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Abstract—This work presents Adaptive Robot Coordination
(ARC), a novel hybrid framework for multi-robot motion planning
(MRMP) that employs local subproblems to resolve inter-robot
conflicts. ARC creates subproblems centered around conflicts, and
the solutions represent the robot motions required to resolve these
conflicts. The use of subproblems enables an innovative, cost-
effective hybrid exploration of the multi-robot planning space by
dynamically coupling and decoupling necessary subsets of robots
only when required and in specific physical locations. This allows
ARC to adapt the levels of coordination efficiently by planning in
decoupled spaces, where robots can operate independently, and
in coupled spaces, where coordination is essential. ARC is prob-
abilistically complete, can be used for any robot, and produces
cost-efficient solutions in reduced planning times. Through exten-
sive evaluation across representative scenarios with different robots
requiring various levels of coordination, ARC demonstrates its abil-
ity to provide simultaneous scalability and precise coordination.
ARC is the only method capable of solving all the scenarios and is
competitive with coupled, decoupled, and hybrid baselines.

Index Terms—Path planning for multiple mobile robots or
agents, multi-robot systems, motion and path planning.

I. INTRODUCTION

MULTI-ROBOT systems (MRS) have gained significant
usage in various applications, including payload trans-

portation and manufacturing, due to their ability to enhance
productivity and reduce operational costs. This letter addresses
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the problem of Multi-robot Motion Planning (MRMP), a
critical component for utilizing MRS. The complexity of MRMP
typically arises from the quantity of robots in the problem
and the degree of coordination required to tackle the problem.
Some applications require low levels of coordination and can
be addressed by online, decentralized methods such as [1], [2],
[3], however, other applications need high levels of coordination
such as multi-manipulator assembly or scenarios with congested
regions of mobile robots where online, decentralized methods
struggle with problems such as deadlock and livelock, motivat-
ing the use of offline, centralized methods for these problems.
Here, we consider offline, centralized MRMP to address prob-
lems containing high levels of coordination and seek to minimize
planning time to reduce the impact of offline planning.

In the existing MRMP literature, algorithms are classified as
coupled, decoupled, and hybrid. Coupled methods offer higher
coordination but struggle with larger teams and have slower
planning times. Decoupled methods are efficient with larger
teams and faster in planning but fail when high coordination
is needed. Hybrid methods aim to combine the benefits of both
while minimizing their weaknesses. Some problems have con-
sistent coordination complexity, and one approach or another can
be used appropriately, but often the required coordination varies,
leading to planning times being constrained by the highest
level of required coordination, often requiring more expensive
coupled methods.

In this letter, we present Adaptive Robot Coordination (ARC),
an offline, centralized MRMP method designed to minimize
planning times by adapting the level of coordination necessary
throughout the planning process by dynamically coupling and
decoupling necessary subsets of robots only for relevant times
and locations. Rather than choosing a single approach to fit
the instance of highest coordination, our approach defines sub-
problems and finds the cheapest method capable of solving the
subproblem. Subproblems consist of a subset of the robots, a
subset of the environment, and a local start and goal. It is often
impossible to know where these subproblems are needed apriori,
so we lazily introduce them as we discover a need. We start by
generating individual robot paths, and then use any potential
conflicts in these optimistic paths to define a subproblem. The
solution of a subproblem is used to patch the conflicting paths
and resolve the conflict in the proposed motion plan (Fig. 1).
We iteratively find and resolve conflicts in this manner until we
generate a valid motion plan for the entire MRS.

Prior hybrid MRMP methods can be split into two categories:
hybrid search and hybrid representation. Hybrid search meth-
ods such as CBS-MP [4] and ECBS-CT [5] utilize decoupled
representations (PRM and state-lattice graphs respectively) and

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3142-9251
https://orcid.org/0000-0002-9553-7331
https://orcid.org/0009-0001-9562-6916
https://orcid.org/0000-0003-1824-2350
https://orcid.org/0000-0001-5817-5290
mailto:irvingsolis89@tamu.edu
mailto:jmotes2@illinois.edu
mailto:yudiqin2@illinois.edu
mailto:namato@illinois.edu
mailto:namato@illinois.edu
mailto:moralesa@illinois.edu
https://doi.org/10.1109/LRA.2024.3420548


SOLIS et al.: ADAPTIVE ROBOT COORDINATION: A SUBPROBLEM-BASED APPROACH FOR HYBRID MULTI-ROBOT MOTION PLANNING 7239

Fig. 1. A simplified overview of our method: (a) Detect a conflict between
two robots’ paths. (b) Define a local subproblem around the conflict. (c) Use the
subproblem’s solution to modify the original paths and resolve the conflict.

implicitly search the composite space through an MAPF-like
search algorithm. Hybrid representation methods, such as M* [6]
and MRd-RRT [7], directly search and construct representations
in the composite space of the MRS (or subsets of it) often guided
by the decoupled or lower dimensional state space representa-
tions. Hybrid representation methods are often able to achieve
much higher levels of coordination due to directly searching the
composite space (albeit affected by their dependence on lower
dimensional representations as we examine in our experiments).
Our proposed method, ARC, falls into the hybrid representation
category, though we differentiate ourselves through the local
search of the composite space defined by our subproblems.
This results in less effort on searching the exponentially larger
composite space and, thus, faster planning times than the other
hybrid representation methods while still achieving high levels
of coordination.

We demonstrate the ability of ARC to adapt robot coordi-
nation efficiently through a comprehensive set of experiments
involving mobile robots, planar manipulators, and 3D manip-
ulators in scenarios that demand low, high, and varying levels
of coordination. We compare it against decoupled, hybrid, and
coupled baselines. Notably, ARC stands out as the sole method
that successfully solves all the scenarios. In the low coordination
scenario, ARC performs on par with the decoupled baseline.
Similarly, in high coordination scenarios, ARC exhibits behavior
similar to the coupled baseline. In scenarios that require varying
levels of coordination, ARC outperforms all the baselines.

In summary, our contributions are:
� A novel subproblem-based approach to resolve robot con-

flicts in MRMP problems.
� A MRMP method that exploits this framework to adapt

robot coordination by transitioning different levels of
(de)coupled spaces to find feasible solutions to problems
with many robots requiring high levels of coordination.

� Experimental evaluation of this proposed method with up
to 32 mobile robots and 8 manipulators. Results show
efficient robot coordination while maintaining efficient
planning times for large teams. Our method is the only
method able to solve all the scenarios and it exhibits
improved performance over existing methods.

II. PRELIMINARIES AND RELATED WORK

In this section, we define the multi-robot motion planning
(MRMP) problem. We then discuss sampling-based motion
planning and review relevant MRMP algorithms, examining
how they explore multi-robot state spaces through coupled,

decoupled, and hybrid classes. Finally, we contextualize our
method within the current literature.

A. Problem Definition

Motion planning is the problem of finding a valid continuous
path for a robot from a start to a goal pose within the con-
figuration space (Cspace) [8], encompassing all possible robot
configurations. A configuration encodes the robot’s degrees-of-
freedom (DOF), including parameters like position, orientation,
joint angles, and velocity.

Multi-robot motion planning (MRMP) extends this to finding
feasible paths for multiple robots, each with start and goal poses.
Each MRMP problem is defined by (E ,R,Q), where E is the
environment,R is the set of robots, andQ is the set of start and
goal positions for each robot.

Solutions involve exploring the composite configuration
space, the cross product of all individual robot configuration
spaces, denoted as Ci for each robot ri ∈ R and Ccomposite for
the entire system. A valid composite configuration ensures no
robot collides with obstacles or other robots. The composite
space can be explored in coupled and decoupled manners. The
former involves exploring Ccomposite directly. The latter implic-
itly considers Ccomposite by planning in individual configuration
spaces. Since decoupled Cspace does not explicitly encode other
robots’ DOFs, detecting and resolving potential conflicts between
individual paths is necessary to find a valid solution. A conflict
occurs when two robots, ri and rj , interfere at timestep t while
traversing their paths, denoted as < ci, cj , t >, where ci and
cj are the conflicting configurations. Coupled methods avoid
conflicts as they result in invalid configurations in Ccomposite. A
MRMP solution is valid if all robot transition from their start
states to their goal states through conflict-free paths.

B. Sampling-Based Motion Planning

As the number of DOFs in a motion planning problem in-
creases, representing the Cspace becomes intractable [9], [10].
Sampling-based algorithms like the Probabilistic Roadmap
Method (PRM) [11] were developed as approximate solutions,
trading completeness for probabilistic completeness. PRMs
capture Cspace connectivity by sampling graphs, known as
roadmaps, where vertices represent valid robot states and edges
represent valid transitions between states. Paths are obtained by
querying these roadmaps.

C. Coupled methods

Coupled approaches explore the composite space directly
to find a path from a start to a goal composite configuration,
encoding each individual robot’s start and goal. These meth-
ods often apply single-robot sampling-based approaches (e.g.,
PRM [11] or RRT [12]) to the composite space [13], [14], [15],
[16], [17], providing probabilistic completeness and high levels
of coordination that allow them to address complex problems
like mobile robots crossing an inlet (Fig. 6(a)) or planning for
tangled robotic arms (Fig. 6(b)). However, these methods are
suitable only for small robot teams, as the composite space size
grows exponentially with the number of robots.

Multi-agent Pathfinding (MAPF) techniques [18], [19] have
been adapted for MRMP problem-solving by exploring a com-
posite state space derived from the Cartesian product of individ-
ual representations. However, their effectiveness relies heavily
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on the quality of individual representations and may falter if they
lack essential coordination states.

D. Decoupled Methods

Decoupled methods consider individual Cspaces, with each
robot’s path found by exploring its own Cspace. Sampling-based
techniques are used to construct individual representations (e.g.,
roadmaps) which are then queried for individual paths. Since de-
coupled representations are constructed separately, single robot
search algorithms cannot collectively reason over them. Conse-
quently, additional measures are required to prevent inter-path
conflicts. MAPF algorithms are adapted to address this issue,
often employing a prioritized planning method [20], [21], [22],
[23], [24], [25], [26], assigning priorities to each robot to avoid
conflicts.

E. Hybrid Methods

Hybrid approaches seek to leverage the strengths of both
coupled and decoupled methods while minimizing their weak-
nesses. Most existing hybrid methods construct decoupled repre-
sentations (e.g., roadmaps in individual robot Cspaces) and adapt
efficient MAPF hybrid techniques originally designed to resolve
grid world problems [6], [27] to the roadmap representation.
These MAPF algorithms’ consideration of the composite space
often revolves around conflict resolution. For example, when
paths conflict, M* [6] expands the search space’s dimensionality
to identify the coupled actions needed to resolve the conflict,
while CBS [27] imposes constraints on individual robot state
spaces to facilitate the re-planning of collision-free paths.

An extension to MRMP [4], [5] adapts CBS to address
sampling-based and state-lattice motion planning problems.
In [28], optimization-based Mixed Integer-Linear Programming
(MILP) is used to compute individual paths and priority-based
planning to coordinate agents and avoid inter-agent collisions.
In [7], [29], RRT is employed to navigate through the composite
configuration space, guiding a decoupled search over individual
roadmaps. Yet, all these hybrid approaches primarily engage in
coupled exploration solely to guide a search across decoupled
representations, which are independently constructed for each
robot, disregarding the team as a whole. Consequently, these
decoupled planning spaces may lack the composite states needed
for executing cooperative robot motions needed to resolve a
conflict.

In contrast, our proposed method introduces local subprob-
lems, effectively coupling and decoupling robot subsets at ap-
propriate times and workspace locations. This enables planning
at different levels of state space compositions, facilitating the
discovery of new states essential for coordination.

III. METHOD

In this section, we present the Adaptive Robot Coordination
(ARC) approach to the multi-robot motion planning (MRMP)
problem. We first provide an overview of the method and how
subproblems are used to resolve conflicts. Then, we detail the
creation and adaptation of subproblems. Finally, we discuss the
theoretical properties of the approach.

A. Overview

ARC is a hybrid MRMP method that employs subproblems
to efficiently address conflicts by exploring relevant sections of

Algorithm 1: Adaptive Robot Coordination (ARC).
Input: A MRMP problem with an environment E , a set of

robotsR, a set of queries Q.
Output: A set of valid paths P .

1: P ← ∅
2: for each robot ri ∈ R do
3: pi ←MotionPlanning(E , {ri}, {qi})
4: P ← P ∪ {pi}
5: end for
6: C = FindConflict(P)
7: while C �= ∅ do
8: E′,R′,Q′ = CreateSubProblem(C,P, E)
9: P′ = SolveSubProblem(E′,R′,Q′)

10: if P′! = ∅ then � conflict resolved
11: UpdateSolution(P,P′)
12: C = FindConflict(P)
13: else
14: P = C ← ∅ � if conflict not resolved,
15: end if � return empty solution
16: end while
17: return P

Fig. 2. A three-robot MRMP problem with path timelines indicating conflict
times. Dashed lines represent path modifications to resolve conflicts. (a) The
initial conflict involves robots 1 and 2, resolved by defining a subproblem. (b)
The subproblem’s solution resolves the conflict. (c) A second conflict emerges
as Robot 3 conflicts with the solution for robots 1-2. (d) A new subproblem,
involving robots 1, 2, and 3, is defined and solved.

the planning space. Given a MRMP problem instance (E ,R,Q),
ARC (Algorithm 1) begins by solving each robot’s individ-
ual motion planning problem (E ,Ri = {ri},Q = {qi}) using
probabilistically complete sampling-based techniques in order
to obtain the initial set of paths. Paths are represented by a
sequence of configurations approximating continuous motion,
and pi(t) is the configuration along pi at timestep t. They are
also discretized into uniform time resolution segments called
timesteps. Timesteps may vary in length across different robots’
roadmaps, but they take the same duration to traverse according
to each robot’s velocity.

Because paths are computed in independent robot Cspaces, we
check them for conflicts through standard collision detection
at each timestep (Algorithm 1: lines 6,12). Conflicts between
paths pi, pj are used to create local subproblems (E′,R′ =
ri ∪ rj ,Q′) (Algorithm 1: line 8). Q′ is defined by selecting
points along pi, pj sufficiently before and after the conflict
timestep. Q′ is used to define a local region E′ for the sub-
problem. Sampling-based MRMP solvers are used to find the
subproblem solution, each with specific termination criteria.
Local paths from the subproblem solution resolve the conflict
and are connected to the rest of the initial paths. This process is
repeated until all conflicts are resolved.
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Fig. 3. (a) A conflict between two paths inside a narrow passage. (b) Initial
subproblem where no solution exists. (c) Expanding subproblem to find a feasible
solution.

Fig. 4. Solution paths for the scenario shown in Fig. 7(b)–(c). Timelines
illustrate each robot’s path, with colors indicating segments planned in spaces
of different dimensions. Mostly, paths are computed independently within their
respective state spaces (gray), but they transition to higher-dimensional spaces
occurs when more coordination is needed to resolve conflicts. At certain points,
the planning transitions to 2-robot state spaces (blue) to address conflicts between
pairs of robots of the same color (see Fig. 7(b)–(c)). Around timestep 600, the
planning transitions to a 4-robot state space to resolve a more complex conflict
involving four differently colored robots at the center.

If the probabilistically complete, sampling-based planner
fails to find a solution within some bounded effort (e.g., time
or number of samples), the local subproblem (E′,R′,Q′) is
expanded by pushing Q′ further from the conflict on pi, pj . E′
is expanded accordingly (Algorithm 2: line 10, Fig. 3), and the
algorithm then attempts to solve this expanded subproblem.

The local solution P′ to (E′,R′,Q′) resolves the conflict in
pi, pj . If P′ conflicts with another subproblem solution, we in-
troduce a new local subproblem that accounts for all conflicting
robots (Algorithm 1: line 8, Fig. 2) as discussed in Section III-B.

The final solution yields a set of paths P , where each
path p may consist of segments from different planning
spaces of various robot compositions (Fig. 4). Each pi ∈ P
has a start and end timestep pi.tstart, pi.tend and configura-
tion p(pi.tstart), p(pi.tend). There exists a pRi

, p′Ri
∈ P such

that Ri = {ri} for all ri ∈ R and pRi
(0) = qi.start and

p′Ri
(tfinal) = qi.goal. If ri is never found to be in conflict with

another robot, then pRi
= p′Ri

.
Each robot ri should exist in exactly one path at every

timestep except from those where a robot is part of a state
space composition change. At every change of robot state space
composition from a set of paths Ppre to a set of paths Ppost, the
end configuration of the pre-transition paths

∏
pi∈Ppre

pi(pi.tend)

is equivalent to the start configuration of the post-transition paths∏
pi∈Ppost

pi(pi.tstart).

Algorithm 2: SolveSubProblem.

Input: A subproblem with an environment E′, a set of robots
R, a set of queries Q′. A set of MRMP solvers S .

Output: A set of valid local paths P′.
1: P′ ← ∅
2: while P′ == ∅ do
3: for s in S do
4: P′ ←SolveMRMP(s, E′,R′,Q′)
5: if P′ �= ∅ then � subproblem solved
6: return P′
7: end if
8: end for
9: if E′ �= E or Q′ �= Q then

10: AdaptSubProblem(E′,R′,Q′)
11: else
12: return ∅ � if subproblem not solved,
13: end if � return empty local solution
14: end while

B. Subproblem Creation and Adaptation

Given a set of paths P , and a conflict (ci, cj , t) between
pRi

, pRj
∈ P , we define a local subproblem (E′,R′,Q′) around

the conflict (Algorithm 1: line 8) where R′ = Ri ∪Rj merges
the involved robots. The local queryQ′ defines the local start and
goal configurations for each robot and is obtained by taking the
corresponding configurations located in a time window before
and after the conflict timestep t− window, t+ window, where
the time window consists of an initial number of timesteps.

The local region E′ is defined by a Cspace boundary encap-
sulating Q′. This allows the planning methods to focus the R′
composite space search on a local region around the conflict.

If a solution is not found for (E′,R′,Q′), the local problem
is adapted by expanding Q′ and E′(Algorithm 2: line 10). This
involves the continuous advancement of the query points along
their respective paths, which in turn expands the local environ-
ment. This expansion is repeated until a solution is found or
E′ = E and Q′ = Q at which point the method terminates with
no solution (Algorithm 2: line 12).

If additional robots need to be incorporated to resolve the
current conflict, ARC expandsR′ to account for all the involved
robots, ensuring a feasible resolution for all of them. This can
occur in instances where resolving one conflict invalidates a
prior conflict resolution.

C. Subproblem Planning

Subproblems focus computational effort on conflict reso-
lution, and since not all conflicts require the same level of
coordination, ARC adapts the method’s complexity accordingly.
We employ a hierarchy of MRMP methods (Algorithm 2, line
3), resorting to more expensive methods only when necessary.
The framework is designed to incorporate various strategies for
different levels of coordination, and we have chosen the simplest
ones to demonstrate its functionality. Our experiments use the
following hierarchy:
� Prioritized Query (no sampling)
� Decoupled PRM (sampling individual robot Cspaces)
� Composite PRM (sampling composite Cspace)
Initially, conflicts are resolved using decoupled queries of

existing representations, often involving robots waiting for
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others. If the current representation is insufficient, Decoupled
PRM expands the individual roadmap representations, allowing
robots to find new paths to avoid collisions. When these methods
fail, Composite PRM builds and searches a representation of the
composite space directly to find more coordinated motions. If
this final layer fails, the local subproblem is expanded.

As both sampling methods are probabilistically complete,
termination criteria are necessary to proceed to the next ap-
proach. This can be adjusted to control the effort each method
spends. For decoupled approaches, we found it is better to fail
fast and escalate the coordination level or subproblem scope.
For Composite PRM, we use metrics from [30] to develop
adaptive termination criteria that assess progress in exploring
the composite space and set limits on new state exploration. In
Section V, we explore scenarios in which each local method
provides the desired level of coordination to resolve different
types of conflicts.

We use this hierarchy of MRMP methods with increasing cou-
pling as a straightforward approach to demonstrate the adaptable
coordination. First, ARC increases the coordination the local
method used, then, if it fails to solve the subproblem, ARC ex-
pands subset of the robots’ environment, effectively increasing
coordination with respect to Cspace composition. Coordination
is then decreased after the resolution of a conflict. We plan
to develop heuristics to choose an appropriate method for the
local features of the subproblem considering more specialized
strategies like [31], [32], which excel in congested environments
with many mobile and manipulator robots, respectively.

D. Theoretical Properties

When resolving a conflict, if the method fails to find a solution
to a local subproblem, the subproblem is expanded. In the
worst case, it is expanded with respect to robots, query, and
environment until it matches the original problem. At this point,
the completeness of the approach depends on the methods in the
planning hierarchy. If the hierarchy includes a probabilistically
complete method (e.g., Composite PRM) and the termination
criteria allow continued searching, the approach is probabilisti-
cally complete.

ARC lacks an optimality guarantee, even with an asymptoti-
cally optimal method in the hierarchy, due to local conflict reso-
lution. If a better resolution exists outside the local subproblem,
no method in the hierarchy will find it.

IV. EXPERIMENTS

In our experiments, we evaluate three types of coordina-
tion problems: high coordination, low coordination, and mixed
coordination. For problems requiring exclusively high or low
coordination, ARC adapts to the appropriate level and performs
on par with existing (de)coupled methods tailored to those prob-
lem classes. For mixed coordination problems, only ARC finds
solutions within the allotted time by adapting the coordination
level throughout the planning process. Additionally, we provide
a brief analysis of how ARC adapts to the local features of the
environment by showing how the distribution of the number of
robots involved in a subproblem changes depending on environ-
mental characteristics.

A. Experimental Setup

For each of the three problem classes, we evaluate two sce-
narios: one involving mobile robots and the other featuring

Fig. 5. Low coordination scenarios. (a) Pairs of robots on the same row must
switch positions (scaled up for visibility.) (b) Manipulators’ start configurations.
(c) Manipulators’ goal configurations.

manipulators. We compare against decoupled (Decoupled
PRM [13]), hybrid (MRdRRT [7], CBS-MP [4]), and coupled
(Composite PRM [13]) baselines. Decoupled PRM operates on
a set of decoupled roadmaps and employs a prioritized planning
approach with random priority ordering to discover feasible
paths. If no path is found, roadmaps are refined. Likewise,
MRdRRT initially samples individual roadmaps for each robot,
combining them into a tensor roadmap to represent the com-
posite space. It then employs specific heuristics to guide the
exploration of the composite space towards the goal to find
solutions faster. CBS-MP also samples individual roadmaps and
then utilizes the CBS framework to query them. As detailed in
[4], it balances exploration of the Conflict Tree and roadmap
refinement to enhance performance. Composite PRM constructs
an explicit composite roadmap.

We conducted 33 random trials for each scenario, allotting
1000 seconds per trial for planning; any trial exceeding this limit
was considered a failure. We compared the planning time to find
the first solution for each method. To focus on planning time,
we did not implement the rewiring component of the MRdRRT
algorithm, as the additional computation was unnecessary for
finding a solution. We also reported the solution cost to provide
a comprehensive view of the algorithm behaviors. Solution cost,
calculated as the sum of all path timesteps including waiting
time, assumes that robots move at the same velocity for ease of
implementation.

B. Scenarios

1) Scenario I: Low Coordination: In this scenario, we ex-
amine instances that require minimal or no coodination. ARC
proves competitive against decoupled approaches, showcasing
effective scalability in these contexts.

For mobile robots, we examine a scenario where robots must
switch positions horizontally, leading to numerous conflicts that
do not demand high coordination (Fig. 5(a)). The problem is
scaled by doubling the number of robots on each side.

For manipulator robots, we address the challenge of untan-
gling the robots from a start (Fig. 5(b)) to a goal position
(Fig. 5(c)). The problem is scaled by doubling the number of
manipulators in a ring pattern.

2) Scenario II: High Coordination: In this scenario, we in-
vestigate situations requiring higher levels of coordination. We
showcase that ARC provides the necessary coordination and
competes effectively against a pure coupled approach, which
excels in these scenarios.

For mobile robots, we examine a scenario with two robots
swapping positions in a narrow passage with a central inlet
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Fig. 6. High coordination scenarios. (a) Two robots need to switch positions in
the inlet scenario (scaled up for visibility.) (b) Pairs of manipulator arms needs to
swing from left to right/right to left to reach their goal positions which requires
one to move out of the way first.

Fig. 7. Adaptive coordination scenarios where conflicts involving varying
numbers of robots are likely to occur. (a) Mobile robots of the same colors must
switch positions (scaled up for visibility.) (b) Start and (c) goal configurations
(the blocks at the end represent the bases) for the first manipulator scenario.

(Fig. 6(a)). Only one robot can go through the passage at a time,
thus a solution demands precise coordination.

For manipulator robots, we examine 3-dof planar manipula-
tors positioned oppositely (Fig. 6(b)), with the top manipulators
moving right and the bottom ones moving left. Precise coordina-
tion is required, as robots need to contract themselves, creating
enough space to avoid collisions. We consider scenarios with
both 2 and 4 manipulators.

3) Scenario III: Adaptive Coordination: In real-world ap-
plications, the required coordination between robots will likely
be unknown. This scenario depicts realistic conditions where
different coordination levels are needed at different stages of
the problem.

In the case of mobile robots, we examine 16 robots in a ware-
house with narrow passages (Fig. 7(a)). The number of robots
involved in conflicts changes, necessitating varying levels of
coordination. Two-robot conflicts typically arise along passages,
while four-robot conflicts are more likely to occur in the center.

Regarding manipulators, we examine a scenario involving
eight 3-dof planar manipulators with start and goal poses de-
picted in Fig. 7(b) and (c). Initially, the four central manipulators
encounter a 2-robot conflict with those on the outer rim. As the
inner manipulators rotate towards the center, all four become
involved in a conflict that requires higher coordination for reso-
lution.

4) Study of Coordination Adaptation to Local Features: In
this study, we examine how ARC adapts robot coordination
based on environmental features. We aim to show that ARC
increases coupling in areas with higher robot congestion. Using
three environments that induce different congestion levels, and
the same start and goal positions as the Low Coordination
scenario with 32 robots (Fig. 5(a)), we conducted successful
100 trials for each environment. We measured the total conflicts
and the distribution of coupled robots needed for resolution.

TABLE I
SUCCESS RATES FOR ALL EVALUATED SCENARIOS

C. Results

1) Scenario I: Low Coordination: For mobile robots, ARC
and Decoupled PRM improved scalability, being the only meth-
ods able to solve all trials for 32 robots. (Fig. 8). This is because
ARC is decoupled most of the time, as conflicts usually involve
only a few robots. We provide a deeper study about this behavior
at the end of this section. Given its thorough search for optimal
solutions, CBS-MP successfully completed all trials for 8 robots
but only achieved a 36% success rate for trials with 16 robots.
Likewise, due to its coupled behavior, Composite PRM can
successfully plan for all trials involving 8 robots but achieves
only a 24% success rate for trials with 16 robots (Table I).
MRdRRT successfully plans for two robots but only achieves
a 59% success rate for four robots (Table I). This lower success
rate is due to its indirect exploration of the composite space.
MRdRRT queries a tensor roadmap composed of individual
representations, sampled independently, which may not contain
the team solution and require further refinement. Even when
roadmaps are sufficient, the greedy heuristics in MRdRRT often
drive the search back to conflict within the existing representa-
tion, as conflict resolution essentially involves taking a random
step off the path before resuming greedy behavior.

For manipulators, ARC and CBS-MP exhibit the best plan-
ning times, as they can provide better coordination and scal-
ability (Fig. 9). CBS-MP produces better solution costs due
to its optimality, while ARC’s solutions, though slightly more
expensive, remain competitive. DecoupledPRM can also solve
all the trials but at a slower pace, as it requires the exploration of
more decoupled states. CompositePRM can only solve a 27% of
the trials for eight robots due to its coupled behavior (Table I).
MRdRRT successfully solved all instances for two robots, but
only 68% out of the trials for four robots. Once more, this is
attributed to the mostly greedy exploration of the composite
space through the tensor roadmap (Table I).

2) Scenario II: High Coordination: For mobile robots, ARC
and CompositePRM are the only methods that solved all tri-
als (Fig. 10(a)). They directly explore the composite space,
enabling the discovery of necessary coupled transitions. ARC
produces better cost solutions by focusing exploration in the
inlet region. CBS-MP solved only 66% of trials because its
decoupled roadmaps sometimes lack necessary states for co-
ordinating robots at the inlet (Table I). Similarly, MRdRRT,
exploring a tensor roadmap of individual representations, solved
only 21% of trials due to missing necessary states over the
inlet. DecoupledPRM failed to solve all trials due to its lack
of coordination (Table I).

For manipulators, ARC, CompositePRM, and MRdRRT are
the only methods capable of solving the trials. ARC and Com-
positePRM demonstrate comparable performance in planning
time and cost solutions, with ARC having slightly higher plan-
ning times due to resolving conflicts before integrating the four
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Fig. 8. Results for scenario II: low coordination mobile robots.

Fig. 9. Results for scenario II: low coordination manipulator robots.

Fig. 10. Results for Scenario III: (a) High Coordination Mobile, (b) High
Coordination Manipulator.

robots, while CompositePRM plans them simultaneously. The
three methods using decoupled roadmaps all struggle. MRdRRT
solves the problem through its tensor product roadmap search,
though with longer planning times than methods directly sam-
pling the composite space. CBS-MP’s iterative conflict tree
expansion takes too long to search decoupled representations,
and Decoupled PRM fails due to its incomplete nature, limiting
feasible coordination.

3) Scenario III: Adaptive Coordination: In all adaptive sce-
narios (Table II), only ARC generates feasible solutions. This is
because ARC dynamically adapts robot coordination to resolve
diverse conflicts, each requiring different levels of coordination.
Other methods fail due to coordination deficiencies or their
inability to scale well with a larger number of robots. In Fig. 4,

TABLE II
RESULTS FOR THE ADAPTIVE COORDINATION SCENARIOS

we illustrate how ARC’s final paths (Fig. 7(b)–(c)) result from
transitioning through path segments planned in state spaces of
different dimensionalities.

In mobile robot scenarios, ARC’s planning time varies due to
conflicts requiring high coordination. The use of a sampling-
based method for conflict resolution introduces randomness,
increasing variability as more conflicts are addressed. In manip-
ulator robot scenarios, ARC’s solution costs vary because ARC
stops local exploration when conflict resolution is found. Due to
the complexity of manipulator planning, achieving lower-cost
conflict resolutions requires deeper exploration of the planning
space, inevitably increasing planning time, which is not the focus
of this work.

4) Study of Coordination Adaptation to Local Features: Our
study reveals that ARC is highly effective and reactive to local
environmental features. Results shown in Fig. 11 demonstrate
that ARC effectively adapts robot coordination by considering a
higher number of robots in areas with high congestion, coupling
up to 18 robots in such environments. Most importantly, ARC
maintains efficiency in conflict resolution by generally requir-
ing only two robots, reducing computational and operational
load. Remarkably, across all congestion levels, approximately
70% of conflicts are resolved by only two robots, underscoring
ARC’s efficiency in managing most conflicts with minimal robot
coupling.
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Fig. 11. Environments inducing various levels of robot congestion: (Left)
Low congestion, where robots can pass anywhere; (Center) Mid congestion,
with passage restricted to two corridors; (Right) High congestion, with passage
restricted to one corridor.

V. CONCLUSION

In this letter, we introduce ARC, a novel hybrid MRMP
method that employs a subproblem-based approach for resolving
robot conflicts. ARC efficiently explores the extensive multi-
robot planning space by introducing local subproblems, en-
abling a cost-effective exploration of relevant regions within the
composite space. The solutions to these subproblems depict the
appropriate robot motions for conflict resolution, allowing ARC
to rapidly adapt subproblems to plan for the necessary robots and
physical space. The results demonstrate ARC’s ability to offer
simultaneous scalability and coordination across various sce-
narios. In comparison to the decoupled baseline, ARC exhibits
competitive scalability and effectively competes in terms of co-
ordination against the coupled approach. In scenarios featuring a
large number of robots with varying coordination requirements,
ARC stands out as the only method capable of finding solutions,
thanks to its capacity to quickly adapt subproblems for resolving
diverse types of conflicts.

REFERENCES
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