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Abstract—Finger joint stiffness assessment is very important in
quantifying the degree of disability in stroke patients and deter-
mining rehabilitation strategies and plans. However, the evaluation
methods used in clinical practice rely heavily on the experience of
clinicians. In our previous study, we adapted an analytical model
originally proposed for a whole-finger soft actuator to objectively
quantify joint stiffness by using a new type of joint modular soft
actuator designed for individualized hand rehabilitation. However,
stiffness could not be accurately estimated owing to the effects
of the interaction between joint modular soft actuators and a
finger, as well as, between the actuators themselves, which could
not be represented by the adapted analytical model. In this study,
artificial neural network (ANN)-based models were proposed to
simultaneously quantify the stiffness of three joints using joint
modular soft actuators and compared with the adapted analytical
model and other machine-learning (ML)-based models. Moreover,
the estimation performance was verified for high stiffness values
and different finger sizes. The results show that the ANN-based
models estimate stiffness more stably and accurately than the
adapted analytical and other ML-based models. This study shows
the feasibility of quantitative evaluation of joint stiffness using joint
modular soft actuators.

Index Terms—Deep learning methods, rehabilitation robotics,
soft robot applications.

I. INTRODUCTION

F INGER flexor spasticity is a common aftereffect of stroke
[1]. It not only increases the stiffness of the fingers but also
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decreases the range of motion, thereby affecting the recovery
of a patient’s motor function [2]. Therefore, understanding a
patient’s spasticity condition may help therapists to determine
the optimal rehabilitation [3]. The assessment of the spasticity
condition regularly adopted in rehabilitation is based on clin-
ical scales, such as the Modified Ashworth Scale (MAS) [4].
However, the lack of objectivity in such evaluation methods is a
problem because these methods rely heavily on the experience
of clinicians [5], [6].

The assessment of finger joint stiffness is very important for
quantifying the impairment of stroke patients and determining
rehabilitation strategies and plans [7]. The dedicated stiffness
measurement devices developed to date are large and heavy
because they consist of many rigid parts, and it is also difficult to
evaluate each finger joint separately [8], [9], [10]. Heung et al.
developed a system that combines finger motion support and
finger stiffness evaluation functions by estimating the stiffness
of finger joints using an analytical model of a soft elastic
composite actuator (SECA) [11]. Using the SECA facilitated
the incorporation of a function for estimating the stiffness of
individual joints into rehabilitation training, thus suggesting the
possibility of providing patients with optimal training exercises
and assistance with activities of daily living.

However, whole-finger soft actuators such as the SECA,
which have a structure with multiple air chambers connected,
have only one air pressure input and cannot assist joints individ-
ually. Therefore, providing detailed joint-level motion support
for hand rehabilitation is difficult. Furthermore, whole-finger
soft actuators require changes in actuator dimensions to accom-
modate individual differences, such as finger size; therefore,
designing and prototyping individual customizations require
a considerable time, making timely rehabilitation difficult. To
address this problem, joint modular soft actuators that consist
of multiple sections corresponding to each finger joint have
been developed [12], [13], [14]. Joint modular soft actuators
provide high bending performance with minimal energy and
can accommodate individual differences with minimal effort.

In our previous work [15], we adapted the analytical model
originally proposed for the SECA to objectively quantify joint
stiffness by using a new modular version of the SECA (Modular-
SECA), which allowed us to deal with individual joints for reha-
bilitation and stiffness evaluation. Correction parameters were
added to the SECA’s analytical model to estimate the stiffness of
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Fig. 1. (a) Modular-SECA, dummy finger design and modular-SECA attached to dummy finger, (b) joint angles, (c) three repetitions contained in one measurement
in the stiffness estimation experiment; one k0.7analytic is calculated from each repetition, (d) the pressure-angular change profiles for 10 of the 180 samples for
the MCP joint of three sizes of dummy fingers (small, medium, and large). The label high is the pressure-angular change profile with a high stiffness torsion spring
attached to the medium-sized dummy finger. The numbers in the legend denote the value of their kspring.

the metacarpophalangeal (MCP) joint with the Modular-SECA.
The analytical model adapted to the Modular-SECA is denoted
as the adapted analytical model.

However, the accuracy of joint stiffness estimation was insuf-
ficient because the adapted analytical model could not represent
the characteristics of the Modular-SECA. The Modular-SECA
had rigid connectors attached at both ends. Thus, the bending
performance of the actuator as well as the interaction between the
finger and the actuator when the actuator was worn on the finger
were different from those of the SECA. Moreover, the influence
of the interaction differed depending on how the Modular-SECA
was attached to the finger, which could not be represented
by the adapted analytical model. In addition, the Modular-
SECA supported the distal interphalangeal (DIP), proximal
interphalangeal (PIP), and MCP joints individually, and the three
Modular-SECAs were connected using connectors. Therefore,
the same adapted analytical model could not be applied to all
joints because the bending behavior of the Modular-SECA was
different for each joint owing to the effects of the interaction
between the Modular-SECAs themselves. These factors make
improving the accuracy of joint stiffness estimation with the
Modular-SECAs using the adapted analytical model difficult.

In this study, we aimed to simultaneously estimate the stiffness
of three finger joints with the Modular-SECAs. Four different
artificial neural network (ANN)-based models were proposed
and compared with the adapted analytical model. We expected
that the ANN models could deal with the effects of interaction
and super-elasticity, such as strong nonlinearity and inconsis-
tency in the bending behavior of different joints, caused by
using joint modular soft actuators for rehabilitation and joint
stiffness estimation. In addition, ANN-based models were also
compared with other machine-learning (ML) algorithm-based
models to verify that ANN is the best ML algorithm for stiffness
estimation. The best model was determined by comparing the
stiffness estimation results. The feasibility of estimating joint
stiffness for high stiffness values (which could not be estimated
previously) and fingers of different sizes was also verified.

II. METHOD

This section first explains the adapted analytical model and
stiffness measurement experiments. After this, the ANN-based

models, the other ML-based models, and the selection criteria
for the best model are explained.

A. Design of Modular-SECA and Dummy Finger

The soft actuators used in this study were the Modular-SECAs
based on our previous study (Fig. 1(a)) [15]. Dummy fingers
imitating three different sizes of Japanese index fingers (small,
medium, and large) were designed based on [13]. Torsion springs
with different spring constants were placed at the dummy finger
joints (DIP, PIP, and MCP) to vary the finger joint stiffness.

B. Estimation of Joint Stiffness by Prototype Experiment

The adapted analytical model for finger joint stiffness estima-
tion using the Modular-SECA is shown in (1) [15].

k0.7 =
2 ( WA + 0.5 WL − 1.15 WP )

(θ − θ0)
2 , θ ∈ [0, 0.7θ0) , (1)

where WA, WL, and WP are the bending strain energy stored
in the silicone body of the Modular-SECA, the bending strain
energy stored in the torque compensation layer, and the work
done by the input air pressure, respectively. Furthermore, k0.7,
θ, and θ0 are joint stiffness, joint angle, and resting angle,
respectively.

In [15], estimations were made for just two stiffness levels
(low and medium). However, the accuracy of these estimations
alone may not suffice for actual evaluations. This limitation
becomes evident when comparing finger stiffness values pre and
post rehabilitation such as in [16]. Specifically, when the varia-
tion in stiffness measurements is small (e.g., 0.1 Nmm/deg [16]),
evaluating the effects of rehabilitation becomes challenging with
only ordinal estimations.

Therefore, in this study, to perform multiple-level or even
continuous estimation, nine joint stiffness values near the low
and medium stiffness levels defined based on stiffness values
of MAS ≤ 1+ were set as the target values for the prototype
experiment and learning and validation of the estimation models
[15]. Torsion springs with spring constants corresponding to
the nine joint stiffness values, denoted as kspring (as shown
in Table I) were placed at each of the three joints (DIP, PIP,
and MCP). The joint stiffness value was set not as the nominal
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TABLE I
TARGET STIFFNESS VALUES OF THE MEDIUM-SIZED DUMMY FINGER IN THE STIFFNESS ESTIMATION EXPERIMENT

spring constant of the torsion spring but measured by applying a
weight onto the dummy phalange of the dummy finger with the
torsion spring placed in its joint. This is because, in the current
experiment setting, the effective spring constant may differ from
the nominal value. When using a torsion spring, a shaft with
a suitable size is important because the inner diameter of the
torsion spring changes as it deforms under a loading, whereas
setting optimal shafts for various torsion springs at different
joints is difficult.

In the prototype experiment, the Modular-SECAs attached to
the DIP, PIP, and MCP joints of the dummy finger were simul-
taneously pressurized from 0 kPa to a maximum air pressure of
80 kPa and then depressurized again to 0 kPa to complete one
repetition. The bending performance of the Modular-SECA’s
0 − 80 kPa is equal to or even better than that of the SECA’s
0−160 kPa [11], [15]. Therefore, a pressure setting of 0−80 kPa
is sufficient for both estimating joint stiffness and supporting
finger motions using the Modular-SECAs. Moreover, the smaller
maximum air pressure was used for even a lower safety risk. The
relationship between the air pressure values in one repetition
and the resultant joint angles of the dummy finger is denoted
as the pressure-angular change profile. The joint angles of the
DIP, PIP, and MCP were measured at every 10 kPa (Fig. 1(b)).
In [17], the repetition number in each measurement was set to
three for human subjects to prevent the short-term effects of any
stretch, for example, loosening and/or reduction of the muscle
tone of the joints, from affecting the stiffness estimation results.
Therefore, in this study, the same repetition number (three), was
considered as one measurement (Fig. 1(c)), and the repeatability
was also verified by performing three measurements at each
stiffness level. Before each measurement, the resting angles
of the dummy finger were measured, and the Modular-SECAs
were attached to the dummy finger to initiate the measurement.
After the measurements, the stiffness values of the joints at each
pressure were obtained in the range of θ�[0, 0.7θ0) using (1).
Finally, the stiffness values, k0.7, obtained in one repetition,
were averaged using (2) to determine the final joint stiffness,
k0.7analytic.

k0.7amalytic =
1

n

n∑
i=1

k0.7i, (1 ≤ n ≤ 17) (2)

where n is the number of joint angles that are included in
the stiffness estimation range among the 17 joint angle values
measured from one repetition. This is the stiffness estimation
method using the adapted analytical model.

TABLE II
ANN-BASED STIFFNESS ESTIMATION MODELS PROPOSED

C. ANN-Based Stiffness Estimation Model

The four ANN-based stiffness estimation models proposed
are listed in Table II.

Instead of calculating one stiffness value for each pressure-
angular change profile and then averaging all the values for
different angular points to obtain an estimated stiffness, this
ANN approach fully utilizes the total pressure-angular change
profile of each measurement. Hence, 17 joint angle values from
one repetition (Fig. 1(c)) were used as input to each ANN
model. Two types of output variables were considered for the
model: one is the stiffness value of each finger joint, with the
target value of kspring; the other is Δk denoted in (3), which is
the difference between the stiffness value estimated using the
adapted analytical model and kspring.

Δk = klanalytic − kspring. (3)

As the ANN models for predicting Δk use the adapted an-
alytical model, we expected that information contained in the
adapted analytical model may help guide the learning. In this
case, the stiffness value estimated using the adapted analytical
model was not k0.7analytic but k1analytic, which was obtained
by changing the stiffness estimation range in (1) to that in (4)
and averaging the resultant stiffness, k1, using (5).

k1 =

{ 2(WA+0.5WL−1.15WP )

(θ−θ0)
2 , θ ∈ [0, 0.7θ0)

2(WA+0.5WL−1.15WP )

(0.7θ0−θ0)
2 , θ ∈ [0.7θ0, θ0)

(4)

klanalytic =
1

n

n∑
i=1

k1i, (1 ≤ n ≤ 17). (5)

In the adapted analytical model, the range was limited by
adding an empirical coefficient of 0.7 to the estimation range,
as in θ�[0, 0.7θ0), to stabilize the accuracy without giving the
effect of the singularity where the denominator of (1) becomes
close to zero near θ = θ0 to the analytical model; thus, some
measurements could not be used to estimate joint stiffness. Since
we expected that the ANN may learn to some extent without the
effect of the values near the singularity, extending the stiffness
estimation range to θ�[0, θ0) is possible. However, in the ANNs
for predicting Δk, if the stiffness values are estimated using (1)
even after the joint angle exceeds 0.7θ0, the Δk becomes very
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large, and the prediction accuracy of the ANN may be low. This
is because if the measured θ value was even slightly larger than
the theoretical θ value (small angle error) in θ�[0.7θ0, θ0), the
k0.7 estimated from (1) becomes very large, and the error (i.e.,
Δk) between k0.7analytic and kspring becomes very large. Thus,
to stabilize the accuracy of the ANN for θ�[0.7θ0, θ0), for the
ANN models predicting Δk, we reset the value to 0.3θ0 if (θ
− θ0) in the denominator of the adapted analytical model was
smaller than 0.3θ0, as shown in (4). The coefficient of 0.3 for the
reset value was chosen based on the stability of the prediction
accuracy and the amount of change in the denominator value
due to the reset.

The effectiveness of using ML to accurately predict the com-
plex behavior of soft actuators has been shown [18]. Therefore,
the use of ML is also expected to be effective in stiffness esti-
mation with the Modular-SECA. Among ML algorithms, ANN
tends to have superior generalization capabilities than other ML
algorithms because it automatically learns effective features
hidden deep in data instead of relying on manually designed
features [19]. This characteristic makes ANN widely used for
learning complex and nonlinear relationships [20]. Hence, we
considered it a suitable algorithm for the stiffness estimation task
in this study, which involves various interactions and nonlinear
influencing factors such as finger size and variability due to
attachment during measurements. The ANNs used included a
multilayer perceptron (MLP) and a convolutional neural network
(CNN), considering the training data set’s size and characteris-
tics. MLP is the most canonical type of ANN. CNN has been
widely used for tasks involving image processing and time series
analysis because it can extract deeper features from input data,
making it robust against noise [19], [21]. Therefore, a CNN was
expected to extract useful features from the pressure-angular
change profiles (Fig. 1(c)), leading to a model with excellent
generality. Thus, we compared the CNN with the MLP, which
is a simple structured feed-forward neural network with only
multiple linear layers, to verify whether the characteristics of
the CNN are adequate for our dataset.

The MLP contains two hidden layers, each with 17 neurons.
Immediately following each hidden layer are an activation func-
tion and a dropout layer (dropout rate: 0.1), i.e., the MLP has two
dropout layers. The CNN contains two convolutional layers and
two linear layers with 17 nodes. The output channels in the first
and second convolutional layers are 68 and 128, respectively.
The CNN utilizes the kernel size of two and boundary padding
of one in the convolutional layers. Immediately following the
convolutional layers and the first linear layer are an activation
function and a dropout layer (dropout rate: 0.1), i.e., the CNN
has three dropout layers. The activation function for both models
is ReLu. Adam is used as the optimization function, and each
neural network was trained 500 epochs with a learning rate of
1e-4 and weight decay of 1e-4. These parameters were deter-
mined by using 8-fold cross-validation to balance overfitting
and underfitting. All models were developed with Python 3.9.12
64-bits. PyTorch 2.1.2+cu118 was used to build the neural
networks.

The data from the prototype experiment with the medium-
sized dummy finger were used to train and test the ANN models.

The test data were set up to include one sample for each stiffness
level. Input data were standardized as a pre-processing step
before being inputted into the models. The same type of ANN
was built for each joint, creating three ANNs for one finger.
All experimental data used to train and test the models was
made available online at [22]. The prediction using data from
the medium-sized dummy finger is denoted as M-Test.

Furthermore, the generality of the ANN models was verified
by using two additional stiffness predictions. First, because the
analytical model of (1) used in [15] had a small estimation range,
some kspring could not be estimated. However, the ANN models
may be able to estimate stiffness values that were impossible
to estimate previously. Therefore, the prediction performance
for high stiffness was verified by measuring the angles of the
medium-sized dummy finger at the kspring values (DIP: 5.71,
PIP: 5.45, and MCP: 5.80), which were considerably larger than
those used for training. These values were determined based on
joint stiffness values with MAS ≥ 2 [8], [17]. Next, practical
applications are only possible if the ANN model can be applied
to estimate the stiffness of different finger sizes. Therefore, the
prediction performance for different finger sizes was verified
using the data obtained from the prototype experiments with the
small and large-sized dummy fingers. The prediction for high
stiffness values is denoted as H-Prediction, and the predictions
using data from the small and large-sized dummy fingers are
denoted as S-Prediction and L-Prediction, respectively. The
H-Prediction, the S-Prediction, and the L-Prediction are col-
lectively denoted as the generality test.

Fig. 1(d) shows the pressure-angular change profiles for 10 of
the 180 samples of the M-Test and the generality test for the MCP
joint. Even for equivalent values of kspring, the angle trajectory
differs depending on the finger size. Moreover, the magnitude
of the angular change does not monotonically increase with
kspring, indicating a complex behavior. We expected that the
ANN models that fully utilized the pressure-angular change
profiles could be used to accurately estimate joint stiffness.

D. Other ML-Based Model

We selected a linear regression and a support vector machine
as the ML algorithms to compare with the ANNs. A brief
description of each algorithm is given below. More detailed
information about them can be found in [23].

Linear Regression (LR): LR is a regression algorithm that
models the relationship between an output variable and one or
more input variables by fitting the relationship between the input
and output data to a straight line or a hyperplane. LR aims to
minimize the squared error between observed and predicted val-
ues and is unsuitable for learning nonlinear relationships. Thus,
it was selected for a comparison to verify that the factors, which
the adapted analytical model cannot represent, are nonlinear and
that linear models are unsuitable for stiffness estimation models.

Support Vector Machine for Regression (SVR): Support Vec-
tor Machine (SVM) is an ML algorithm that can be used for
classification and regression tasks. SVR is an extension of SVM
made for continuous values. SVR aims to minimize the effect of
outliers on the regression equations by taking the approach that
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data points with residuals within the threshold do not contribute
to the regression fit while data points with an absolute difference
greater than the threshold contribute a linear-scale amount. It can
handle both linear and nonlinear relationships using different
kernel functions. While the ANNs can extract valuable features
hidden in the input data, algorithms like SVM learn the input
data directly as features. Therefore, to verify the effectiveness
of ANN’s feature extraction for stiffness estimation, the SVM,
which is most commonly used in human movement biomechan-
ics studies similar to the task of this study [20], was selected as
a comparison algorithm.

The inputs and outputs of the LR and the SVR were the
same as for the ANNs, and two models with different outputs
were built for each joint. These models were developed with
Python 3.9.12 64-bits using scikit-learn 1.3.2 python library
LinearRegression and SVR. The parameters of the SVR were
tuned using 8-fold cross-validation to balance overfitting and
underfitting. As a result of the tuning, the regularization param-
eter (C = 16) that controls the trade-off between training error
and model complexity, the parameter (ε = 0.0625) that defines
the error tolerance, and a Gaussian radial basis function kernel
with a shape parameter γ = 0.125 was used.

E. Selection of Best Stiffness Estimation Model

The ideal stiffness estimation model should offer consistent
and accurate predictions despite changing measuring conditions
and minimize estimation variability caused by complex influ-
encing factors across measurements. Therefore, we determined
the best model using two indices: the root mean squared per-
centage error (RMSPE) and mean absolute percentage deviation
(MAPD) [24].

The RMSPE is the relative error calculated by (6). Since the
predicted value scale differs for the H-Prediction from other
datasets, the percentage error was used to compare with other
datasets. The MAPD extends the mean absolute deviation to
a relative deviation and is calculated by (7), which shows the
relative variation of predictions at the same target stiffness value.
The RMSPE was calculated for each joint in the M-Test and
the generality test datasets. The MAPD was calculated for each
joint in the generality test datasets because the M-Test has only
one prediction for one target value. Then, the mean and mean
absolute deviation (mad) of the four RMSPEs and three MAPDs
obtained for each prediction dataset were calculated for each
joint (denoted as the RMSPEall, MAPDall). A model with small
values of the RMSPEall and MAPDall can make excellent and
stable predictions across various datasets and consistently have
excellent result repeatability. Therefore, the best model was
determined based on the RMSPEall and MAPDall calculated
from each prediction dataset.

RMSPE =

√√√√ 1

N

N∑
i=1

(
yi − ti

ti

)2

100 (6)

MAPD =
100

N

N∑
i=1

∣∣∣∣yi − ymean_i

ymean_i

∣∣∣∣ (7)

where N, yi, and ti are the number of data, the predicted value,
and the target stiffness value. Note that ymean_i is not the mean
of all predictions, but the mean of predictions at the same target
stiffness value.

III. RESULTS

A. Finger Joint Stiffness Estimation

Table III presents the RMSPE and MAPD of the stiffness
estimates. The stiffness estimation results for the M-Test ob-
tained using the adapted analytical model and the ANN models
are shown in Fig. 2. The k0.7analytic is lower than the target
stiffness value, kspring, for most estimates (Fig. 2). Moreover,
k0.7analytic does not monotonically increase with kspring. The
ML-based models other than the LR provide better estimation
results than k0.7analytic (M-Test in Table III). The best model
varies for each joint, but the CNN and the SVR exhibit better
prediction accuracy than the MLP and the LR.

B. Predictive Performance for High Stiffness Values

Table IV shows the estimated stiffness values in the H-
Prediction. The ML-based models can estimate stiffness values
that cannot be estimated by (2). However, many models have
differences between the prediction results and the target stiffness
values can be observed. Also, unlike in the M-Test, the MLP and
the LR often have better accuracy than the CNN and the SVR.

C. Predictive Performance for Different Finger Sizes

The stiffness estimates for the small and large-sized dummy
fingers obtained using the adapted analytical model and the
ANN models are shown in Fig. 3. Although the predictions
of the ANN models do not monotonically increase with the
target stiffness in some areas, many predictions have better
accuracy than k0.7analytic (Table III). Only the MLP and the
CNN for predicting kspring have better the RMSPE and MAPD
than k0.7analytic for all joints in the S-Prediction and the L-
Prediction. The LR and the SVR have some predictions that are
considerably less accurate than the ANNs.

D. Selection of Best Model

Table V presents the RMSPEall and MAPDall for the pre-
diction datasets. The ML-based models’ values within Table V
are illustrated in Fig. 4. The ML-based models have better the
RMSPEall and MAPDall than k0.7analytic in most cases. It can
be observed that the CNN for predicting kspring for the DIP,
the CNN for predicting kspring for the PIP, and the MLP for
predicting kspring for the MCP demonstrate better the RMSPEall

and MAPDall compared to other models (Fig. 4).

IV. DISCUSSION

In [15], the estimated stiffness value, k0.7analytic, of the
MCP joint was larger than the target stiffness value, kspring.
However, for most cases in this study, k0.7analytic was es-
timated to be smaller than kspring. This difference may be
due to changes in the interaction between the Modular-SECAs
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TABLE III
PREDICTION ACCURACY OF JOINT STIFFNESS ESTIMATION

Fig. 2. Results of stiffness estimation on the medium-sized dummy finger. Stiffness values were estimated using the adapted analytical model and the ANN
models for each of the nine target stiffness values. The black diagonal line indicate that the target stiffness value and the stiffness estimate coincide.

Fig. 3. Results of joint stiffness estimation on different size dummy fingers. Stiffness values were estimated using the adapted analytical model and the ANN
models for each of the nine target stiffness values (mean and standard deviation of nine estimated stiffness values). The points on the black diagonal line indicate
that the target stiffness value and the stiffness estimate coincide; (a) small-sized dummy finger, (b) large-sized dummy finger.

TABLE IV
ESTIMATION OF HIGH STIFFNESS USING THE ML-BASED MODELS (MEAN AND

STANDART DEVIATION OF NINE ESTIMATES)

themselves resulting from the variation of the finger length.
Usually, the finger length changes as it flexes and extends, but
the bottom of the Modular-SECA does not expand or contract.
In addition, the connectors that connect the Modular-SECAs
are designed to match the length of each finger joint when

it is flat (i.e., at 0˚) [13]. Therefore, as the finger’s bending
angle increases, the Modular-SECA exerts force in the direction
of finger extension in an attempt to prevent a change in the
finger length. In our previous study [15], this effect was not as
apparent because only the MCP joint was driven to measure its
stiffness. However, in this study, the stiffness values of all three
joints were measured; thus, the length changes caused by each
joint’s movement may have affected the interactions between the
Modular-SECAs themselves. In particular, thek0.7analytic of the
PIP joint was estimated to be considerably smaller than kspring
owing to the influence of the two Modular-SECAs of the DIP
and MCP.

A comparison of the k0.7analytic results shown in Figs. 2 and 3
reveals that k0.7analytic is significantly different for various
finger sizes. One major reason is that when accommodating the
Modular-SECAs to fingers of different sizes, connectors with
suitably varied lengths need to be used, which causes different
interactions between the Modular-SECAs and the finger, even
if the same Velcro are used to fix the Modular-SECAs to the
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TABLE V
MEAN AND MEAN ABSOLUTE DEVIATION OF THE RMSPE AND MAPD FOR THE PREDICTION DATASETS

Fig. 4. RMSPEall and MAPDall for the ML-based models of the prediction datasets. kspring is simplified as k. Note that the scale ranges from 0 to 100%.

finger. The k0.7analytic differed depending on the finger size
due to changes in the interaction between the finger and the
Modular-SECAs. Furthermore, the k0.7analytic variation (stan-
dard deviation) is considerable because the interaction between
the Modular-SECAs and the finger varies from measurement
to measurement. Thus, when estimating joint stiffness values
using the Modular-SECAs, the interaction between the Modular-
SECAs and the finger must be considered. The ML-based mod-
els are likely to “absorb” the effects of these interactions better
than the adapted analytical model.

Comparing the results of the ML-based models with different
output variables, both the RMSPEall and MAPDall indicate that
the models for predicting kspring demonstrate better accuracy
than the models for predicting Δk, except for the LR and the
SVR for the MCP (Table V). However, in Table III, particularly
for the MCP in the M-Test and the S-Prediction, the models for
predicting Δk show better the RMSPE in most cases. This is
because of the higher accuracy of the adapted analytical model.
As shown in Figs. 2 and 3, the models for predicting Δk show
similarities in estimation trends with k0.7analytic. Hence, the
information of the adapted analytical model can guide the train-
ing process for predicting Δk. As the MCP joints in the M-Test
and the S-Prediction originally have better accuracy than the
DIP and PIP in terms of k0.7analytic, the accuracy of models for
predicting Δk are likely better. However, due to the influence of
k0.7analytic accuracy, the RMSPEall exhibit significant variance
(Table V and Fig. 4). Therefore, the output variable, kspring, is
more suitable for stable and accurate stiffness estimation.

When output variables are the same, the LR tends to have
more significant the MAPDall than other algorithms, except
for when predicting Δk in the MCP. This suggests that the
LR may not effectively absorb the impact of inter-measurement
variability, indicating linear regression algorithms’ unsuitability
for stiffness estimation. The SVR demonstrates better accuracy
than the ANNs in some predictions, such as for the PIP in the

M-Test. However, especially in the MCP joints, the RMSPEall

are poorer than the ANNs, indicating insufficient stability in
accuracy. Consequently, compared to other nonlinear regression
algorithms, the ANN is suggested as a suitable ML algorithm
for stiffness estimation with the Modular-SECA, which involves
complex and nonlinear influencing factors.

Therefore, the models for predicting kspring using the MLP or
the CNN are the best. However, for the MCP joints, the CNN’s
RMSPEall is poorer than the other two joints, and the mean
is around 60%. While the MLP for the DIP and PIP exhibit
worse the RMSPEall than the CNN, they fare better than the
CNN of the MCP. Hence, the MLP consistently achieves better
accuracy across all joints. The small size of the training data
in this study may have caused the model to overfit the training
data due to the deeper features extracted by the convolutional
layers of the CNN, resulting in lower generality than the MLP.
The characteristics of the CNN could become more effective
with more training data. Thus, we determined that among the
ML-based models proposed in this study, the best model for
stiffness estimation was the model for predicting kspring using
the MLP.

In this study, the simultaneous estimation of the stiffness
values of the DIP, PIP, and MCP joints using joint modular soft
actuators was performed by incorporating the ANN models. To
the best of our knowledge, this is the first time an ANN model has
been proposed for stiffness estimation using joint modular soft
actuators. The generality and repeatability of the proposed ANN
models for different finger sizes and higher stiffness values were
also tested and further compared with other ML algorithms.

However, this study has some limitations.
� Proving the validity of the stiffness estimation of hu-

man finger joints using the ANN models is challeng-
ing. Comparisons with other assessment methods, such as
ground-truth measurements, as in [17], or clinical measures
with the help of clinicians, are necessary.
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� The joint angle-air pressure relationship is a dynamic pro-
cess that is affected by the inflow rate of air pressure [25].
Therefore, an appropriate inflow velocity that stabilizes
the joint angle and, thus, the stiffness estimation accuracy,
should be considered.

� In the stiffness estimation, the joint angle must be within
the range of 0 ≤ θ < θ0. However, in some cases, the
joint angle may be θ0 before the air pressure input to the
Modular-SECA reaches 80 kPa. In such cases, the ANN
models cannot estimate joint stiffness because the proposed
ANN models utilize a pressure-angular change profile up
to 80 kPa. Thus, this limitation must be compensated, for
example, by predicting the trajectory up to 80 kPa from the
obtained angle trajectory.

� The ANN model is likely to be specified only for index
fingers due to it being trained with data collected from
dummy fingers designed based on the sizes of index fingers.
However, the results of the prediction performance of the
ANN model for the S-Prediction and the L-Prediction
showed that the ANN model could be applied to different
finger sizes. Therefore, the ANN model for the index finger
may predict joint stiffness for other fingers; thus, we should
validate with dummy other fingers.

V. CONCLUSION

In this study, ANN-based models are proposed to simulta-
neously estimate the stiffness of the DIP, PIP, and MCP joints.
By utilizing the ANNs, we can model the effects of the com-
plex behaviors due to the interactions between the finger and
the Modular-SECAs and due to the interaction between the
Modular-SECAs themselves, which cannot be addressed by
employing the adapted analytical model. Unlike the adapted
analytical model, which averages the estimated stiffness of the
individual points of each pressure-angular change profile, the
ANN models fully utilize the pressure-angular change profile.
Consequently, the stiffness of finger joints can be estimated more
stably, accurately, and quantitatively than by using the adapted
analytical model. Additionally, the results show that the ANNs
may be superior to other ML algorithms as a stiffness estimation
model in terms of generality and repeatability. In the future, we
need to consider how to determine the reliability of predictions
using the ANN models.
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