameters (mass, moment of inertia, friction coefficients,
geometric information, etc.), the trajectories were replicated in
simulation (Fig. 6-iii). We use the simulation to compute energy
margins offline.
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TABLE II
REAL-WORLD EXPERIMENTS RESULT (AUC/AP)

2) Geometry Effect Evaluation: Statistical analysis results
of the AUC/AP values for the scores Ωcap(zk) and Ωsuc(z, k̄),
are summarized in Table II following the same procedure as
in the simulation (Section VI-C) given k̄ = 60,K = 100. The
effort of escape Ωesc is not discussed here due to its inferior
performance compared to the capture score in Table I. The results
presented mostly exceed 0.85, which supports the discrimination
and predictivity power of our scores and is in line with the
results in the simulation. The performance of the capture score
of success Ωsuc(z) of 3 of the 10 combinations of geometries
(the jaw end-effector with the triangle, concave and irregular
objects) is below the average though. A reason for the failure
could be that the sim-to-real gap is especially sensitive to these
cases with complicated geometric shapes.

VII. CONCLUSION

In this paper, we propose to quantify manipulation robustness
through energy margins to failure and compute them using
kinodynamic motion planning algorithms. We believe this ap-
proach is a step towards robustness characterization of general
dexterous manipulation. Our approach currently has certain
limitations, such as reliance on dynamic rollouts in simula-
tion, which requires system modeling and causes computational
costs. Additionally, our analysis is confined to rigid objects and
utilizes an empirically defined capture set. Looking ahead, we
aim to improve our method by overcoming these limitations and
applying our robustness characterization in motion planning for
general manipulation.
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