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MovingCables: Moving Cable Segmentation
Method and Dataset

Ondřej Holešovský , Radoslav Škoviera , and Václav Hlaváč , Member, IEEE

Abstract—Manipulating cluttered cables, hoses or ropes is chal-
lenging for both robots and humans. Humans often simplify these
perceptually challenging tasks by pulling or pushing tangled cables
and observing the resulting motions. We propose to use a similar
interactive perception principle to aid robotic cable manipulation.
A fundamental building block of such an endeavor is a cable motion
segmentation method that densely labels moving cable image pixels.
This letter presents MovingCables, a moving cable dataset, which
we hope will motivate the development and evaluation of cable
motion segmentation algorithms. The dataset consists of real-world
image sequences automatically annotated with ground truth seg-
mentation masks and optical flow. In addition, we propose a cable
motion segmentation method and evaluate its performance on the
new dataset.

Index Terms—Data sets for robotic vision, deep learning for
visual perception, object detection, segmentation and categoriza-
tion, cable motion, optical flow.

I. INTRODUCTION

MANIPULATING one-dimensional deformable objects
such as cables, hoses or ropes (henceforth referred to

as “cables” for brevity), especially when cluttered, is chal-
lenging both for humans and robots due to self-occlusions,
high-dimensional state space, uniform visual appearance, and
complex interaction dynamics. Imagine, for example, that a
robot should replace a specific damaged cable in the scene shown
in Fig. 1. There are passive computer vision methods [1], [2],
[3] for segmenting individual cable instances. However, these
methods struggle with occlusions or complex intersections of
multiple cables. Novel cable segmentation methods are therefore
needed.
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Fig. 1. One of the untidy cables in the scene is moving. Its motion segmentation
by MfnProb is in green.

Fig. 2. Yellow hose, dark green poking stick, blue backdrop. (a) No markers are
visible on the hose in white lighting. (b) UV lighting shows the UV fluorescent
markers and hides everything else. (c) Detail of the tip of the poking stick.

Our work is inspired by the way humans interactively discover
the topology of cluttered cables when trying to untangle them.
When a human finds it too hard to visually infer whether two
cable segments are directly linked, she grasps and pulls or pushes
one of them. The motion visually distinguishes the grasped
cable from the clutter. This observation guides us to integrate
perception and interaction to aid robotic cable manipulation.

Methods that segment moving cables are an essential building
block of the eventually integrated action-perception loop. To test
or train such methods, we need a suitable dataset. Creating such
a dataset is challenging because we need to obtain not only the
cable instance segmentation masks but also the cable motion
ground truth. We created an automatically annotated moving
cable dataset and a novel method able to segment moving cables.

As our robots are too large to manipulate thin cables gently,
we recorded video clips featuring a garden hose being manually
pushed by a poking stick. We painted UV fluorescent markers
on the hose to facilitate ground truth motion estimation. The
UV paint is invisible in regular white light but shines clearly in
UV light, see Fig. 2. Marker tracking automatically estimated
the ground truth optical flow and chroma key techniques gen-
erated cable and poking stick segmentation masks. Finally, we
generated video clips featuring multiple overlapping hoses by
compositing several single-hose video clips into one.
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The contributions of this letter include:
1) MovingCables, the first moving cable segmentation

dataset with optical flow and instance segmentation
ground truth, is automatically generated by a novel data
annotation method.

2) MfnProb, a novel cable motion segmentation algorithm
based on an optical flow prediction neural network with
probabilistic outputs.

3) An evaluation of five cable motion segmentation algo-
rithms (including MfnProb) on the new dataset demon-
strates how the dataset can be used.

The cable motion segmentation methods presented here as-
sume that either the segmentation mask of the arm moving
the cables is available or the arm is not visible in the image.
In practice, one can obtain the arm mask using, e.g., the arm
CAD model and forward kinematics, model-based rigid object
segmentation or pose estimation/tracking [4], UV fluorescent
markers, or color thresholding (our approach).

Section II discusses the related work. Section III presents the
dataset creation process, the automatic data annotation method,
and the resulting data’s nature. We introduce four cable motion
segmentation algorithms based on optical flow prediction neural
networks in Section IV. Section V suggests how such algorithms
can be evaluated on the dataset, Section VI presents the evalua-
tion results, and Section VII discusses the results and concludes
the letter.

II. RELATED WORK

Existing motion segmentation approaches have been tested
mostly on rigid objects. Several methods presented in the litera-
ture can segment cables passively from images [1], [2], [3], [5],
[6]. Two passive cable segmentation datasets [5], [7] exist, but
none with annotated moving cables.

a) Cable perception: Cable segmentation is generally chal-
lenging because cables are often of uniform appearance without
distinctive features. Several cable detection or segmentation
methods in the literature thus relied on simplifying assumptions.
Some assumed a single cable was present in the scene [8],
[9], others relied on a good cable/background color contrast
or on color thresholding to segment the cables from the back-
ground [8], [10], [11], [12], [13], [14], [15].

A DeepLabV3+ semantic segmentation neural network can
segment wires in an image [5]. Ariadne+ [6] segmented indi-
vidual wires by processing a superpixel region adjacency graph,
taking advantage of the DeepLabV3+ semantic segmentations.
An additional TripleNet network predicted the superpixel con-
nectivity scores at wire intersections.

FASTDLO [3] is a recent state-of-the-art passive wire in-
stance segmentation method. It skeletonized each foreground
segment predicted by the DeepLabV3+ network to find cable
sections, intersections, and endpoints. At each intersection, a
similarity neural network paired the neighboring segments with
similar color, thickness, and direction estimates. The more recent
RT-DLO [2] method replaced FASTDLO’s skeletonization with
a sparse graph-based approach to handle degraded foreground
segments. mBEST [1] found cable instances in skeletonized

Fig. 3. Instance segmentation of an image from our dataset.

foreground segments by minimizing the cumulative bending
energy of the cables. FASTDLO, RT-DLO, and mBEST may
struggle with multiple overlapping cables and severe occlusions,
see Fig. 3. We note, however, that scenes involving occlusions or
more than two cables at an intersection were outside the scope of
mBEST [1]. Zhaole et al. showed that the semantic segmentation
networks [3], [5] trained on wire datasets do not generalize
well to cables of different textures and color patterns (e.g.
ropes) [16]. Their combination of the Segment Anything large
vision model with a post-processing method outperformed [3],
[5] in segmenting a cable from the background.

Deep networks can replace cable state estimation algorithms
when task-specific human-labeled training data is available.
They can propose interaction keypoints, detect endpoints, clas-
sify knots, or refine grasps. Such networks were applied to
untangle a multi-cable knot [13], a non-planar knot [17] or a long
cable [14]. In [14], an interactive perception algorithm preferred
certain manipulation primitives over others when the perception
was uncertain. Nevertheless, these approaches assumed that
the cables were segmentable from the background by color
thresholding. A deep network also helped a robot pick a wiring
harness entangled in a pile of wiring harnesses [18]. It predicted
the success probability of each available open-loop action given
a grasp candidate and a depth image of the scene.

Our work exploits the motion of a cable of interest to simplify
the cable perception task, even in complex scenes with multiple
overlapping cables and severe occlusions.

b) Interactive segmentation: Interactive perception is the
exploitation of forceful robot-environment interactions to sim-
plify and enhance perception [19], [20]. Interactive segmenta-
tion [21], a more specific interactive perception skill, interacts
with the environment and segments it into a set of movable
objects based on the observed motion. It is computationally effi-
cient and requires little prior knowledge about the environment.

Interactive segmentation processes a visual motion signal
to segment the moving objects. Options to consider include
intensity image differencing with 2D template tracking [21],
dense optical flow [22], [23], [24], [25], sparse feature track-
ing [24], [26], object trackers [26]. Compared to optical flow,
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intensity change detection performs poorly when the moved
object and the background are of similar color [23] or when
multiple objects move [25]. Change detection used together with
optical flow improves robustness under strong occlusion, where
never-reappearing pixels degrade optical flow [24]. One cannot
apply sparse feature tracking to most cables due to their uniform
visual appearance.

We have not found any motion segmentation method tested
on cluttered cables. To segment cables, we started with a method
based on thresholding the magnitude of optical flow predicted
by an off-the-shelf neural network [27]. Next, we improved its
results by extending it with probabilistic outputs [28] and by
retraining it on standard optical flow datasets.

c) Cable datasets: We are not aware of any existing moving
cable dataset. Zanella et al. [5] published a static cable dataset for
training and evaluating segmentation methods. They took photos
of wires on a monochromatic background and randomized it
using the chroma key technique. In [7], a human labeled 3D
keypoints along a real-world wire using a VR tracker pen. A
camera mounted on a robotic arm took images of the wire from
different viewpoints. The authors trained semantic and instance
segmentation networks on dataset mixtures containing different
proportions of synthetic and real-world images. They showed
that adding real-world training data improved accuracy at test
time.

We propose MovingCables, a novel dataset utilizing UV
fluorescent markers to obtain the motion ground truth. UV
fluorescence provided the ground truth in datasets for optical
flow [29] and the semantic segmentation of rigid and deformable
objects [30], [31]. Baker et al. [29] painted fluorescent speckles
onto several objects, including clothes. They switched between
visible and UV light to record images with and without the
speckles. The Lucas-Kanade algorithm estimated the ground
truth optical flow even for low-textured objects thanks to the
speckles. Instead of relying on speckles, we opt for stripe mark-
ers to obtain uninterrupted marker trajectories extending across
the entire video recording.

III. MOVINGCABLES DATASET

Here we present the dataset creation process, the automatic
data annotation method, and the nature of the resulting data.
We started by recording the video clips of a single hose with
a blue screen in the background (Section III-A). Chroma key
segmentation and UV fluorescent marker tracking automatically
annotated these images with optical flow and segmentation
masks (Section III-B). Finally, we composited multiple recorded
single-hose clips and various background images (Section III-B)
to obtain the final composed dataset consisting of clips showing
multiple overlapping hoses (Section III-C).

A. Raw Data Recording

A Basler ace aCA640-750uc camera with a 6 mm lens
recorded the moving cable scene. A frame standing in front of
the camera held the two endpoints of a plain yellow garden hose.
We placed a blue screen in the background.

Fig. 4. (a) Vertical white lights light the blue screen background from the left
and right. (b) Shining UV light strips with white light turned on. (c) Only UV
lights turned on.

Fig. 5. (a) Blue screen, yellow hose, green poking stick. (b) Transparent
background. (c) Transparent poking stick.

The poking stick, see Fig. 2(c), was a long thin aluminum
bar with dark green cardboard attached to one of its faces. We
ensured the cardboard faced the camera when recording to keep
the aluminum bar hidden.

The UV fluorescent stripe markers in Fig. 2(b) are cylinder
shells painted on a cable in regular intervals with transparent UV
fluorescent paint (UV-elements Invisible Glow Lacquer green1).

White LED strips two meters tall lit the background blue
screen from the sides, see Fig. 4(a). Another set of vertical UV
LED strips (370 nm wavelength) illuminated the cables, see
Fig. 4(b), (c). Solid-state relays turned the white and UV LED
strips rapidly on and off. White LED strips could also illuminate
the cables in the foreground with visible light. Instead, we used
high-power white SMD LEDs and a custom LED driver with a
digital PWM/enable control input.

The camera recorded the scene at 640× 480 pixels, 120 FPS.
Its digital trigger output signal emitted at the start of every
exposure controlled the lights. A UV-lit image followed each
white-lit image taken by the camera so that the white-lit image
sequence was recorded at 60 FPS. We recorded one video clip
per one poking interaction. Each clip is 10 seconds long and
contains ca. 1201 images. The raw recorded dataset consists of
177 clips and 212 581 images.

B. Post-Processing

We post-process the recorded clips in two stages. The first
stage performs chroma keying, marker detection, marker trac-
ing, and optical flow ground truth computation. Foreground-
background compositing and data augmentation run separately
in the second stage.

a) Chroma keying: We use chroma keying to key the blue
screen and the green poking stick, see Fig. 5. Chroma keying

1https://www.uv-elements.de/shop/en/Invisible-Glow-Lacquer-50ml-green

https://www.uv-elements.de/shop/en/Invisible-Glow-Lacquer-50ml-green
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Fig. 6. (a) Marker center point detection. 1) Fit the minimum area rotated
bounding rectangle to the blob. 2) Rectangle (and marker) center line. 3) Scan
along lines parallel to the center line. Find the endpoints of the line segments
entirely within the blob. 4) Fit a parabola to each set of endpoints. Use orthogonal
distance regression (ODR). 5) Intersect each parabola with the center line
to estimate the central segment. 6) The central segment center is the marker
center. (b) Interpolating optical flow along a cable backbone (middle curve).
The cable segmentation mask is white, its contour lines are red and green. The
dots represent marker centers, their colors indicate the optical flow magnitude.
Black arrows show the unit normal vectors of the backbone spline.

segments the key color image regions by thresholding the red,
green and blue color channels.

b) Marker detection and tracing: The stripe marker detector
detects the UV fluorescent markers in the images of each clip. We
ensure during recording that most markers are visible in all the
frames of a clip and the poking stick occludes none of them. As
the detector does not measure the marker depth, the cables should
ideally move in a plane parallel to the image plane. Nearest
neighbor marker tracking finds the traces of individual markers.
Position interpolation of the traces estimates the marker position
in the white-lit images. Given the complete marker traces, one
can compute marker velocity or displacement for any image pair.

The marker detector extracts individual marker blobs by
thresholding a UV-lit image using a fixed intensity threshold.
It then locates the center point of the marker blob, see Fig. 6(a).

c) Optical flow ground truth: Optical flow is an independent
per-pixel estimate of motion between two images [32]. Given the
current image Ij sampled at xi ∈ R2 discrete pixel locations,
optical flow vectors φi ∈ R2 estimate the location of these
pixels in a reference image I1. The optical flow minimizes
the brightness or color difference between corresponding pix-
els summed over all the pixel locations of the current image,∑

i[I1(xi + φi)− Ij(xi)]
2.

We provide two types of flow ground truth: full optical flow
and “normal flow”. Sufficiently textured cables allow full optical
flow estimation. “Normal flow” is relevant for textureless cables
that only exhibit motion at their boundaries. It is the normal
projection of the optical flow vector on the cable boundary
normal unit vector. Both ground truths neglect motions caused
by a cable rotating around its axis.

In the recordings, the cable never crosses itself and its end-
points are outside the image. Given a cable segmentation mask
(a binary image) and marker traces, interpolation estimates the
ground truth flow for each cable pixel.

Thresholding the background-foreground alpha matte yields
the foreground mask, and thresholding the poking stick alpha
matte yields the poking stick mask. We dilate the poking stick
mask by two pixels to ensure that (almost) all poking stick

Fig. 7. Sample ground truth optical and normal flow magnitude in pixels when
poking the cable at the right side towards the left as marked by the white arrow.

Fig. 8. A sample composition (a) and backgrounds (b, c).

boundary pixels are segmented. The cable segmentation mask is
the foreground mask with the poking stick mask pixels removed
(set to zero).

The interpolation process illustrated in Fig. 6(b) finds the
longest closed contour in the cable segmentation mask, removes
its points lying on the image boundary and finds the cable back-
bone curve by interpolating the two remaining parallel contour
lines. Fitting a spline curve to the backbone points estimates
the normal vectors for computing the normal flow. Linearly
interpolating the displacement of the two markers closest to
a backbone point yields its motion. The remaining pixels of
the cable segment obtain their flow estimate from their nearest
backbone point. See Fig. 7 for a sample visualization of the
ground truth optical and normal flow magnitude during a poking
action.

d) Compositing and data augmentation: We composite each
final clip from a static background image, a moving cable clip
and one or more static clips or still images extracted from moving
cable clips. We keep both the moving and static poking sticks in
the compositons. One can generate a semi-three-dimensional
scene of cables stacked on top of each other this way, see
Fig. 8(a).

We manually downloaded CC0-licensed (public domain)
background images from the internet. The search was biased
towards textures, bushes or woods, and distractors (queries: tex-
ture, colorful texture, fractal texture, bushes, ropes, wires, pile).
We divided the images into two classes: clutter and distractors.
Distractors may be confused with hoses, cables, wires, or ropes.
Clutter is everything else. See Fig. 8.
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Fig. 9. The 22 cable configurations of the recorded raw dataset.

TABLE I
THE MAIN FEATURES OF THE COMPOSED DATASET

Even though the backgrounds are often artificial textures
or high-quality photographs, we wanted to reduce any JPEG
artifacts and remaining sensor noise. Thus we downscaled each
background image at least by a factor of two and extracted the
center crop 640× 480 pixels in size.

Foreground augmentation randomly alters the color of mov-
ing and static cables. It can transform hue, contrast, saturation
and brightness; invert RGB colors, shuffle RGB channels, or
convert to grayscale.

A sensor noise model adds artificial noise to the static back-
ground and still cable images to ensure that all image regions
exhibit similar noise distributions. If we did not add noise,
methods based on temporal image differencing could “segment”
the moving cable by assuming that only the moving cable pixels
were affected by variable sensor noise.

e) Sensor noise model: We use sRGBNoise [33], a model orig-
inally trained on images taken by five different smartphones [34].
The model generates noise conditioned on a noise-free image,
the camera name, and ISO value. We collected a training set with
the Basler camera to train its noise model. We treated the (down-
scaled) background images as the noise-free input to sRGBNoise
at inference time. However, the real sensor noise already cor-
rupted the still cable images. Therefore we applied a bilateral
filter to suppress the noise before feeding them to sRGBNoise.

C. The Composed Dataset

We composed the final dataset from the 177 recorded clips
(106 200 white-lit images in total). Each recorded clip shows
a cable of a single configuration (i.e., a characteristic global
shape), see Fig. 9, and a single motion class.

a) Dataset features: Table I summarizes the main features of
the composed dataset. The motion classes are: poking the cable,
pushing/pulling an endpoint, endpoint lateral motion, or static
(no motion). The cable density relates to the number of cables
overlaid in a composition.

TABLE II
THE DIVISION OF THE RECORDED CLIPS BY MOTION CLASS INTO THE THREE

SPLITS (TRAINING, VALIDATION, TEST)

TABLE III
THE SIZE OF THE COMPOSED DATASET AND ITS SPLITS

b) Dataset splits: We composed the training, validation, and
test dataset splits as follows. First, we divided the recorded clips
into three mutually exclusive sets, one for each dataset split.
The division satisfies the following constraints: (a) The images
of each recorded clip are used in only one split. (b) In each split,
each cable configuration is represented by at least one moving
cable clip. (c) The number of recorded clips of each motion class
in each split is specified in Table II. (d) The cable density classes
are represented equally.

We used every recorded moving cable clip to create exactly
two composed clips, each with a unique background and a
unique combination of cable configurations. In a subset of the
compositions, we also randomly transformed the colors of the
cables or the plain background.

Table III presents the numbers of images and video clips in
each composed dataset split. Each video clip is ten seconds long
and consists of ca. 600 white-lit images.

IV. PROBABILISTIC MASKFLOWNET MOTION SEGMENTATION

METHOD

Given a sequence of color images, poking stick segmentation
masks, and a motion threshold τ , a motion segmentation algo-
rithm detects cable motion with respect to the first (reference)
image I1 of the clip. The algorithm outputs a motion mask Pm

for each image. The pixels p of cable segments in image Ij
shifted by more than τ pixels away from their position in the
reference image I1 should be marked as moving in the motion
mask, Pm(p) = 1. Poking stick pixels and all other pixels p
should be marked as static, Pm(p) = 0.
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We compare five cable motion segmentation methods. The
first four of them are baseline methods based on off-the-
shelf optical flow predictors, namely MaskFlownet [27], GM-
Flow [35], FlowFormer++ [36] and the OpenCV implementation
of Farnebäck’s optical flow algorithm [37]. To compute the
motion segmentation masks, we added optical flow magnitude
(L2-norm) thresholding to these methods.

The fifth method is our novel proposed method, MfnProb.
To create MfnProb, we added probabilistic outputs [28] and
thresholding to the MaskFlownet deep neural network archi-
tecture. Given a pair of noisy input images and trained (certain)
network weights, MfnProb predicts noisy optical flow vectors.
The probability distribution of a predicted optical flow vector is
assumed to be multivariate Laplacian parametrized by locationµ
and a diagonal covariance matrix Σ, σ2 = diagΣ. The network
learns to predict the mean φp = μ and the standard deviation
σp ∈ R2 of each optical flow vector probability distribution
given a pair of images.

The predicted standard deviation (or variance) has to be non-
negative. To ensure that, Gast and Roth [28] proposed to predict
the variance in log space, i.e., σ2 = exp(σ̂2), where σ̂2 was the
(log-space) output of the neural network. When we tried to train
MfnProb with the exponential, the training diverged. Therefore
we replaced the exponential with a softplus function, i.e. σ =
ln(1 + exp(σ̂)) if σ̂ ≤ 20 and σ = σ̂ otherwise, to ensure non-
negative standard deviations.

The training loss function of a predicted optical flow vector
φp ∈ R2 given its ground truth φgt ∈ R2 is

(
2∑

i=1

(φp,i − φgt,i)
2

σ2
p,i

+ ε

)0.5

+
2∑

i=1

log(σ2
p,i), (1)

which is proportional to the negative log-likelihood of the mul-
tivariate Laplacian distribution. We set

σp,i = σmin + softplus ( ˆσp,i). (2)

The index i runs over the two flow coordinates, horizontal
and vertical. σp,i is the standard deviation predicted by the
network for the flow coordinate φp,i. We set ε = 10−8 and
σmin = 10−2 to stabilize the training. We trained with the same
training schedule on the same optical flow datasets as [27],
namely FlyingChairs [38], FlyingThings3D [39], Sintel [40],
KITTI [41], HD1K [42], [43].

In addition to thresholding the optical flow magnitude, Mfn-
Prob can utilize the predicted uncertainty to reduce false posi-
tives. The segmentation labels any pixel with uncertainty mag-
nitude ‖σp‖2 > σt as static. We empirically set the uncertainty
threshold σt on the validation set to maximize the mean seg-
mentation intersection over union (IoU). In practice, we argue
it is safer to predict a static scene when too uncertain because
reliable robot’s actions, such as grasping, depend on precise true
positive segmentation. When a segmentation algorithm has high
precision but low recall, the robot can compensate for the low
recall by trying multiple different motions until the segmentation
succeeds. On the other hand, compensating for low precision is
harder.

TABLE IV
MEAN EVALUATION METRICS ON THE TEST SET

V. ALGORITHM EVALUATION PROCESS

Given a τ value, a predicted motion mask Pm, and the ground
truth optical flow, the evaluation process computes standard
segmentation quality metrics, namely the mean intersection over
union (IoU), precision, and recall. Our experiments show that
increasing the τ threshold above 10 pixels (up to 20) leads to
significant decreases in both IoU and recall on the validation set
of our dataset. On the other hand, the maximum noise level of the
marker detector is 0.528 pixels for static markers. Therefore the
evaluation varies τ from 1 to 20 pixels on the validation set and
chooses the optimal τ ∗ value yielding the highest validation IoU.
The evaluation reports the test set results given τ ∗. In practice, a
robot should try to move a cable as little as possible to preserve
the cable topology and avoid hitting other cables by accident.

The evaluation also reports the mean endpoint error of the
predicted optical flow (EPE) in pixels.

VI. EVALUATION RESULTS

Table IV shows the evaluation results of the cable motion
segmentation methods on the test set of our dataset. Methods
MaskFlownet FT and MfnProb FT are MaskFlownet and Mfn-
Prob fine-tuned on a mixture of Sintel, KITTI, HD1K, and the
MovingCables training set. We evaluated the methods on the
normal flow ground truth as the hoses in the clips have almost
no texture, see Fig. 8(a). The optimal motion threshold τ values
on the validation set were 2.5 pixels for MaskFlownet, 2.0 pixels
for MfnProb, 1.0 pixel for Farnebäck, 1.0 pixel for GMFlow, and
1.5 pixels for FlowFormer++. The optimal uncertainty threshold
of MfnProb was positive infinity, i.e., no high-uncertainty pre-
dictions had to be suppressed to maximize the validation IoU.

MfnProb outperforms MaskFlownet in all the evaluation met-
rics. The probabilistic training scheme reduced the overall mean
EPE by almost half. Mean segmentation recall has improved
by 68%, precision by 25%, and IoU by 42% simultaneously.
MfnProb outperforms GMFlow in terms of IoU and recall but
not precision. FlowFormer++ reaches the highest IoU among
the methods not fine-tuned on MovingCables. MfnProb FT
achieves the highest IoU overall. Sample segmentations are in
Fig. 10. Our additional qualitative experiments on real-world
videos without chroma keying or compositing indicate that all
the motion segmentation methods generalize well to different
cable textures (hoses, ropes, cables) and real backgrounds.
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Fig. 10. Sample motion segmentation. Estimated and ground truth moving
segments (at τ = 2.5 pixels) are red.

TABLE V
MEAN WALL AND PROCESS RUNTIMES REQUIRED TO COMPUTE OPTICAL

FLOW FOR A PAIR OF RGB VGA (640× 480 PIXELS) IMAGES

TABLE VI
MEAN IOUS ON THE TEST SET SEPARATELY FOR THREE BACKGROUND TYPES,

CLUTTER, DISTRACTOR, AND PLAIN

Table V presents the runtime of each algorithm with batch
size one. We obtained these results on a desktop computer
with Intel Core i9-9900 K CPU (3.60 GHz) and NVIDIA
GeForce RTX 2080 Ti GPU. The original and the probabilistic
MaskFlownet networks are similarly computationally intensive,
achieving runtimes around 0.040 s per image pair on the GPU
and 2.6 s on the CPU. The CPU process times suggest that both
networks demand approximately 48× more CPU computation
than Farnebäck’s algorithm. FlowFormer++ is less suitable for
real-time interactive perception than MfnProb as it is 5.7×
slower on a GPU.

We further evaluated the methods separately on clips with
different background classes (clutter, distractor, plain), see
Table VI. Clutter and distractor backgrounds yield compara-
bly accurate segmentations. Plain backgrounds, however, tend
to cause significantly more false positive segmentations by
the neural networks in static areas, resulting in lower mean

TABLE VII
STATISTICS OF PER-CLIP MEAN IOUS ON 20 CLIPS WITH VARIOUS SOLID

BACKGROUND COLORS

IoU. Replacing poorly textured plain backgrounds with texture-
free solid colors completely confuses the neural networks, see
Table VII. They falsely predict motion in almost the entire image.
Fine-tuning MaskFlownet or MfnProb on MovingCables brings
negligible improvements. By contrast, plain backgrounds do not
affect Farnebäck’s performance significantly. We think that the
neural networks do not regularize towards the smallest flow at a
pixel where many flow vectors have very similar matching costs.

VII. DISCUSSION AND CONCLUSIONS

We have proposed a method to automatically annotate a
real-world moving cable segmentation dataset with optical flow
and segmentation masks thanks to UV fluorescent markers,
controlled lighting, and chroma keying. Using the method, we
have created the MovingCables dataset consisting of 312 video
clips. The clips differ in their backgrounds, cable colors, num-
bers of overlaid cables, motion interaction types, or distinct
combinations of cable configurations.

As an alternative to a real-world dataset, one could build
a synthetic dataset in a simulator. For example, the Blender
software can simulate chain-like rope dynamics.2 It would likely
require less manual work as one would not need to design and
build any hardware setup. A simulator could simulate a cable
in many different positions, such as lying on a desk or hanging
freely. However, the cable appearance and the scene lighting
would be synthetic. Furthermore, simulating realistic hose or
cable dynamics may be more challenging than simulating a
chain-like rope. Nevertheless, a synthetic moving cable dataset
could complement the real-world dataset presented in this letter.

We have tested MaskFlownet, GMFLow, and FlowFormer++
off-the-shelf optical flow neural networks on our dataset and
found that they can segment moving cables from a static back-
ground. We added uncertainty outputs to the MaskFlownet
architecture and retrained it with a probabilistic loss function
on standard optical flow datasets. This retrained MfnProb net-
work has significantly improved the cable motion segmentation
performance over MaskFlownet on our dataset. Fine-tuning
MaskFlownet and MfnProb on MovingCables further improved

2https://blender.stackexchange.com/questions/97749/how-to-simulate-a-
rope

https://blender.stackexchange.com/questions/97749/how-to-simulate-a-rope
https://blender.stackexchange.com/questions/97749/how-to-simulate-a-rope
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the accuracy. Nevertheless, we believe that optical flow estima-
tors should work reliably on any realistic visual input without
fine-tuning.

Limitations: We have found that all the neural networks strug-
gle with texture-free backgrounds. Furthermore, manipulating a
cable in a cluttered environment can perturb neighboring cables,
causing multiple moving cables. As our methods segment mo-
tion by thresholding the flow magnitude, they segment multiple
moving cables as a single cable. We will address this limitation
in future work.
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