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Abstract—In response to the challenges of estimating mis-
sile launch timing during close-range unmanned autonomous air
combat in the future, this paper proposes an autonomous attack
decision-making method based on hierarchical virtual Bayesian
reinforcement learning (HVBRL). First, a six-degree-of-freedom
(6-DOF) high-fidelity aircraft dynamics model along with missile
dynamics and guidance rate models are constructed. Second, the
HVBRL algorithm is introduced, where the low-level algorithm
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outputs control parameters and the high-level algorithm generates
control commands. Given that the number of missile hits on a
target under specific conditions follows a binomial distribution, a
simple prior knowledge can be introduced through its conjugate
prior, the Beta distribution, to avoid prolonged exploration of
ineffective areas. Moreover, carrying only a limited number of
missiles and predicting the number of hits by multiple virtual
missiles in specific states through a neural network circumvents
the computational complexity issue associated with carrying an
excessive number of missiles. Finally, this paper presents the low-
level training algorithm, the high-level training algorithm, and the
high-level self-play training algorithm. Experimental results show
that our method significantly reduces the simulation computational
complexity. Compared with the Monte Carlo method carrying
1000 missiles, the simulation speed of the high-level training
algorithm is increased by 32.75 times, and that of the high-level self-
play algorithm is increased by 23 times. Moreover, the estimated
missile hit probability with bias can effectively guide the timing
of missile launches in close-range air combat, which has significant
implications for intelligent autonomous air combat decision-making
and operational analysis.

Index Terms— 6-DOF, Bayesian, reinforcement learning, self-
play.

I. INTRODUCTION

IN the rapidly evolving field of aerial combat, the
adoption of artificial intelligence and, more specifically,
reinforcement learning techniques, has opened new vistas
for research and development. The intricacies of air-to-
air combat, encompassing both traditional engagements
and close-range dogfights, demand sophisticated decision-
making algorithms that can adapt to dynamic environ-
ments and execute complex maneuvers with high preci-
sion. This paper delves into the advancements in general
reinforcement learning algorithms applied to traditional
air combat and close-range engagements, as well as the
exploration of hierarchical reinforcement learning (HRL)
methods in aerial combat scenarios.

General reinforcement learning algorithms have
shown significant promise in addressing the challenges
of traditional air combat. Research in this domain has
expanded, exploring various aspects of autonomous ma-
neuver decision-making. For instance, Yang et al. [1] and
Zhang et al. [2] have contributed to maneuver decision-
making models using deep reinforcement learning tech-
niques, albeit facing limitations such as computational
demands and applicability in realistic simulations. Fur-
ther, the exploration of algorithms like DDPG and PPO
by Yang et al. [3] and Zhang et al. [4], respectively,
highlights the ongoing efforts to improve maneuver deci-
sion effectiveness and address the continuous action space
challenge in air combat. Notably, Wang et al. [5] and Li et
al. [6], [7] have investigated the Pursuer-Evader challenge
and autonomous maneuver decision models, showcasing
the integration of deep learning techniques and expert
knowledge. The research by Zhang et al. [8] and Zhu et al.
[9] on missile launch modeling and curriculum learning-
based algorithms, respectively, along with Jiang et al. [10]
and Hu et al. [11] focusing on BVR combat and close-
range engagements, underscore the diverse approaches
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being tested in the field. Furthermore, Zhou et al. [12],
Kong et al. [13], Wu et al. [14], and Lee et al. [15]
have expanded the scope of research to include state-
adversarial processes, supervised learning integration, and
CUAV tasks, reflecting the breadth of methodologies
being applied to enhance air combat strategies.

In the realm of close-range dogfights, the development
of intelligent algorithms has revolutionized traditional
combat tactics. A HRL method, as proposed by Pope
et al. [16], offers a solution to high-dimensional control
challenges, while tactical frameworks [17] and improve-
ments in target tracking [18] enhance decision-making
capabilities. The effectiveness of transfer learning [19],
curriculum learning [20], and deep reinforcement learn-
ing models [21], [22] in maneuver control and tactical
decision-making further illustrates the advancements in
dogfight algorithms, showcasing the potential for AI-
driven solutions to dominate this aspect of aerial combat.

The exploration of HRL in air combat represents
a significant leap towards mastering the complexity of
aerial engagements. By decomposing intricate tasks into
simpler, manageable sub-tasks [23], [24], facilitate au-
tonomous decision-making across various combat scenar-
ios. The application of HRL in multi-agent settings by
Kong et al. [25] and the development of hierarchical com-
mand and control systems by Zhou et al. [26] underscore
the potential for enhanced teamwork and adaptability in
air combat. Moreover, innovative strategies such as the
hierarchical goal-oriented learning by Yuan et al. [27] and
the integration of macro-actions and expert knowledge by
Wang et al. [28] further augment the strategic decision-
making capabilities of unmanned aerial vehicles. The con-
tributions of Chai et al. [29] and Qian et al. [30] in merg-
ing HRL with advanced techniques like fictitious self-
play and expert insight assimilation highlight the ongoing
efforts to refine and optimize decision-making models for
air combat, paving the way for future advancements in
this challenging domain. Zhang et al. [31] proposed a
hierarchical prior-based reinforcement learning approach
for loyal wingman task execution for future aerial combat.

In summary, the exploration of reinforcement learning,
from general algorithms to hierarchical models, in the
context of air combat, showcases a dynamic and evolving
field of study. However, existing technologies and meth-
ods still face numerous challenges. This paper aims to
address several key issues in this field through innovative
algorithms and methods:

1) Insufficient simulation fidelity.
2) The difficulty in training due to sparse rewards and

limited missile load during missile launch training
tasks, leading to convergence issues.

3) The time-space complexity issues brought about
by high fidelity and carrying an excessive number
of missiles.

To address these issues, this paper proposes a series
of innovative strategies:

1) An autonomous attack decision-making method
based on HVBRL is proposed, solving the diffi-
culties in convergence as well as the time-space
complexity issues.

2) Given that the number of missile hits on tar-
gets under specific conditions follows a binomial
distribution, introducing simple prior knowledge
through its conjugate prior, the Beta distribution,
can avoid long periods of exploration in ineffective
areas.

3) Furthermore, by carrying only a small number of
missiles and predicting the hit count of multiple
virtual missiles in specific states through neu-
ral networks, the computational complexity issue
caused by carrying too many missiles is avoided.

4) Self-play training.

The structure of the article is organized as follows:
Section II describes the problem and preparatory work,
presenting the 6-DOF dynamic model of the aircraft, the
missile dynamics, and the guidance rate model. Section
III introduces the classic PPO-clip algorithm. Section IV
presents the low-level algorithms as well as the construc-
tion methods for the high-level algorithm and the high-
level self-play algorithm. Section V presents and analyzes
the experimental results. Finally, the research conclusions
of this paper are presented.

II. PROBLEM DESCRIPTION AND PRELIMINARY
WORK

A. Aircraft Dynamics Model

When constructing a 6-DOF model, it is essential to
integrate the structural characteristics of the aircraft, the
propulsion system, aerodynamic properties, and control
systems to accurately simulate its dynamic behavior. The
dynamics analysis involves a comprehensive assessment
of the forces acting on the aircraft, including the conver-
sion of engine thrust changes into throttle control input
Ca variations, and mapping the changes in aerodynamic
forces to the three main control surfaces that govern the
aircraft’s attitude: the ailerons, elevators, and rudder, cor-
responding to control inputs Ce, Cr, and Ct, respectively.
These control inputs jointly determine the aircraft’s speed
control, roll, pitch, and yaw behaviors, involving inertial
properties, torque generated by rotation, engine thrust and
its torque, as well as the effects of aerodynamic forces
and moments. In this study, the dynamics equations are
presented in a simplified variable form, and due to space
limitations, only the basic form is shown here. For details,
please refer to the JSBSim documentation [32]. The linear
acceleration in the body-fixed coordinate system can be
expressed by (1).

u̇v̇
ẇ

 =

uv
w

×

pq
r

+
1

m

XY
Z

+

00
g

 ·Rgb (1)
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where u, v, w represent the velocity components along the
x, y, z axes of the aircraft body coordinate system; p, q, r
are the angular velocities around the corresponding axes;
X,Y, Z are the force components acting on the aircraft;
m is the mass of the aircraft; g is the acceleration due
to gravity; Rgb represents the rotation matrix from the
ground coordinate system to the body coordinate system.
The angular acceleration in the body coordinate system
can be obtained from (2).

ṗq̇
ṙ

 = I−1

−

pq
r

× I

pq
r

+

LM
N

 (2)

where I represents the inertia tensor of the aircraft, and
L,M,N are the torque components acting on the x, y, z
axes of the aircraft body coordinate system, respectively.
By integrating the above equations, the state parameters
of the aircraft can be obtained.

B. Missile Dynamics and Guidance Rate Model

In the inertial reference frame, the motion equations
of a missile can be described by (3).

ẋ(t) = v(t) cos θ(t) cosϕ(t)

ẏ(t) = v(t) cos θ(t) sinϕ(t)

ż(t) = v(t) sin θ(t)

(3)

where (x, y, z) represent the missile’s position coordinates
in the inertial reference frame, and (v, θ, ϕ) represent the
missile’s speed, trajectory pitch angle, and trajectory yaw
angle, respectively, all of which are functions of time t.
In the ballistic reference frame, the missile’s dynamics
equations can be expressed by (4).

v̇(t) = g(nx(t)− sin θ(t))

ϕ̇(t) = g
v(t)ny(t) cos θ(t)

θ̇(t) = g
v(t) (nz(t)− cos θ(t))

(4)

where nx(t), ny(t), nz(t) represent the missile’s lateral
control overloads in the velocity, yaw, and pitch direc-
tions, respectively, which can be calculated using the
proportional navigation method; m(t) is the mass of the
missile, g is the acceleration due to gravity.

Missile guidance employs the proportional navigation
method, and the lateral control overloads in the yaw and
pitch directions are defined by (5).{

ny = Kv
g cos θβ̇

nz =
Kv
g ϵ̇+ cos θ

(5)

where β̇ and ϵ̇ are the rates of change of the line-of-sight
angle and the line-of-sight elevation angle, respectively.

The line-of-sight vector, which is the relative position
vector r⃗ between the target and the missile, is deter-
mined by the target’s position (xt, yt, zt) and the missile’s
position (xm, ym, zm), with its magnitude defined as

R =
√
r2x + r2y + r2z . The line-of-sight angle and elevation

angle and their rates of change are given by (6).β̇ =
ṙyrx−ry ṙx
r2x+r

2
y

ϵ̇ =
(r2x+r

2
y)ṙz−rz(ṙxrx+ṙyry)
R2
√
r2x+r

2
y

(6)

III. PPO-CLIP ALGORITHM

The Proximal Policy Optimization algorithm (PPO)
[33] is a reinforcement learning method based on the
Actor-Critic framework, which has been widely applied in
various scenarios. This algorithm is closely related to the
policy gradient method, which employs neural networks
to directly approximate the policy function. The main
update rule of the policy gradient algorithm is as (7).

∇R̂θ = Eτ∼πθ(τ) [R(τ)∇ log πθ(τ)] (7)

where τ represents the trajectory sample of an agent
within a cycle, following the probability distribution πθ(τ)
defined by policy parameters θ. R(τ) refers to the cu-
mulative discounted reward of the trajectory. Our goal is
to maximize the gradient of the policy parameters with
respect to the expected cumulative discounted reward,
which is achieved through gradient ascent.

Traditional policy gradient algorithms typically update
the policy parameters only once per iteration using tra-
jectory samples, whereas the PPO algorithm combines
the advantages of A2C and TRPO algorithms, allowing
trajectory samples collected under the old policy to be
used for multiple iterations of policy parameter updates.
This is achieved by introducing importance sampling
and clipping techniques, the latter limiting the difference
between the new and old policy functions, especially in
terms of the probability ratio.

The importance sampling formula is as (8).

∇R̂θ = Eτ∼πθold (τ)

[
πθ(τ)

πθold(τ)
R(τ)∇ log πθ(τ)

]
(8)

where θold represents the old policy parameters, from
which we plan to sample and use these samples to update
the policy parameters θ.

Now, we focus on the state-action pairs (s, a) within
the trajectory. To prevent inappropriately increasing the
probability of choosing an action just because the return
is positive, we introduce the state value function V (s) as
a baseline, thereby defining the advantage function (9).

A(s, a) = Q(s, a)− V (s) (9)

This function measures the additional value of taking
a certain action in a specific state compared to the average
situation. For a more accurate estimation of the advantage,
we employ Generalized Advantage Estimation (GAE),
which combines Temporal Difference (TD) and Monte
Carlo (MC) methods to balance bias and variance.

A(s, a) = δt + (γλ)δt+1 + . . .+ (γλ)T−t+1δT−1 (10)
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where δt = rt+γV (st+1)−V (st) represents the TD error,
T is the end of a cycle, and γ and λ are hyperparameters
that adjust bias and variance.

By combining importance sampling with the advan-
tage function, we obtain a new expectation formula (11).

E(s,a)∼πθold

[
πθ(s|a)
πθold(s|a)

Aθold(s, a)∇ log πθ(a|s)
]

(11)

In practical applications, we seek to optimize the
following objective function (12).

Lθold(θ) = E(s,a)∼πθold

[
πθ(s|a)
πθold(s|a)

Aθold(s, a)

]
(12)

Finally, to ensure the stability of policy updates, we
apply a clipping operation to limit the difference between
the new and old policies, as (13).

Lθold
clip(θ) ≈

∑
(s,a)

min

(
πθ(s|a)
πθold(s|a)

Aθold(s, a),

clip
(
πθ(s|a)
πθold(s|a)

, 1− ϵ, 1 + ϵ

)
Aθold(s, a)

)
(13)

where ϵ is a hyperparameter that controls the gap between
the target policy and the baseline policy.

IV. HVBRL ALGORITHM

The HVBRL algorithm is based on the concept of
hierarchy, designing both low and high-level algorithms
to form a complete decision-making algorithm. The low-
level algorithm is responsible for outputting four control
quantities: throttle, ailerons, elevators, and rudders, to
achieve the desired course, speed, and altitude of the
aircraft. The high-level algorithm only needs to output
the desired course, speed, altitude, and whether to launch
missiles based on the input observational features. The
low-level algorithm takes the actions output by the high-
level algorithm, excluding the launch action, as part of
its input observations to complete the low-level control.
Fig. 1 presents the hierarchical network structure of this
paper.

The architecture shown in Fig. 1 consists of a low-
level processing module identified by the green box on
the left and an high-level processing module identified
by the yellow box on the right. Three serial modules
composed of linear layers, ReLU activation functions,
and layer normalization complete the feature extraction
of the state space for both low and high-level algorithms.
Additionally, the high level requires sequence memory
feature processing through a GRU module and a layer nor-
malization module. Subsequently, the features extracted
by the high level pass through four linear layers, three
of which output logits for partial observational quantities
of the low level and sample actions from a categorical

distribution to realize action sampling from a multi-
discrete action space. The output of another linear layer
is used for virtual missile hit number prediction and mis-
sile launch decision-making. This output is constrained
within the (0,1) interval using the Sigmoid function and
multiplied by the maximum virtual missile prediction
number N to obtain the predicted number of missiles.
Simple prior knowledge is then introduced to complete
the prediction of hit probability, and this probability is
used to sample from a Bernoulli distribution to determine
whether a missile is launched. In addition to receiving
part of the high-level actions as part of its own state
input, the low level also obtains partial state information
from the environment. After feature extraction, it also
obtains logits through four linear layers and completes
the selection of low-level actions by sampling from a
categorical distribution.

A. Low-Level Algorithm

1. State Space and Action Space
The construction of state features is crucial for train-

ing, as well-chosen features can accelerate training con-
vergence and reduce the parameter space. Considering the
complexity of the environment and the combat mission,
we have designed a tuple of 10 state variables to represent
the aircraft’s state space.

[∆H,∆ψ,∆V,Habs, ϕ, θ, Vx, Vy, Vz, V ] (14)

where ∆H denotes the difference between the desired and
current altitude; ∆ψ denotes the difference between the
desired and current heading; ∆V denotes the difference
between the desired and current speed; Habs represents
the current altitude of the aircraft; ϕ represents the roll
angle; θ represents the pitch angle; Vx, Vy, Vz represent
the aircraft’s velocity along the x, y, z axes, respectively;
V represents the total velocity of the aircraft. The units
of ∆H , Habs are in km; ∆ψ, ϕ, θ are in rad; ∆V , Vx,
Vy, Vz , V are in Ma.

The low-level action space consists of a tuple of four
continuous control variables:

[Ca, Ce, Cr, Ct] (15)

where Ca represents the throttle control variable, used
to control the aircraft’s speed; Ce represents the rudder
control variable, used to control the aircraft’s yaw angle;
Cr represents the elevator control variable, used to control
the aircraft’s pitch angle; Ct represents the aileron control
variable, used to control the aircraft’s roll angle. The range
of values for each control variable is shown in Table I. To
balance computational complexity and simulation fidelity,
this paper discretizes the continuous action space into a
multi-discrete action space of size 50 for each continuous
action.
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Fig. 1. Hierarchical network control structure.

TABLE I
Range of control variables.

Parameter Range Parameter Range
Ca [0, 1] Cr [-1, 1]
Ce [-1, 1] Ct [-1, 1]

2. Reward Function and Termination Conditions
We expect the aircraft to fly according to the desired

heading, altitude, and speed, and we limit the roll angle
to avoid stalling and losing altitude due to excessive
roll. Therefore, we defined the following four reward
functions. 

Rψ = e−(∆ψ
5 )2

RH = e−(10∆H)2

RV = e−(∆V
20 )2

Rϕ = e−( ϕ
0.3 )

2

(16)

These four reward functions are Gaussian, limiting the
reward value to the (0,1] interval. The different standard
deviations of the Gaussian reward functions represent
different tolerances for different indicators; a smaller
standard deviation indicates a lower tolerance and a higher
precision requirement. To quickly meet the requirements
for heading, altitude, speed, and roll angle during training,
we use the geometric mean of these four rewards as the
overall measure of these indicators.

RC = (Rψ ·RH ·RV ·Rϕ)
1
4 (17)

Additionally, if the aircraft descends below the dan-
gerous altitude of 2km, a reward of RPH = −1 is given;
if the aircraft descends to the termination altitude of 1km,
a reward of RPH = −2 is given.

Based on the characteristics of the mission, we define
the following seven conditions for ending an episode.

1) Failure to reach the desired heading, speed, and
altitude within the specified simulation steps.

2) The aircraft descends to the termination altitude of
1km.

3) Operation exceeds the time limit: 103 simulation
steps.

4) The aircraft’s altitude exceeds 105 km.
5) The aircraft’s p, q, r rotational angular velocities

exceed 103 rad/s.
6) The aircraft’s speed exceeds 100 Ma.
7) The aircraft’s acceleration exceeds 20g.

B. High-level Algorithm

In Bayesian statistics, conjugate prior distributions
refer to the scenario where the prior distribution and the
likelihood function satisfy certain conditions, resulting in
a posterior distribution that belongs to the same family as
the prior distribution. Specifically, for a prior distribution
p(θ) with parameter θ and a likelihood function p(x|θ),
their product is given by (18).

p(θ)p(x|θ) = k(θ) · g(x) (18)

where k(θ) is a function independent of x, and g(x) is a
function independent of θ. This implies that the product
of the prior distribution and the likelihood function can
be decomposed into a product of a function k(θ) that
is independent of x and a function g(x) that is inde-
pendent of θ. When this condition is met, the posterior
distribution p(θ|x) will belong to the same family as
the prior distribution p(θ), making Bayesian inference
more convenient. We can obtain the parameters of the
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posterior distribution by updating the parameters of the
prior distribution without having to recalculate the entire
distribution.

The missile hit probability θ(s) can be estimated
through live-fire tests; however, the cost of conducting
field tests is substantial. This paper proposes a method for
automatically simulating missile hit probabilities through
simulation. Specifically, in a high-fidelity simulation en-
vironment, the probability of hitting m out of N missiles
launched in a specific state s is given by (19).

B(m|N, θ(s)) =
(
N
m

)
θ(s)m(1− θ(s))N−m (19)

To satisfy the conjugate prior condition, the prior
distribution of missile hit probability θ(s) should be of
the same distribution family as the likelihood function.
Therefore, the prior distribution of θ(s) is chosen to be a
Beta distribution.

Beta(θ(s)|a,E) =
Γ(E)

Γ(a)Γ(E − a)
θ(s)a−1(1−θ(s))E−a−1

(20)
where E, a represent the belief based on past experience
that out of E launched missiles, a will hit. The coefficient

Γ(E)
Γ(a)Γ(E−a) satisfies the normalization requirement.∫ 1

0

Beta(θ(s)|a,E)dθ(s) = 1 (21)

The expected value of the prior distribution of missile
hit probability θ(s) is shown as (22).

E[θ(s)] = a

E
(22)

Multiplying the prior distribution with the likelihood
function and normalizing, we obtain the posterior distri-
bution of missile hit probability as (23).

Beta(θ(s)|m, a,E,N) =
Γ(N + E)

Γ(m+ a)Γ(N + E −m− a)
·

θ(s)m+a−1(1− θ(s))N+E−m−a−1

(23)
According to the Bayesian sum and product rules, the

distribution of θ(s) adopts the posterior distribution.

p(x = 1|X ) =

∫ 1

0

p(x = 1|θ(s))p(θ(s)|X )dθ(s) = E[θ(s)|X ]

(24)
where x follows a Bernoulli distribution, taking the value
1 when hitting the target, and X represents the data
sample. Thus, the Bayesian estimate of θ(s), ˆθ(s), is
shown as (25).

ˆθ(s) =
m+ a

N + E
(25)

By repeatedly updating ˆθ(s) through multiple sim-
ulation firings, it will converge to the true missile hit
probability in state s.

However, due to limited computing resources, carry-
ing too many missiles in the simulation process drastically

Fig. 2. Simulation with 1000 missiles.

increases the computational time complexity and space
complexity.

Moreover, strictly controlling repeated experiments
in the same state can affect the progress of combat
operations. Therefore, we use a neural network to predict
the number of missile hits in state s.

m̂ = fϕ(s) (26)

where ϕ denotes network parameters. ˆθ(s) becomes ˆθϕ(s).

ˆθϕ(s) =
m̂+ a

N + E
(27)

where N is the assumed total number of missiles
launched, while the actual number of missiles carried in
the simulation n ≪ N . It is assumed that the missiles
are independent of each other. Including past experience
and the missile firing action a predicted by the neural
network.

a ∼ Bern( ˆθϕ(s)) (28)

Sampling from this action distribution and interacting
with the environment allows for the update of the network
through reinforcement learning algorithms to improve its
prediction accuracy.

However, using a policy network to directly output
missile hit probability

θ(s) = πϕ(s) (29)

leads to excessive exploration of meaningless areas in the
early stages, such as areas beyond the missile attack range,
causing sparse rewards and slow training convergence.

1. State Space and Action Space
The construction of state features is crucial for train-

ing, as well-defined features can accelerate training con-
vergence and reduce the parameter size. Considering the
complexity of the environment and combat missions, we
have designed a tuple consisting of 17 state variables to
represent the state space.

[∆Hm,∆Hr,∆Vm,∆Vr, Habs, Dr, Dm,

AOr, TAr, AOm, TAm, ϕ, θ, Vx, Vy, Vz, V ]
(30)

where ∆Hm represents the altitude difference between
the missile and the aircraft; ∆Hr represents the altitude
difference between opposing aircraft; ∆Vm represents
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rAO

mAO

rTA

mTA

Fig. 3. Schematic diagram of AO&TA.

TABLE II
Range of discrete control variables.

Parameter Value Range
∆Hd {-0.2, -0.1, 0, 0.1, 0.2}
∆ψd {−π

6
, − π

12
, 0, π

12
, π

6
}

∆Vd {-0.2, -0.1, 0, 0.1, 0.2}
F {True, False}

the velocity difference between the aircraft’s axial di-
rection and the missile’s axial direction; ∆Vr represents
the velocity difference in the axial direction between
opposing aircraft; Dr represents the distance between
opposing aircraft; Dm represents the distance between
the aircraft and the missile; AOr, TAr, AOm, TAm rep-
resent the angles between opposing aircraft and the
missile, as shown in Fig. 3; ϕ represents the aircraft’s
roll angle; θ represents the aircraft’s pitch angle. The
dimensions of ∆Hm,∆Hr, Dr, Dm are in kilometers;
AOr, TAr, AOm, TAm, ϕ, θ are in radians; and ∆Vm,
∆Vr are in Ma.

The action space of the high-level control model
consists of a tuple of discrete values controlling the
aircraft’s heading, velocity, altitude, and missile launch.

[∆Hd,∆ψd,∆Vd, F ] (31)

where ∆Hd represents the altitude error; ∆ψd represents
the heading error; ∆Vd represents the velocity error; F
indicates whether a missile is launched. The range of
values for each control variable is shown in Table II.

2. Reward Function and Termination Conditions
The relative situation reward for opposing air-

craft is mainly characterized by three key variables:
AOr, TAr, Rr. The situational reward related to angles
AOr, TAr is defined as (32).

f(AOr, TAr) = 1 +
1

13.05× |AOr|+ 2
+

min

(
tan−1

(
1−max(0.64× |TAr|, 10−4)

)
2π

, 0

) (32)

where the influence of AOr is adjusted through a de-
nominator term, making the reward more sensitive to its
changes.

The situational reward related to the distance Rr is
defined as (33).

f(Rr) =1 · (Rr < 4) + (Rr ≥ 4)·
clip

(
−0.03 ·Rr2 + 0.28 ·Rr + 0.42, 0, 1

)
+

clip (exp (−0.14 ·Rr) , 0, 0.4)
(33)

This reward is a piecewise function that provides a
fixed reward when Rr is less than 4km and calculates
the reward based on a quadratic and exponential function
of Rr when Rr is greater than or equal to 4, aiming to
reward closer distances in line with close-range combat
requirements. The clip function limits the first term to an
interval with the second and third terms as the minimum
and maximum values, respectively.

In addition to situational rewards, when conducting
high-level self-play training, if there is a missile warning,
we aim to guide the aircraft to autonomously avoid the
missile through rewards. Empirically, when the missile
has sufficient energy and is head-on with the aircraft, it
will be difficult for the aircraft to evade. Therefore, the
reward function is constructed based on the decrease in
missile velocity and the angle between the missile and
aircraft velocity vectors. A negative reward is given if the
missile’s velocity decreases and the angle with the aircraft
is large; a positive reward is given if the angle is small.
Continuous rewards guide the aircraft to avoid missiles.

Let the current missile velocity be Vm, the missile
velocity at the previous moment be V ′

m, and the angle
between the missile velocity vector and the aircraft ve-
locity vector be α. When cosα < 0, the reward is

Rm =
α

max(Vm − V ′
m, 0) + 1

(34)

When cosα ≥ 0, the reward is

Rm = α×max(Vm − V ′
m, 0) (35)

Furthermore, we define a shooting reward of -10 to
avoid high-frequency shooting

Rshoot = −10 (36)

Aircraft crash/being shot down reward

Rcrash = −200 (37)

and missile hitting the target reward

Rhit = 200 (38)

According to the characteristics of the mission, in
addition to the low-level termination conditions, the round
should end when the aircraft is shot down or the missile
hits the target.

C. Task Training Algorithms

1. Low-Level Training Algorithm
The low-level training algorithm is related to the

aircraft’s basic control variables and is responsible for
directly controlling the flight to achieve desired headings,
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speeds, and altitudes. In Algorithm 1, Φego represents
the parameters of the actor network, and Θ represents
the parameters of the critic network. Both are initialized
orthogonally, and the actor network is configured with a
smaller gain to enhance exploration of the action space.
D denotes the experience buffer, storing experience data
generated by policy rollouts. T denotes the total number
of steps required for the entire training. B denotes the
batch size, and b denotes the mini-batch update size. N
represents the number of vector environments. h, ψ, and
v respectively denote altitude, heading, and speed. st, at,
log πΦego(at|st), vΘ(st), dt, and rt+1 respectively denote
the state, action, logarithm of action probability, state
value, termination status, and reward at time t + 1. A
and G respectively represent advantage and return. The
general definition of the return G is the sum of discounted
rewards, which is,

G = rt + γ × rt+1 + γ2 × rt+2 + ...+ γT−t × rT (39)

where T is the termination step. When we use GAE, the
return G is usually calculated at the end of an episode,
after calculating the advantage A for each step. The return
is then obtained by adding the advantage to the state
value, i.e.,

G(t) = V (t) +A(t) (40)

To fully utilize the experience data, the network is
updated for E epochs during updates, and the experience
data are shuffled during batch updates.

Algorithm 1: Low-level algorithm
Initialize parameters of actor Φego and critic Θ
orthogonally;

Initialize the buffer D;
Reset the vector environment;
for n = 1 to T /B do

for t = 1 to B/N do
Change desired h, ψ, v randomly at
fixed time intervals;

Get st, dt;
Get at, log πΦego(at|st), vΘ(st) from
actor and critic network;

Execute one step in the vector
environment;

Store {st, at,log πΦego(at|st),vΘ(st)
,rt+1, dt} into D;

Calculate advantages A and returns G and
store them into D ;

for e = 1 to E do
Shuffle D;
for i = 1 to B/b do

Calculate policy loss, value loss
and entropy loss;

Update Φego, Θ;

2. High-Level Training Algorithm
The high-level training algorithm is responsible for

issuing desired commands to the low level and also
handles missile control. When executing the high-level
training algorithm, the low-level model Mlow should
be set to evaluation mode, i.e., the parameters of the
low-level model are not changed, only the high-level
network is trained. Unlike the low-level model, the high-
level algorithm uses a GRU module to learn sequence
information, hence the experiences need to be stored in
order and cannot be shuffled. The execution process is as
shown in Algorithm 2.

Algorithm 2: High-level algorithm
# Initialize parameters and reset envs
Load low-level model Mlow and set it to eval
mode;

for n = 1 to T /B do
for t = 1 to B/N do

# Get high-level actions
# Transfer actions into low-level states
Mlow takes one step to update the
vector env;

# Store high-level experience
Store A and G into D ;
for e = 1 to E do

for i = 1 to B/b do
# Update parameters of high-level
models

3. High-Level Self-Play Training Algorithm
The high-level self-play training algorithm utilizes

self-play techniques to simulate the complex adversarial
process of aerial combat under realistic conditions. This
study introduces a policy pool P for storing historical
policy models. Strategies are uniformly sampled from P
to approximate the average strategy, with the latest policy
model serving as the best response strategy. The execution
process is as shown in Algorithm 3.

V. EXPERIMENTAL RESULTS ANALYSIS

A. Experimental Parameter Settings

The experimental hyperparameters are presented in
Table III.

The hardware and software platforms are presented in
Table IV, V.

The other experimental parameters are set as follows.

1) By default, 13 missiles are expected to hit 3
targets.

2) When the distance is less than 12,000m, it is
anticipated that 6 missiles will hit.

3) When the distance is less than 8,000m, it is antic-
ipated that 10 missiles will hit.
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Algorithm 3: High-level self-play algorithm
Load low-level model Mlow and set it to eval

mode;
Initialize parameters of high-level actors Φego ,
Φenm and critic Θ orthogonally;

Initialize the buffer D and policy pool P;
Reset the vector environment;
for n = 1 to T /B do

for t = 1 to B/N do
# Get high-level actions
# Transfer actions into low-level states
Mlow takes one step to update the

vector env;
# Store high-level experience

Store A and G into D ;
for e = 1 to E do

for i = 1 to B/b do
# Update parameters of high-level
models

Save critic model;
Save actor model with parameters Φego as

best response;
Sample enemy strategy uniformly from P
as average strategy, and assign its
parameters to Φenm;

TABLE III
Hyperparameters configuration.

Parameter Value Parameter Value
E 4 seed 1024
B 3000 clip param 0.2
λ 0.95 γ 0.99
N 4 T 5× 107

b 300 N 200
gain actor 0.01 gain critic 1

mlp hidden size 128× 128 entropy coef 10−3

gru hidden size 128 max grad norm 2
launch threshold 0.5 explosion radius 300

TABLE IV
Hardware platform.

Hardware Specification
CPU Intel i7-10700KF
GPU Nvidia RTX 3080

Memory 16GB
GPU Memory 8GB

TABLE V
Software platform.

Work Platform
Algorithm Implementation Python run in PyCharm
Experiment Visualization Tacview

Fig. 4. Performance of low-level algorithm.

4) When the angle is less than 50 degrees, it is
anticipated that 7 missiles will hit.

5) When the angle is less than 25 degrees, it is
anticipated that 10 missiles will hit.

6) The maximum attack angle is 50°.
7) The maximum attack distance is 15,000m.
8) The minimum attack interval is 120 steps.

B. Performance of the Low-Level Algorithm

Our experiments set expected values for three funda-
mental control indicators: heading, speed, and altitude.
The performance of these three control indicators is eval-
uated simultaneously in the same experimental episode.
Specifically, the difference between the expected heading
and the initial heading is set to 60°, the difference between
the expected speed and the initial speed is set to 218
m/s, and the difference between the expected altitude
and the initial altitude is set to 1904 m. Since the three
indicators have different units and magnitudes, in order
to clearly display the control performance of the three
indicators of the underlying model in one image, we use
the difference between the expected indicators and the
actual indicators at the initial moment as the baseline,
and normalize by dividing subsequent differences by this
baseline difference. The results under the experiment with
a total of 1200 steps are shown in Fig. 4. As can be seen,
even when the difference between the expected value and
the initial value is large, the control performance of the
underlying model is still quite excellent.

C. Performance of the High-Level Algorithm in Three
Specific Scenarios

To evaluate the performance and generalizability of
the high-level algorithm in fixed scenarios (red curve
in Fig. 5), during the training process, the opponent
(Blue aircraft) strategy was set to not carry missiles, to
perform tail-chase escape maneuvers immediately upon
missile warning, and to initially face towards us (Red
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 5. Comparison training curves of the four algorithms, the red curve represents the HVBRL algorithm, the blue curve represents the

HVBRL algorithm without simple prior knowledge, the yellow curve represents the HVBRL algorithm without virtual missile prediction, and
the purple curve represents the non-hierarchical HVBRL algorithm. (a) training reward. (b) evaluation reward. (c) policy loss. (d) value loss. (e)

entropy loss. (f) actor gradient norm. (g) critic gradient norm. (h) ratio.

aircraft). The high-level algorithm was trained over 12M
steps in this fixed scenario, where Fig. 5a shows the
curve of average rewards per episode during training;
Fig. 5b shows the curve of average rewards per episode
during evaluation; Figs. 5c, 5d, 5e display the curves of
policy loss, value loss, and entropy loss during training;
Figs. 5f and 5g exhibit the norm curves of the action
network gradients and value network gradients during
training; Fig. 5h presents the ratio curve during training.
Due to a certain probability of executing missile launch
actions during training, the average reward curve exhibits
significant fluctuations. Therefore, observing only the
curve in Fig. 5a does not indicate convergence of the
training process. To assess whether the training process
has converged, at the end of each episode, the latest
training model is evaluated against a fixed strategy of
the Blue aircraft, collecting reward information to plot
in Fig. 5b. Moreover, to avoid low-probability sampling
of missile launch actions leading to missile depletion,
an hl”launch threshold” was introduced in the evaluation
combat simulation process and set to 0.5; a missile launch
action is taken when the predicted probability of missile
hit exceeds this threshold. During training, to fully explore
the action space, no launch threshold is set. As seen
in Fig. 5b, the episode rewards gradually converge to
around 200, close to the reward for hitting the target.
Additionally, the loss curves shown in Figs. 5c, 5d, 5e and
the gradient norm curves shown in Figs. 5f and 5g, reflect
the convergence and stability of the training process. The
ratio curve shown in Fig. 5h reflects the correct execution
of training updates.

Additionally, three more situations are compared, the
first one (yellow curve) is to only use simple prior
knowledge without using the virtual prediction method;
the second one (blue curve) is to only use virtual pre-
diction without adding prior knowledge; the last one
(purple curve) is to abandon hierarchy structure. Training
evaluation reward in Fig. 5b shows that the loss of any

one method will lead to worse performance in the train-
ing results. Since the comparative algorithm performed
poorly in fixed scenarios, we did not further extend it
to self-play scenario. What’s more, evaluation rewards
are much higher than training rewards at some steps,
the reason being that we trained in parallel across four
environments and The average round rewards have been
averaged. Due to the presence of randomness (a small
probability of sampling a missile launch action, causing
the enemy aircraft to make evasive maneuvers in advance,
resulting in subsequent inability to hit the enemy), train-
ing includes exploration factors. This leads to situations
where, even if the model learns the appropriate timing
to launch a missile, some environments still exhaust their
ammunition before they should fire. During evaluation,
we removed the random exploration factor (by setting a
launch threshold). All curves use exponential smoothing
with a smoothing coefficient of 0.88.

Figs. 6a, 6b, and 6c respectively show the predicted
number of virtual missile hits by the Red aircraft when
the Blue aircraft adopts head-on, fleeing, and tail-chase
escape maneuvers in three strategy scenarios, with the
maximum number of virtual missiles set to 200 during the
experiment. As seen in Fig. 6a, there is a higher predicted
hit probability near 200 steps when the Blue aircraft
performs head-on maneuvers, ending the simulation round
earlier, which reflects a preference for close-range attacks.
From Fig. 6b, it can be seen that when the Blue aircraft
adopts fleeing maneuvers, there is an upward trend in
the predicted number of virtual missile hits around 600
steps, which aligns with common sense. As seen in Fig.
6c, when the Blue aircraft performs tail-chase escape
maneuvers, there is a higher tendency to shoot around
150 steps. The early termination of the simulation in all
three scenarios is due to effective prediction and shooting.

Figs. 7a and 7b show the top and side views of the
flight trajectories of both sides during the experiment in
Fig. 6a, from which it can be seen that the Red aircraft
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(a) (b) (c)
Fig. 6. Predicted number of virtual missile hits. (a) head-on. (b) fleeing. (c) tail-chase escape.

(a) (b) (c)

(d) (e) (f)
Fig. 7. Flying trajectory for high-level algorithm. (a) head-on (top view) (b) head-on (side view). (c) fleeing (top view). (d) fleeing (side view).

(e) tail-chase escape (top view). (f) tail-chase escape (side view).

launches missiles and successfully hits the Blue aircraft
at a close distance, with the Red aircraft striking from the
flank, holding a tactical advantage. Figs. 7c and 7d display
the flight trajectories of both sides during the experiment
in Fig. 6b, where it can be seen that after guiding for
a certain distance, the Red aircraft launches missiles
and successfully hits the Blue aircraft. Throughout the
process, the Red aircraft consistently tracks the Blue
aircraft, accelerating its approach by lowering altitude to
increase speed. Figs. 7e and 7f show the flight trajectories
of both sides during the experiment in Fig. 6c, where it
can be seen that the Red aircraft launches missiles at a
close distance, and the Blue aircraft subsequently turns
to escape but is ultimately hit due to being too close
to evade the missile tracking. The dashed line represents
the heading of the aircraft. Whether the missile hits the
target can be determined by the missile explosion marker
(yellow spherical area) in the figure and whether the blue
aircraft comes into contact with this spherical area.

The Monte Carlo method is a statistical technique
that allows for numerical solutions to complex problems
through the use of random sampling. In a typical Monte
Carlo simulation, a large number of random variations

are input into a mathematical model of the problem,
and the resulting outcomes are averaged to obtain an
approximation. The accuracy of the solution improves
as more random samples are included in the simulation.
Since the total simulation steps in a round is 1000,
carrying 1000 missiles can meet the maximum missile
demand. Unlike using neural networks for virtual missile
hit number prediction, the Monte Carlo method gives the
hit situation by actually launching missiles in a round; it
estimates the hit probability by simulating multiple rounds
with adjusted opponent models and fixed self-motion
trajectories. Opponent models need to be constrained to
move within a spherical region, so that we can estimate
the probability of our missiles hitting the target within
the sphere at different distances and orientations from
the center of the sphere. The smaller the radius of the
sphere, the more accurate the estimated hit probability,
the fewer the number of simulations required, but the
weaker the generalization. The sphere radius is 1km in
our experiment.

Finally, compared to the Monte Carlo method with a
simulation of 1000 missiles (because this is the maximum
number of steps in a round, which can be satisfied even if
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TABLE VI
Evaluation indicators in three fix scenarios.

HVBRL HVBRL no prior knowledge HVBRL no virtual predict MC
FPS avg 135 130 139 4
FPS max 140 138 148 5
FPS min 126 120 127 2

Missile num 2 2 2 1000
Success scenarios 3 1 0 1

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 8. Training curve for high-level self-play algorithm. (a) training reward. (b) evaluation reward. (c) policy loss. (d) value loss. (e) entropy

loss. (f) actor gradient norm. (g) critic gradient norm. (h) ratio.

a missile is launched at every step), which has an average
simulation frequency of only 4 steps per second due to
the need to simulate multiple missiles in parallel, the
self-play algorithm of the high-level model achieves an
average simulation frequency of 135 steps per second,
thus enhancing the simulation rate by nearly 32.75 times.
A sufficient simulation rate also guarantees the learning
update rate of the network. The HVBRL algorithm wins
all three scenarios while the MC algorithm only wins
one scenario which is head-on setting. More evaluation
indicators are shown in Table VII.

D. Performance of the High-Level Self-Play Algorithm
in Game Scenarios

The high-level self-play algorithm underwent a train-
ing process lasting 35 million steps in the game scenario.
Figs. 8a-8h respectively illustrate the average reward
per episode during the training process, the curve of
average reward per episode during evaluation, policy loss,
value loss, entropy loss, the gradient norm of the action
network, the gradient norm of the value network, and the
ratio curve. To stabilize the evaluation of the model’s
performance during training, this study uses the most
recent training model as the red aircraft model and ran-
domly selects a historical model as the blue aircraft model
for a round of simulation combat, collecting rewards
as evaluation rewards. Similarly, during the training and
evaluation process, this algorithm introduces a ”launch
threshold” set to 0.5 because of the random selection
of opponents and a low probability of shooting. The
evaluation curve in Fig. 8b shows that the episode rewards

gradually converge near zero, indicating that the game
process is gradually converging to a Nash equilibrium.
The smoothing method is consistent with the previous
section.

Figs. 9a and 9b display the predicted missile hit counts
by the red and blue sides through the high-level self-
play algorithm, with the maximum number of virtual
missiles set to 200 during the experiment. Fig. 9a shows
the prediction during the game simulation process of the
best response strategy (red aircraft strategy) versus the
historical strategy (blue aircraft strategy), from which
it can be seen that the blue aircraft launches missiles
slightly earlier than the red aircraft, and the blue aircraft
believes there is a very high missile hit probability within
nearly 200 consecutive steps. However, the red aircraft’s
prediction shows a lot of fluctuation, reflecting a relatively
balanced offensive and defensive strategy. Fig. 9b shows
the prediction when both sides adopt the best response
strategy, showing that the red and blue predictions are
basically consistent, with the same missile launch timing,
and the prediction results fluctuate.

Figs. 10a and 10b present the top view and side view
of the flight trajectories of both sides during the experi-
ment depicted in Fig. 9a, where it is visible that the red
aircraft’s missiles successfully hit the blue aircraft, while
the red aircraft successfully evades the blue aircraft’s
missiles. From Fig. 10a, it is clear that both sides adopt a
similar S-maneuver turning evasion maneuver in response
to the enemy missiles, but the red aircraft has a smaller
turning radius, thereby successfully avoiding the missiles.
Figs. 10c and 10d show the top view and side view of
the flight trajectories of both sides during the experiment

12 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2020

This article has been accepted for publication in IEEE Transactions on Aerospace and Electronic Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAES.2024.3410249

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



(a) (b)
Fig. 9. Predicted number of virtual missile hits. (a) VS historical enemy. (b) VS self.

(a) (b) (c) (d)
Fig. 10. Flying trajectory for high-level self-play algorithm. (a) historical enemy (top view) (b) historical enemy (side view). (c) self (top

view). (d) self (side view).

TABLE VII
Evaluation indicators in self-play scenario.

HVBRL (selfplay) MC
FPS avg 96 4
FPS max 102 5
FPS min 82 2

Missile num 2 1000
Success rate 90.4% 4.2%

depicted in Fig. 9b, where it is visible that both sides
reach an equilibrium state, avoiding each other’s missiles
and engaging in close-range circling after the missiles
are exhausted, consistent with the common knowledge of
real-life close-range aerial combat.

Finally, compared to the Monte Carlo method sim-
ulation carrying 1000 missiles, the average simulation
frequency of the high-level self-play algorithm is 96 steps
per second, which is a 23-fold increase in simulation
rate. The success rate of HVBRL algorithm in self-
play scenario is 90.4% while MC algorithm is 4.2%
out of 1000 times episodic simulation. More evaluation
indicators are shown in Table VII.

VI. CONCLUSION

In this paper, we address the multitude of challenges
faced in close-range autonomous air combat scenarios.
Based on a dual-layer network architecture, we propose
an autonomous attack decision algorithm using HVBRL,
encompassing both fixed strategy confrontation and self-
play. Extensive experimental results demonstrate that
the proposed method effectively accomplishes intelligent

missile launching, situational dominance, and evasion of
attacks. It resolves the issue of inefficiency caused by
carrying a large number of missiles, providing significant
implications for AI in prop-based games and combat
simulation research. Future work will aim to expand the
problem scale and explore autonomous decision-making
in multi-agent systems.
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