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A Reverse Auction-Based Individualized Incentive
System for Transit Mobility Management

Wenhua Jiang , Haris N. Koutsopoulos , and Zhenliang Ma

Abstract— Urban rail transit systems in many cities are expe-
riencing crowding during peak periods due to rapid population
growth. Incentive-based demand management strategies aim to
better utilize the available capacity by shifting peak travel to
off-peak periods. Various deployments have demonstrated the
crowding-reduction potential of incentives in reducing crowding
but they have also shown that such strategies are inefficient
with many passengers receiving the incentives but relatively
few contributing to crowding reduction. This paper proposes
a reverse auction-based, individualized incentive strategy to
encourage individual passengers to switch travel from peak to
off-peak periods. The proposed approach is individualized, par-
ticipatory, and explicitly accounts for individual characteristics
and the potential contribution of their behavior changes to the
system. Extensive experiments are conducted to demonstrate the
approach using AFC data from Hong Kong’s urban rail network.
The results indicate that auction-based individualized incentives
can enhance the system efficiency by strategically selecting
passengers as winners whose behavioral changes contribute to
the system performance. It also highlights the importance of
correcting the information bias of perceived travel behavior
between bidders and the population when operators select bid
winners.

Index Terms— Reverse auction design, individualized incen-
tives, mobility management, transit systems.

I. INTRODUCTION

URBANIZATION is increasing globally, and 55% of the
world’s population now lives in urban areas. By 2050,

this is projected to further increase to 68% (notably 83% for
upper-middle-income countries like North America, Europe,
and Oceania) [1]. Growing population densities have led to
a rise in urban congestion and crowding in public transport
systems during peak hours. Delivering good service is a crucial
problem that transit agencies face. Usually, increasing capacity
in urban rail systems, such as extending networks or updating
signaling systems, is a direct way to deal with the increasing
demand. However, such improvements are often difficult and
expensive. Instead, transit demand management strategies in
urban rail systems, aiming at better utilization of available
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capacity through influencing customers’ mobility behavior, are
a promising alternative.

Providing incentives, such as free trips, off-peak discounts,
lottery/rebates, etc., are commonly used demand management
strategies in public transit systems [2]. Researchers have
reported that 2-5% of travelers shift from peak to lower
demand periods in response to incentives [4], [5]. Depending
on the implementation, incentive programs can be categorized
as generic or individualized.

Generic incentive programs provide the same incentive to
all passengers regardless of their characteristics and contri-
butions to system performance. Generic incentives are not
very efficient. For instance, passengers who usually travel
during off-peak do not contribute to the load on critical links
(ineffective passengers) during the peak period but may benefit
from generic off-peak incentives without having to change
behavior [2]. In addition, generic incentives are static and not
effective in inducing long-term behavior change. For example,
two studies investigated passengers’ longitudinal behavior in
response to a fare discount promotion over two years in
Hong Kong [6], [7]. They found that 35-40% of passengers
who initially adopted the promotion eventually reverted to
their previous travel time periods. Individualized incentive
programs aim at rewarding beneficial behavior changes by
providing incentives at the individual level (targeted passen-
gers) according to, for example, their travel characteristics
(i.e. commute time, travel distance) and contributions to the
system [8], [9]. Compared to generic incentives, individualized
incentives account for user heterogeneity and potential con-
tribution to system goals, such as load reduction. However,
existing individualized incentives are passive and, to some
extent, static as the decision process is not participatory.
A participatory program allows passengers to specify the
incentives required to offset the inconvenience of changing
their habitual behavior. Individualized but passive incentives
are likely to be ineffective in retaining passengers’ long-
term interest and induce habitual behavior change. Studies
also found that passengers’ willingness to participate and the
reward they are expecting for changing their habitual behavior
vary widely across individuals [10]. An effective and efficient
incentive mechanism should be participatory, individualized,
and dynamic and reward good behavior changes that contribute
to the system performance improvements.

This paper proposes a reverse auction-based individualized,
participatory, incentive mobility management system aiming
to nudge passengers to shift their peak hour travel to off-peak
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periods. In this context, participatory means that the system
gives ownership of decisions to both individual passengers
and the agency to find effective options for both sides. The
unique characteristic of the system is that it allows passengers
to actively interact with the system by submitting bids based
on their own choices (rather than passively accepting system
offers) for changing their departure times. Enhancing user
interaction can result in a more efficient and user-friendly
transportation experience [11]. Airlines use a similar approach
to manage overbooking, a common practice of selling more
seats than what are available for a specific flight [12], [13].
The airline seeks volunteers to leave the overbooked flight
by offering passengers increasing reward amounts until the
available capacity is satisfied. Overcrowding in transit is,
to some extent, like overbooking in airlines. The transit agency
controls the capacity and its use. Passengers with tickets are
allowed to enter the station, but if there is no capacity available
on arriving trains, they are automatically bumped to the next
train with available space.

The proposed system selectively invites passengers to par-
ticipate and provides varied discount options for passengers
to choose from, for example, through a mobile app or web
interface. Passengers who decide to participate submit the
reward they want to change departure times that fit their sched-
ules. The transit agency collects bids and selects the auction
winners. The selection is based on the agency’s assessment
of which bidders are most likely to change their behavior
and benefit the system. The assessment is based on historical
travels of bidders as captured by trip transactions in the AFC
database. The auction winners decide whether to travel in the
committed time periods for the next commuting trip. Finally,
the auction winners who actually travel in the committed
time receive bid payments. AFC data enables the deployment
of such a system effectively. The trip entry/exit informa-
tion provides a detailed understanding of the spatiotemporal
characteristics of individual movements [14]. The AFC data
facilitates the optimal auction design by targeting passengers
whose behavior change would contribute to reducing crowding
in the urban railway system. The main advantages of the
proposed concept include:

• It retains passengers’ interest in participating and is
more likely to promote sustainable behavior change by
directly involving passengers in the mobility management
process. Passengers interact with the incentive system by
a) deciding whether to participate (e.g., depending on
their schedule flexibility); and b) how much reward they
would accept (within limits) to offset the inconvenience
of changing their planned trip times.

• It is effective and efficient in managing peak travel by tar-
geting “promising” passengers. It adjusts to individuals’
characteristics and trip contexts, and rewards behavior
changes that most likely contribute to the system goals,
e.g., load reduction on critical links.

• Because it is participatory, passengers who submit a
bid are more likely to change departure times, since,
if selected, they will receive the reward they actually
requested. For the same reason, it is also more likely to

sustain its performance in the long run, as passengers are
continuously engaged in the process.

The proposed strategy is a completely new strategy that
hasn’t been discussed or tested before and designed to address
the major limitations of current approaches. The key contri-
butions of the paper are:
• Proposes a reverse auction-based individualized incentive

mechanism in which individuals are invited to set their
‘reward’ for travelling during the off-peak period and
agencies offer requested rewards to those most likely to
have effective behavior changes, within the constraint of
available budgets.

• Formulates an optimization problem to select auction
bid winners with system performance target, budget con-
straints, and considering the heterogeneous and uncertain
passenger travel behavior, their bidding amount, and their
behavior change contribution to the system performance.

• Evaluates the potential of the proposed scheme
using a real-world urban railway network and con-
ducts extensive experiments to explore the impact of
design/implementation factors, including different num-
bers of invited passengers and bidding participation
levels.

The remainder of the paper is organized as follows:
Section II provides a brief review of related work. The
proposed incentive system framework, together with the main
design aspects is described in Section III. In Section IV, the
potential of the system is illustrated in a case study using data
from Hong Kong’s MTR system. The final section summarizes
the main findings and future research directions.

II. RELATED WORK

In the literature, many incentive based strategies have
been proposed for transit demand management (TDM) in
peak periods, including free tickets, off-peak discounts, lot-
tery rewards [2], [3]. In this section, we discuss various
transit related incentive mechanisms and review the reverse
auction-based incentives that have been applied in industries.

A. Incentive-Based Transit Demand Management

Various studies have demonstrated the positive impact of
incentives on reducing peak travel in public transit. As dis-
cussed in the previous section, incentive schemes can be
generic or individualized.

1) Generic Schemes: [4] studied an ‘early bird’ program
in Melbourne which offered passengers free travel before
7:00 a.m., and reported that it reduced peak train loads by
around 3%. Reference [15] conducted a survey exploring rail
passengers’ willingness to change travel times in Sydney.
They reported that by offering a 30% discount, 15% of peak
travel passengers would be willing to change their habitual
departure times by 30 minutes and 4% by 60 minutes, with
most traveling earlier. Reference [16] conducted a survey
exploring the impact of a variety of incentives (e.g. fare
discounts, coupons, free WIFI) on commuters’ travel behavior
in the Beijing Subway system. They found that incentives
have a positive impact by reducing the morning peak trips.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



JIANG et al.: REVERSE AUCTION-BASED INDIVIDUALIZED INCENTIVE SYSTEM 3

Reference [5] investigated the impacts of MTR’s Early Bird
discount promotion on crowding reduction during morning
peak periods in Hong Kong. They found that the promotion
impacted commuters’ behavior with 3% switching to off-
peak travel. Reference [2] proposed a general methodology
for optimal promotion designs. It targets the passengers based
on their expected behavioral change and the degree of their
contribution to congested sections of the system. Using empir-
ical data from MTR system in Hong Kong, they evaluated the
crowding-reduction potential of various strategies along with
temporal (e.g., pre-peak/after-peak), spatial (e.g., station/OD),
and fare discount (e.g., flat/step) dimensions. The analysis
highlighted the importance of designs that target passengers
who directly contribute to crowded hotspots. Reference [17]
designed a hybrid fare scheme (HFS) for reducing peak-hour
congestion in the urban transit systems which combines a
fare-reward component (H-FRS) and a uniform fare compo-
nent (H-UFS). Commuters can choose to join either of the
sub-schemes according to their scheduling flexibility. In the
H-FRS, a commuter is rewarded with one free trip during
a prescribed shoulder peak interval after a certain number
of paid trips during the peak period within the peak hours.
In the H-UFS, a commuter pays a marginally higher but
pre-determined uniform fare during the peak period. The
authors concluded that the HFS can maintain the transit
operator’s revenue and achieve at least a 25% reduction of
the total trip time costs for commuters.

2) Individualized Schemes: Different from generic incen-
tives, individualized schemes provide incentives to targeted
individuals. For example, the lottery/rebate reward scheme
INSINC was implemented in Singapore to manage peak
crowding in its Mass Rapid Transit system (MRT). Commuters
who participate in the program earn 3 credits per kilometer
they travel during the off-peak shoulder period and 1 credit
per kilometer traveled in any other time period (weekday
trips). Passengers can redeem the credits for, for example,
cash rewards or a raffle prize. It is estimated that the INSINC
scheme reduced peak trips by 7.49% during the six-month
pilot [8]. A similar program, ‘BART perks’, has been deployed
in San Francisco by the Bay Area Rapid Transit (BART)
system to encourage riders to travel outside peak periods
by offering redeemable points for cash rewards with three
options (Autoplay, Spin-to-Win game or cash buyout). The
results showed that 10% of the participants switched to
off-peak travel due to the program [18]. ‘BART perks-Phase
II’ improved upon Phase I by providing redeemable points
to participants based on their travel history, i.e. entry station,
average departure time, etc. [9]. It reported that passengers
who received offers increased their off-peak travel by 6-20%
(depending on the type of offer) compared to those who did
not receive offers to shift their commutes. Reference [19]
using laboratory experiments examined the choices made by
passengers under a lottery-based incentive scheme to promote
public transit usage during off-peak periods. They concluded
that higher expected lottery rewards do help in increasing the
shift to off-peak travel. The risk attitudes of the passengers
play a significant role in explaining the choices they make.
Recently, [20] developed an integrated incentive scheme for

energy-saving and congestion reduction in a mobility sys-
tem. The scheme consists of a system model (SM) and an
incentive optimizer. The SM combines personalized behav-
ioral modeling, traffic, and energy use simulators, and the
incentive optimizer allocates incentives to each user based
on SM-generated feasible alternatives, travel intent prediction,
budget constraints, responses received from scheme users and
non-users. The numerical simulation demonstrated that the
proposed scheme was able to reach a system-wide energy
savings of 12.5% with 7.5% of the passengers taking the
reward points. Reference [21] introduced an incentive system
that offers a series of recommended travel alternatives to
travelers in a multi-modal transportation system. The system
updates users’ travel preferences by keeping track of their past
choices and provides travelers with a corresponding amount of
tokens as incentives to reduce energy consumption.

B. Reverse Auction-Based Incentive Mechanisms

Reverse auction-based incentives have been used in the
airline industry to manage overbooking which is a common
practice of selling more tickets than the available capacity [12].
The scheme works as follows: when the number of ticketed
passengers showing up exceeds the flight capacity, the airline
looks for volunteers willing to give up their seats by inviting
them to bid the amount of money (e.g. travel vouchers) that
they will accept as compensation for switching to another
flight. The ‘overbooking auction scheme’ was first proposed
by [22]. It involved asking each passenger to write a sealed
‘bid’ of the lowest amount they are willing to accept in return
for transferring to a later flight. Reference [13] conducted a
survey and concluded that the overbooking auction plan was
sound and practical, given that there may be a good number of
passengers who are willing to accept relatively small amounts
of money to wait for the next available flight. Reference [23]
studied the auction bumping strategy using airline data for a
period over 14 years. The author found that there is usually
a fair proportion of ticketed passengers who are willing to
accept small amounts of money or other benefits in exchange
for giving away their seats. Reference [24] compared a reverse
auction mechanism with a fixed-price compensation for over-
booked flights in terms of costs involved. They concluded that
the auction can lead to higher profit for the airlines in most
cases.

C. Discussion

Different types of incentives for transit demand manage-
ment have been used in practice, including free tickets, fare
discounts, credit/lottery. They have different characteristics
in terms of implementation complexity, cost efficiency, and
behavior change.

The free ticket program is easy to implement using AFC
systems. However, it has a low cost-efficiency as it has limited
flexibility to differentiate the heterogeneous travel patterns of
passengers. Fare discount-based incentives can be designed
considering spatial, temporal, and discount structures. In prac-
tice, most discount incentives use a flat discount structure
over a single time period. Similar to the free ticket incentive,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

flat-rate discount promotions are not personalized and have
low cost-efficiency. An early evaluation of a 25% discount
promotion in Hong Kong’s MTR system found a 3% reduction
in peak hour trips. The results demonstrated that different
users have different responses suggesting that the incentives
may be improved by accounting for user heterogeneity. Both
the free and discount schemes are attractive to passengers.
However, if they need to shift their typical departure times
by a considerable amount to take advantage of the promotion,
these schemes are not desirable. Empirical studies show that
the impact of fare savings is not the same for all users. The
magnitude of savings is less important for users who need to
shift by more than 15 min to receive a discount [25].

Credit-based incentives allow passengers to earn points
which could be redeemed for cash or used for playing online
games. It is relatively complicated to implement compared to
free tickets or fare discount incentives, as points are offered
to participants according to different rules, depending on
their travel status (e.g., number of trips, departure time).
The field experiment with the INSISC system in Singapore
demonstrated that it takes four weeks for passengers to form
a habit of behavior change, resulting in a consistent 7% of
peak trips shifted.

Implementations of these incentive strategies in practice
are mostly generic and passive. They do not take into con-
sideration passenger heterogeneity in response to incentives,
as well as the impact of passenger behavior changes on system
performance. This paper proposes an auction-based approach
to nudge passengers to shift to off peak travel. The approach
allows passengers to participate in the mobility management
process through auctions and maximize the rewards to those
passengers whose behavior change most likely benefits the
system.

There are two challenges in a reverse auction-based system
in general: a) retaining passenger interests in participating and
b) modeling the bidding behavior evolution. For example, in a
recurring reverse auction-based incentive system, passengers
may lose interest in future participation and drop out if
the chance of winning is very low. Various studies have
proposed strategies to deal with this problem. For example,
bidders who failed in previous rounds of auctions may be
assigned higher weights to increase their winning probability
in subsequent auctions [26]. Bidding behavior may also evolve
over time. Passengers who are risk-neutral, if they are not
selected in previous auctions, may decrease their bid prices in
order to increase their probability of winning [27]. Reversely,
passengers who won in previous rounds are likely to increase
their bid price to increase their expected reward. Incorporating
the learning phase where bidders change their bid behavior in
the design of the incentive system is beyond the scope of this
study. This paper focuses on the steady state case in order to
explore the potential of auction-based incentive systems.

III. METHODOLOGY

A. A Reverse Auction-Based Individualized Incentive System

We model the interactions between the system and passen-
gers as an online reverse auction. In reverse auctions, there is

Fig. 1. A reverse auction based individualized incentive system.

one buyer and many potential sellers who compete to sell their
products or services. In the proposed system, the transit oper-
ator is the buyer targeting a number of passengers to change
their departure time. The passengers are the sellers bidding
their asking prices for changing their departure behavior. The
operator selects winners and rewards them with their submitted
bids.

Fig. 1 illustrates the system framework. It consists of the
following processes: 1) the operator sends invitations to all (or
selected) passengers; 2) individual passengers decide whether
to submit a bid or not. If they submit one, it is in the form of
fare discounts which are the options provided by the operator;
3) the operator selects winners among the bidders and notifies
them of the bidding results; 4) winners make decisions to travel
during the off-peak period or not; 5) winners who travel during
the off-peak receive the fare discount they requested.

The system (using for example a mobile app) works as
follows. Passengers register and create an account for auc-
tion participation using the unique identification number of
their AFC card. The operator identifies candidate passengers
according to their contribution to the critical link load and
sends them invitations to join the auction, for example, the pre-
vious day. The invited passengers make decisions to participate
or not. Their decision may be based on their past experience
with the system, their original intended travel time flexibility,
etc. Passengers who decide to participate in the auction, choose
a bid option and submit it. Their choice may be based on
the expected reward, considering prior experience with the
system. After the bidding process, the operator selects a subset
of bidders as winners based on their potential contribution to
the critical link load and available budget. The system informs
the results to all bidders. After that, the winners make their
decision whether to travel during the off-peak period. Since
they decided to participate in the bidding process and won the
requested reward, the likelihood of switching to the off-peak
period is relatively high (even if they originally intended to
travel during the peak), especially compared to the probability
of switching under the typical (static and generic) promotion
schemes. Finally, the system rewards the winners who actually
travel during the off-peak period, according to their bid.

There are several challenges when designing such a system,
including:
• In the auction invitation process, the number of invited

passengers should be carefully considered. If all passen-
gers are invited, those who make little or no contribution
to the critical link loads may join the system. Although
based on the proposed design, the likelihood of them
being selected is small, they may still become winners,
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leading to a low crowding-reduction potential in reduc-
ing congestion with a constrained budget. If inadequate
passengers are invited, there is a risk that not enough
passengers will join the auction and switch to off-peak
travel, and hence fail to achieve a specified system
performance target (e.g., load reduction on critical links).

• In the winner selection process, the operator decides
to select winners among the bidders. The selection is
based on their claimed discounts given a budget constraint
and desired overall load reduction level on critical links.
At this stage, however, the operator does not know the
actual travel plans of passengers on the target day. Thus,
passengers’ crowding-reduction potential (their potential
contribution to reduce the load on critical links) should
be taken into account in the winner selection process.

There are also several key economic properties that char-
acterize the performance of a mechanism: computational
efficiency, individual rationality, budget-balance, and truthful-
ness [28]. A mechanism is computationally efficient if the
outcome can be computed in a polynomial time. An auction
mechanism is individually rational if the utility is non-negative
for each bidder and no deficit for the mechanism if budget
balance. Finally, in a truthful mechanism, if no bidder can
improve his utility by bidding a value deviating from his true
value, regardless of what other bidders announce.

Note that in practice, passengers and operators may update
their strategies often based on experience. For example, pas-
sengers may change decisions with respect to participation
and their bidding strategy, while operators update the invited
passengers set and winner selection strategies based on their
understanding of the expected passengers’ behavior. Gradually,
the system is expected to converge to a steady state under
which both sides have their perceived ‘optimal’ strategies.
This paper focuses on exploring the performance of the system
under steady-state conditions, in which, we assume the auction
incentive system has been run for a sufficient large number of
rounds, bidders will not experiment with their bids as they
will have no extra payoff by changing their bids. These are
the same conditions as in various steady-state reverse auction
studies [29], [30].

Table I summarizes the notation used in the following
sections.

B. Auction Invitation Process

The selection of the passengers to be invited to the auction
is based on the following steps: OD pairs contribution ranking,
passenger identification, and passenger crowding-reduction
potential calculation.
• OD pairs contribution ranking. All OD pairs in the

system are ranked in descending order according to their
contribution to the critical link loads during the congested
period, i.e., 8:30-9:00 am. The contribution of an OD pair
demand to a critical link load is a function of the OD
demand, and expected path choices [2].

• Passenger identification. Passengers traveling on the
selected OD pairs and using the system during the critical
period are identified from the AFC data.

TABLE I
NOTATION

• Passenger crowding-reduction potential calculation. For
each passenger i , their habitual probabilities, including
travel probability πi , probability πi j to use OD pair j ,
and probability πi j p to travel during the peak period can
be derived according to their travel history based on AFC
data. The crowding-reduction potential of each passenger
is calculated using Eq. (1).

The system invites N passengers to participate in the auction
based on their potential to reduce the load on critical links
(crowding-reduction potential). The crowding-reduction poten-
tial of passenger i is defined as their likelihood to contribute
to the reduction of the load on critical links if they decide
to travel during the off-peak period. Using the AFC system,
the transit operator has knowledge of past behavior of the
passengers using smart cards.

eil=πi×
∑
j∈Ri

∑
k∈Ki

πi p×πi j p×πk
i j p×δkl×ϖ

of f
i , ∀l ∈ L

(1)

The crowding-reduction potential of an individual passenger
on critical link l depends on the probability of passenger i
changing their habitual behavior in response to the incen-
tive system. A passenger’s crowding-reduction potential with
respect to a specific critical link l, eil , is the probability
that an individual shifts to off-peak travel if they win, mul-
tiplied by the contribution to the load of the critical link
during the peak, see Eq. (1). The potential contribution of
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an individual passenger to the load of critical link l during
peak periods can be inferred from their past habitual behavior
recorded by smart cards in the AFC system. The calculation
of crowding-reduction potential involves considering the travel
probability of passenger i , probability of traveling during peak
given i travels, probability of using OD pair j during peak,
probability of selecting path k within OD pair j during peak,
path k includes link critical link l or not and the probability
of i shifting to off-peak travel if they win the bid. For the
path fractions πk

i j p associated with a specific OD pair j , the
travel paths between OD pairs are provided by MTR, which
are used in the MTR journey planner. It includes information
on OD pairs, path ID, and path details (a sequence of tuples
of [line, direction, station]).

A passenger’s overall crowding-reduction potential ei is the
sum of its crowding-reduction potential contributing to the
load of a link over all critical links Eq. (2).

ei =
∑
l∈L

eil (2)

The set of users invited to participate in the auction is
defined as:

I = {i ∈ J |ni ≤ N } (3)

where ni is the index of individual i in set I with passenger
order decreasing on their crowding-reduction potential ei .
Note that all passengers or a subset of passengers could be
considered for invitation.

C. Passenger Bidding Process

An individual passenger i who receives the auction invita-
tion makes plans for their next day’s travel, including whether
to travel or not, whether they will travel in the peak or
off-peak, and which OD pair they will travel on. Based
on their plans, they respond to the auction invitation. The
invited passengers are provided a set of discount options to
bid Fig. 2(a). Upon invitation, passengers make decisions on
whether to bid and which bid to submit out of these options.
With no loss of generality, we assume passengers who have
no plan to travel for the next day will not participate in the
auction as they do not qualify for the reward without traveling.
Passengers who plan to travel, may decide to bid or not. The
system is tailored for individuals who demonstrate a high level
of crowding-reduction potential for adjusting their departure
behaviors. Users who do not find the incentive of bidding
appealing and are unlikely to make the effort to participate can
simply choose to ignore the auction invitation, which wouldn’t
pose inconvenience to them in any way. On the other hand,
for users who are flexible and motivated by rewards, engaging
in the bidding process is likely to be a non-burdensome
experience. In a participatory system, users who are willing to
submit a specific bid are more likely to change their behavior,
which is tailor to their preferences, in contrast to a system
that generates bids automatically. Passenger i who decides
to participate in the auction submit their requested reward
(discount) selected from the provided options dm

∈ D. Their
choice represents the discount they are willing to accept in

Fig. 2. Bidding behavior of passengers. (a) Bid options; (b) Two-level nested
logit choice model.

order to switch to travel during the off-peak period. Fig. 3
shows the bidding decision process of passenger i . Note
that passengers planning to travel off-peak the next day are
assumed to participate in the auction with probability 1, as they
do not have to alter their plans.

A nested logit model is developed to model the passenger
bidding behavior [31], [32]. Fig. 2(b) shows a tree diagram
describing the nesting structure. There are two levels: the
probability of submitting a bid; and the probability of choosing
a certain discount level for their bid.

The lower-level models the probability that individual i
traveling on OD pair j will submit a bid dm :

P
(

dm
i j

∣∣∣ D
)
=

eV m
i j∑

dm∈D eV m
i j

(4)

where V m
i j is the utility of passenger i submitting a bid dm .

Without loss of generality, the utility V m
i j is defined as a

function of the discount that passenger i will receive and the
probability of winning the bid (expected reward).

V m
i j = β ∗ dm

i j ∗ F j ∗ P
(
wm

i j

)
(5)

where P
(
wm

i j

)
is the perceived probability of winning, and β

is a parameter.
The likelihood of winning the auction depends on two key

factors, the characteristics of the auction process; and the
bid discount that a bidder would like to receive. For two
submissions with the same bid price, the winning likelihood
depends on attributes, such as the number of bidders, the
characteristics of the trip and prior travel behavior exhibited by
the individual. The requested bid price also affects the winning
rate, i.e., the lower the bid, the more likely the bidder will win
the auction. Various studies have proposed a logistic regression
to model the winning probability [33], [34]:

P
(
wm

i j

)
=

1
1+ ez (6)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



JIANG et al.: REVERSE AUCTION-BASED INDIVIDUALIZED INCENTIVE SYSTEM 7

Fig. 3. Travel plan and bidding behavior of passengers.

where, z =
∑

i θi ∗ gi . gi represents the characteristics of the
individual and the bid, and θi is the corresponding weights.
Given that the paper focuses on steady-state conditions, the
participating passenger is aware of previous outcomes of their
bids. They are also aware that price impacts the chances of
winning. We, therefore, model z as a function of the bid
amount, i.e., z = θ ∗ dm

i j ∗ F j , where F j is the fare for OD
pair j .

The upper-level logit model models the probability of pas-
senger i deciding to participate in the bidding process given
that they travel on OD pair j [34].

P
(
bi j

)
=

eVbi j

eVbi j + e
Vb̄i j

(7)

Vbi j is the utility of passenger i if they participate in the
auction Vb̄i j

is the utility if they do not):

Vbi j = αE
[
max

(
V m

i j + εm
i j

)
,∀dm

]
= α log

(∑
dm∈D

eV m
i j

)
(8)

where α is a coefficient, and εm
i j is the error term.

After being notified of their bid results, the bid winners
decide whether they will switch to off-peak travel. We assume
that bid winners will actually switch to the off-peak travel with
a probability ω

op
i (habitual behavior, for example, calibrated

from their travel histories) given that they win their requested
bids.

D. Winner Selection Process

After the bidding process, the system collects all the bidders
B with their submitted discounts and selects winners based on
the available information. It is worth noting that the system
does not know the actual travel plans of passengers on the
target day at this stage. It knows the passengers’ claimed
discounts (bids) and their habitual travel behavior which can be
extracted from the AFC data (in terms of traveling during the
peak and OD pair used based on historical AFC transactions of
the bidder), the path choice probability is based on information
about path choice fractions (e.g. from surveys). The probability

Fig. 4. Bidder ’s habitual behavior as inferred by the system using AFC
transaction data.

of shifting to off-peak travel if they win, could be based on
observation from past behavior of the passenger. Fig. 4 shows
an example of bidder i’s travel behavior information known
to the system. Based on their habitual travel behavior and the
submitted bid, the system selects a subset of bidders from
set B as winners. The goal is to maximize the expected load
reduction on critical links given the available budget.

We formulate the winner selection process as an opti-
mization problem. The objective is the maximization of the
expected crowding-reduction potential of the selected winners,
subject to a budget constraint C and desired load reductions
(number of passengers shifted to the off-peak) on critical links.
The decision variables xi is:

xi =

{
1, i f bidder i is selected
0, otherwise

(9)

Hence, the winner selection problem can be written as:

max
B

∑
i∈B

ei xi (10)

Subject to:

∑
i∈B

∑
j∈Ri

πi p × F j × dm
i j ×

[
πi j p ×ϖ

of f
i +

(
1− πi j p

)]
× xi ≤ C (11)∑

i∈B

(eil · xi ) ≥ N∗l , l ∈ L (12)

xi ∈ {0, 1} , ∀i (13)

Eq. (10) maximizes the total expected crowding-reduction
potential over all bidders, ei was originally defined by Eq.
(1) and (2), taking into account the probability of travel πi .
However, in Eq. (10), it is used without the term πi . It is
assumed that since passenger i submitted a bid, their plan
is to travel on the target day. Eq. (11) guarantees that the
expected fare revenue loss because of incentive discounts paid
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Fig. 5. Winners’ decision whether to shift to off-peak or not.

to the winners does not exceed the budget. Eq. (12) ensures
that the total load reduction on a critical link is no less than
the minimum required load reduction on that link. We use the
Gurobi Optimizer to solve the optimization problem presented
in Eqs. (10)-(13). Gurobi is a robust optimization solver
known for its utilization of advanced algorithms, including
linear programming, mixed-integer programming, quadratic
programming, and constraint programming, to address a wide
range of optimization problems [35].

E. Actual Travel Behavior of Bid Winners

After the winner selection process, the system informs all
bidders of the bidding results. Winners make decisions on
whether to travel off-peak for the next day. Winner i who
originally planned to travel during the peak, will shift to the
off-peak travel with an actual probability ω

of f
i . If winner i

originally planned to travel off-peak will travel as planned.
Fig. 5 shows winner i’s decision process on traveling off-peak.
The system will pay the reward to the winners who travel
during the off-peak period.

Algorithm 1 summarizes the simulation process of the
incentive system.

Algorithm 1 The Reverse Auction-Based Incentive System

Input: Passenger set J in decreasing order of crowding-
reduction potential ei
Output: Winner set W
Invite top N passengers from J based on ei in Eq. (1)

I = {1, . . . , i, . . . , N |i ∈ J }
For i ∈ I do

i responds to the auction invitation
If Ri = {b, dm} then B ← B ∪ i

For i ∈ B do
W ← select winners by solving Eq. (5) - Eq. (8)

For i ∈ W do
i decides to switch to off-peak or not

F. Properties of the Proposed Incentive Mechanism

There are several properties of the proposed incen-
tive system. First, in Algorithm 1, the complexity of the
crowding-reduction potential sorting operation (line 3-4) is
O(N ), and the for loop in the bidding process (line 5-7) also

has a computational complexity of O(N ). Additionally, the
computational complexity of the for loop in the winner selec-
tion process (line 8-9) is O(B). Therefore, the time complexity
of Algorithm 1 is in polynomial time order. Second, there are
two kinds of bidding results for each bidder i . If passenger
i traveling on OD pair j participates in the auction and
fails to bid, then the utility of the bidder V(bi j ) equals to
0. If passenger i is successful, the rewards he will be paid
equals to the requested discount dm

i j multiplied by the trip
fare F j , then the utility of the bidder V(bi j ) is greater than 0.
According to the above mentioned analysis, the user utility
is non-negative, satisfying individual rationality. In terms of
the bidding process, two cases need to be considered for
the system during the bidding process. First, if there are no
passengers participate in the auction, the utility of the transit
operator equals to 0. Second, if there are passengers participate
in the auction, Eqs. (11)-(12) ensures that the payment to
the winners will not exceed the available budget and the
load reduction is not less than the desired load reduction.
Hence, the utility of the transit operator is non-negative, and
the mechanism is balanced in budget. Finally, in the auction
formulation, as all the bidders are rational, the natural behavior
of the losing bidders would be to decrease their bids (if
bidders overbidding). Similarly, winning bidders will increase
their bids by certain amount in the next round to increase
their payoffs (if bidders underbidding). Eventually, the system
reaches the steady state in which all the bidders have their
corresponding fixed bids and bidders cannot improve their
utilities by deviating their true valuation, no matter what
bids the other users submit. Thus, in this study, the incentive
mechanism is truthful.

IV. CASE STUDY

Hong Kong’s Mass Transit Railway (MTR) system is used
as a case study. We consider two critical links (Fig. 6) which
operate close to capacity in the peak of the peak time period
8:30-9:00 am. MTR has a closed AFC system requiring users
to tap their cards at both entry and exit gates, thus the complete
trip details are known. We used AFC data from 24 weekdays
(April 9 to May 11, 2018) for the analysis.

A. Experimental Setup

Previous studies have suggested that incentivizing pas-
sengers to change their exit times is effective at reducing
crowding during peak periods [25]. Reference [2] proposed a
generic optimization approach to design such strategies. They
formulate the optimal promotion design problem to target
‘effective’ users whose behavioral response to the promo-
tion contributes to the reduction of crowding in the system.
In this study, we use a reverse auction-based strategy to
encourage passengers, who habitually exit the system during
the peak period, to shift to the off-peak period. For the
purpose of this application, we assume that the auction system
is designed to invite a subset of metro passengers based
on their crowding-reduction potential in reducing the critical
link loads rather than inviting all passengers. Different ways
can be used to select these passengers, including station/OD
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Fig. 6. Subway network and critical links (red arrows).

pair based (passengers using certain stations/OD pairs are
invited), and individual based (targeted passengers are invited).
Compared to other selection methods, inviting passengers by
their crowding-reduction potential can better target passengers
who will likely contribute to the reduction of the load at critical
links.

To reduce the computation burden, the selection of the pas-
sengers to be invited to the auction is based on the following
steps: OD pairs contribution ranking, passenger identification,
and passenger crowding-reduction potential calculation.

• OD pairs contribution ranking. All OD pairs in the
system are ranked in descending order according to their
contribution to the critical link loads during the congested
period, i.e., 8:30-9:00 am. The contribution of an OD pair
demand to a critical link load is a function of the OD
demand, and expected path choices [2].

• Passenger identification. Passengers traveling on the
selected OD pairs and using the system during the critical
period are identified from the AFC data.

• Passenger crowding-reduction potential calculation. For
each passenger i , their habitual probabilities, including
travel probability πi , probability πi j to use OD pair j ,
and probability πi j p to travel during the peak period can
be derived according to their travel history based on AFC
data. The crowding-reduction potential of each passenger
is calculated using Eq. (1).

The top 200 OD pairs contribute 65% of the load on the
critical links. Fig. 7 shows the distribution of all passengers
from these OD pairs in terms of the number of days they use
the MTR network and the number of days traveled during the
peak period. Fig. 7(a) shows that around 40% of the passengers
travel over 10 days and 20% of the passengers travel at least
18 out of the 24 weekdays.

Fig. 7(b) shows the distribution of passengers traveled
during the peak period when the total number of traveled days
is 5, 10 and 15 days. The blue, orange and yellow bars describe
the distribution of passengers who traveled 5 days, 10 days and
15 days, respectively, during the study period. For example,
the second blue bar (x = 1) means that approximately 26%
passengers traveled only one day in peak, considering that they
traveled for a total of 5 days. Likewise, we can observe that
roughly 18% (the second orange bar) passengers traveled one
day at the peak when they traveled for a total of 10 days.The

Fig. 7. Distribution of passengers. (a) Number of days traveled; (b) Number
of days traveled during the peak.

results show that, depending on the number of travel days, 55-
65% of the passengers travel at least one day during the peak.
Generally, Fig. 7 shows that there is large heterogeneity in
passengers’ travel behavior in terms of number of days traveled
and days with trips during the peak. This heterogeneity should
be taken into account in the incentive system design.

B. Scenario Parameter Settings

Using the Hong Kong MTR system data, we validate the
performance of the proposed auction across a number of
scenarios. The scenarios represent key factors affecting perfor-
mance, including the number of invited passengers, the bidding
participation level, and the budget level. In the experiments,
we vary the number of invited passengers from 10,000 to
100,000 (0.2% - 2.1% daily ridership) with an increment of
10,000 [36]. For each passenger, we simulate their travel and
bidding behavior, including the probability of traveling, prob-
ability of traveling during the peak, probability of traveling
during the peak period using OD pair j , probability of bidding,
and probability of submitting a bid with a value dm .

To explore the impact of different bidding participation
levels, we examine two bidding scenarios: high and low
participation. We assume an average participation rate of 65%
in the high participation scenario and a rate of 10% in the
low participation case. To achieve these, we reversly estimate
the distribution of model parameters α, β, θ in Eqs. (5)-(8) by
enumerating different parameter combinations.
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TABLE II
PARAMETERS USED TO REPRESENT PASSENGER BEHAVIOR IN THE

EXPERIMENT

Table II shows the parameters used in the experiment.
According to Eqs. (5)-(8), we obtain: (1) the high probability
bidding case (the participation rate ranges between 53.5%
and 86.6% with an average 64.5%); and (2) low probability
bidding case(the participation rate ranges between 3.6% and
12.5% with an average 8.7%). The probability of submitting
a bid amount by each bidder is calculated by Eq. (4).We
also explore the influence of budget levels by varying it from
HK$10, 000 to 250, 000 (0.02%- 0.47% daily revenue) with
an increment of HK$20, 000 [36]. The (habitual) probability
of winner i shifting to off-peak travel ω

of f
i and that perceived

by the agency π
of f
i are uniformly distributed over U (0.8, 1).

The rationale behind setting parameters is as follows: ini-
tially, Eq. (6) models the perceived probability of winning,
denoted as P

(
wm

i j

)
, which requires the setting of the parame-

ter θ . As P
(
wm

i j

)
represents a probability, it must fall within

the range of [0, 1]. Hence, we define the range of θ within
the range. Similarly, the setting for β is associated with the
probability that an individual submits a bid when travelling
on OD pair j , denoted as dm , in Eq. (4)-(5). The range for
α is established based on the probability of an individual’s
decision to participate in the bidding, as illustrated in Eq.
(7)-(8). Following the same principles, we also determine the
appropriate ranges for β and α.

We demonstrate the computational efficiency and con-
vergence of our optimization by presenting an example.
We consider winner selection with a HK $150,000 budget
and 90,000 invitations, assuming high participation. Using
Gurobi v9.1.1 on macOS 64-bit, with 6 cores and 12 logi-
cal processors, our optimization completed in 1.21 seconds
over 327 iterations. This problem falls under Mixed Inte-
ger Programming, solved using Gurobi’s Branch-and-Bound
algorithm with an optimality tolerance of 1e-4 (0.01%) [37].
After 327 iterations, the gap narrows to 0.0002%, indicating
near-optimal solution convergence.

C. Results

1) Overall Potential: We discuss results initially for the low
response rate case which is the pessimistic scenario. Fig. 8(a)
shows the average load reduction at the critical links as a
function of the budget and the number of invited passengers for
the low participation rate scenario. Each line shows the optimal
auction solution for the corresponding number of invitations
and budget levels. For example, with 50,000 invited partici-
pants and a budget of HK$30,000 per day, the load reduction is
3.8%. As the budget increases the load reduction also increases
and finally stabilizes at 4.1% when the budget exceeds HK
$50,000. Similar trends can be observed for other numbers

of invited passengers. The results also show that the auction
performance is bounded in terms of load reduction regardless
of the amount of budget invested. Increasing the budget above
a threshold does not further improve the performance. This
threshold depends on the number of passengers invited to
participate. This is as expected as all the bidders become
winners when the budget value is beyond a critical point
(which is a function of the number of invitations). Increasing
the budget beyond this point does not reduce the peak loads.
Fig. 8(b) shows the number of winners as a percentage of all
bidders. It shows that with a certain budget level that is not
sufficient to reward all bidders (e.g. HK$20,000), the average
winning probability of the bidders decreases as the number
of invitations increases, which suggests that a relatively small
number of invitations can encourage long-term loyalty as the
chances of being rewarded is high.

Fig. 8(a) also illustrates a portfolio of schemes that can
be used by operators given certain budget constraints and
implementation considerations. For example, in the case of
low participation rate and a budget of HK$90,000 per day,
load reduction at the critical links ranges from 2.6% to 5.4%.
If the goal is to reach a specific load reduction level, e.g.,
5.0%, the results show that the system cannot achieve this
level if the number of invited passengers is 70,000. At least
80,000 passengers have to be invited to reach the goal of 5%
load reduction on critical links.

Compared to the OD pair based incentives with a flat fare
discount in [2], the efficiency of the auction-based incentive
system is much higher by directly targeting individuals. For
example, the OD based incentive scheme achieves a maximum
load reduction of 2.4% with a budget of HK$383,560 per
day using 2300 candidate OD stations, while the auction
system can achieve a similar reduction level (2.6%) with
30,000 passengers invited and HK$30,000 per day for the low
participation scenario.

2) Impact of the Number of Invited Passengers and Bidding
Participation Level: Fig. 9 shows the percent load reduction
as a function of the budget and number of invitations for high
and low participation scenarios. The results indicate that for
a given budget, the percent load reduction increases as the
number of passengers invited increases. It is also observed
that the marginal contribution of additional budget on the load
reduction diminishes as the budget increases. Compared to the
low participation scenario, the magnitude of load reduction
is significantly higher for the high participation scenario. For
example, to achieve a 5% load reduction under the high bid-
ding participation scenario a budget of HK$10,000 is needed
if 10,000 passengers are invited. The minimum needed budget
in the low participation case to achieve the same reduction is
HK$ 70,000 and require at least 90,000 individuals.

Fig. 10 shows the average cost per effective passenger for
the high and low participation rates with varied budget levels
and number of invitations. We define effective passengers
as the winners who change their original peak travel plans
to off-peak and contribute to critical link load reduction.
Fig. 10(a) shows the average cost per effective passenger for
the high participation scenario. Given the same number of
invitations, the average cost per effective passenger increases
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Fig. 8. Performance of the system in the low participation case. (a) average
load reduction; (b) percentage of winners over the total number of bidders.

firstly, and then stabilizes at a fixed amount when the budget
is sufficient for rewarding all bidders (all bidders become
winners). We also observe that, for a certain budget level which
is not sufficient for rewarding all bidders (e.g. HK$50,000), the
average cost per effective passenger decreases as the number
of invitations increases. This is expected as the system has
more opportunities to select better bidders as winners consid-
ering the trade-off between crowding-reduction potential and
reward. The pattern is gradually reversed when the budget
is not a constraint for rewarding winners (e.g. HK$170,000).
That is, the average cost per effective passenger increases with
the increasing invitations for a certain budget level sufficient
for offering rewards to all bidders. That is because, when
the available budget is large enough, adding more invitations
means more low effective passengers are rewarded, leading
to the decrease in the cost efficiency. Similar patterns are
observed for the low participation rate scenario in Fig. 10(b).

3) Characteristics of Winning Bids: Fig. 11 shows the
distribution of various characteristics among the bidders and
selected winners in the case where 30,000 passengers are
invited with a budget of HK$10,000 for both low and high
bidding participation. Fig. 11(a) and 11(c) show the distribu-
tion of the reward received. Each bar represents the percentage

Fig. 9. Average load reduction with various invitation and budget levels.
(a) High participation rate; (b) Low participation rate.

of bidders/winners who received the reward they bid on (fare
reduction) in HK$.

The results show that bidders submitting lower bids are
more likely to be selected by the system. Fig. 11(b) and 11(d)
show the distribution of the crowding-reduction potential
(expected reduction in critical load) of bidders and winners.
Each bar indicates the percentage of bidders/winners with the
corresponding expected number of critical links. A value close
to 2 means that a passenger is very likely to go through
two critical links. The results show that bidders with higher
crowding-reduction potential in contributing to critical load
reduction are more likely to be selected as winners.

4) Improving Decision Making in Selecting Winners: We
define as off-peak travelers the passengers who are invited
to the auction but they actually plan to travel off-peak on
the target day. The ratio of off-peak travelers is the number
of invited off-peak travelers over the total number of invited
travelers. Similarly, off-peak bidders are the bidders who
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Fig. 10. Average cost per effective passenger for different participation rates.
(a) High; (b) Low.

actually plan to travel in the off-peak. The ratio of off-peak
bidders is defined as the number of off-peak bidders over the
total number of bidders (invited travelers who participate in
the auction). Fig. 12(a) and 12(b) show the ratio of off-peak
travelers and off-peak bidders for the case of high and low
participation rates, respectively. The percentage of off-peak
bidders is consistently higher than the percentage of off-peak
travelers. This is actually expected as invited passengers who
were planning to travel off-peak are more likely to bid (if
they win, they do not have to change their plans) in order
to receive the requested discount. The difference between the
two ratios is larger in the low participation case, since for
the same number of invitations, the proportion of off-peak
bidders among the bidders is higher in the low participation
case. This is because for the same number of invitations, the
number of passengers planning to travel off-peak is the same
in both scenarios. Hence, these passengers will submit a bid as
explained before. Furthermore, in the low participation case,
the number of passengers who plan to travel during the peak
and decide to bid is much lower, resulting in a much higher
ratio of off-peak bidders. However, off-peak travelers ratio is

Fig. 11. Distribution of the amount of reward and passenger crowding-re-
duction potential. (a-b) high; (c-d) low.

the same in the low and high participation scenarios as it
represents the same population.
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Fig. 12. Ratio of off-peak travelers and off-peak bidders. (a) High partici-
pation rate; (b) Low participation rate.

The difference between these two ratios indicates the level
of information bias when operators select winners. In the
approach used earlier, operators assume that the probability
that a bidder plans to travel off-peak is given by the historical
data (red line in Fig. 12). However, in the sample of bidders,
passengers who actually plan to travel off-peak are more likely
to participate in the auction (as they do not have to alter
their behavior to receive the reward if selected). Therefore,
the percentage of off-peak bidders in the bidder set is higher
than the percentage of off-peak travelers in the invited set,
but this is not taken into account in the formulation. Conse-
quently, the winner selection process uses biased information,
underestimating the probability of actually traveling off-peak.
This likely leads to suboptimal solution. This can be avoided
if the probability πi j p of an individual travelling during the
peak in calculating the crowding-reduction potential of an
individual in Eq. (1) assumed by the agent, takes into account
the expected higher participation of off-peak travelers in the
set of bidders. However, the estimation of this probability is
not straightforward.

While developing methods to correct for the habitual infor-
mation bias is out of this paper’s scope, a simple experiment
is used to illustrate its impact on the winner selection process.
We assume 30,000 passengers are invited and the available
budget is HK$30,000 for high and low participation scenarios.

In the high participation case, the results show that using the
habitual πi j p as estimated by the historical data, the expected
load reductions (as estimated by Eq. (1)) is 15.8%. However,
the actual reduction (based on the simulation experiments) is
14.9%, leading to a 0.9% overestimation. By increasing the
probability of bidders traveling during the off-peak period by
10% (average difference between these two ratios is around
10% in Fig. 12(a)), that is, using a modified π̂i j p, the discrep-
ancy between the expected and actual load reduction decreases
to 0.7%. In the low participation case, the discrepancy between
the expected and actual load reduction decreases from 3.1%
to 2.3% with the modified π̂i j p.

5) Impact of Personalization: To assess the significance
of personalization, we conducted a comparison between the
proposed incentive system and a benchmark scenario in which
passengers are randomly selected from the top 200 OD
pairs with fixed incentives. The probability of inducing
actual individual behavior change remains consistent with
the primary experiment. For the random selection of pas-
sengers, we performed 50 iterations and report the average
performance.

In the benchmark, where incentives are provided to all
randomly selected passengers, it can be considered that all the
selected passengers participate in the system and are winners.
This setting is more analogous to a high participation scenario
in the proposed system. Thus, we compare the performance
of the benchmark with that of the proposed system assuming
a high participation rate. For simplicity, a 25% discount
is applied, revealing that with HK$ 30,000, approximately
13,000 passengers are selected, resulting in a 4.7% load
reduction. In contrast, the proposed system achieved 9.3%
load reduction under the same conditions. When using HK$
50,000, the load reduction increases to 7.8% with around
20,000 passengers selected, which still falls short of the
efficiency achieved by the proposed system with a 13.7% load
reduction.

V. CONCLUSION

In this paper, we propose a reverse auction-based individual-
ized incentive mechanism for alleviating peak period crowding
in public transit systems by incentivizing passengers to change
their departure times. Instead of deploying generic, fixed-
amount discount incentives for all passengers, as is common
practice, the system allows passengers to reflect their preferred
incentive level (bid). The system considers the heterogeneity
among passengers, including passengers’ potential contribu-
tions to the crowded links, and habitual travel patterns. The
selection of the auction winners is formulated as an opti-
mization problem rewarding those whose behavioral change
is likely to contribute to the reduction of the crowding in
the system considering budget constraints. A real-world transit
network is used to evaluate the performance of the system. The
case study also explores the impact of design/implementation
and passenger factors, including the number of passengers
invited to participate in the auction, the available budget, and
the level of participation (fraction of invitees who decide to
bid).
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The results show that the system can effectively shift
demand from the peak period to the off-peak. In addition,
it is cost-efficient by targeting potentially valuable passengers
(high crowding-reduction potential and low bids). The results
also show that the system performance gradually increases and
then becomes stabilized with an increasing number of invited
passengers and budget, regardless of the bidding participation
level. We also point out that there is bias in the estimation of
the probability of traveling during the off-peak period (used
by the system for winner selection), if historical data based
on the general user population is used, as opposed to the
bidder set. The bidder set is not representative of the users
as passengers who plan to travel in the peak are more likely
to bid.

Future research will focus on passengers’ day-to-day adjust-
ments of their behavior, as passengers might change their
bidding decisions after several auction rounds, and correct
for the bias discussed in the previous section. Additionally,
extensive surveys will be conducted to calibrate parameters
for modeling bidders’ behavior. The personalized incentive
system can be coupled with the proactive information rec-
ommendation system for more efficient individual mobility
management [38], [39].

REFERENCES

[1] (2019). World Population Prospects. United Nations. [Online].
Available: https://population.un.org/wpp/publications/files/wpp2019_
highlights.pdf

[2] Z. Ma and H. N. Koutsopoulos, “Optimal design of promotion based
demand management strategies in urban rail systems,” Transp. Res. C,
Emerg. Technol., vol. 109, pp. 155–173, Dec. 2019.

[3] Z. Ma, H. N. Koutsopoulos, A. Halvorsen, and J. Zhao, “Demand
management in urban railway systems: Strategy, design, evaluation,
monitoring and technology,” in Handbook of Public Transport Research.
Cheltenham, U.K.: Edward Elgar, 2021.

[4] G. Currie, “Exploring the impact of the ‘free before 7’ campaign on
reducing overcrowding on melbournes trains,” in Proc. 32nd Australas.
Transp. Res. Forum, vol. 32, 2009, pp. 1–13.

[5] A. Halvorsen, H. N. Koutsopoulos, S. Lau, T. Au, and J. Zhao, “Reduc-
ing subway crowding: Analysis of an off-peak discount experiment in
Hong Kong,” Transp. Res. Rec., J. Transp. Res. Board, vol. 2544, no. 1,
pp. 38–46, Jan. 2016.

[6] Z. Ma, H. N. Koutsopoulos, T. Liu, and A. A. Basu, “Behav-
ioral response to promotion-based public transport demand manage-
ment: Longitudinal analysis and implications for optimal promotion
design,” Transp. Res. A, Policy Pract., vol. 141, pp. 356–372,
Nov. 2020.

[7] L. Wang, X. Chen, Z. Ma, P. Zhang, B. Mo, and P. Duan, “Data-driven
analysis and modeling of individual longitudinal behavior response to
fare incentives in public transport,” Transportation, vol. 50, pp. 1–24,
Sep. 2023, doi: 10.1007/s11116-023-10419-8.

[8] C. Pluntke and B. Prabhakar, “INSINC: A platform for managing
peak demand in public transit,” Journeys, Land Transp. Authority Acad.
Singap., vol. 2013, pp. 31–39, Jan. 2013.

[9] BART Perks Phase II Evaluation Report. San Francisco Bay Area Rapid
Transit District. Accessed: Sep. 2019. [Online]. Available: https://
www.bart.gov/sites/default/files/docs/Perks%20Phase%20II%20-
%20FTA%20Final%20Report.pdf

[10] P. Micholia, M. Karaliopoulos, and I. Koutsopoulos, “Mobile
crowdsensing incentives under participation uncertainty,” in Proc.
3rd ACM Workshop Mobile Sens., Comput. Commun., Jul. 2016,
pp. 29–34.

[11] X. Qu, H. Lin, and Y. Liu, “Envisioning the future of transportation:
Inspiration of ChatGPT and large models,” Commun. Transp. Res.,
vol. 3, Dec. 2023, Art. no. 100103.

[12] R. J. Gan, N. Gans, and G. Tsoukalas, “Overbooking with endogenous
demand,” Whart. Sch. Res. Pap., 2019.

[13] K. V. Nagarajan, “On an auction solution to the problem of airline
overbooking,” Transp. Res. A, Gen., vol. 13, no. 2, pp. 111–114,
Apr. 1979.

[14] H. N. Koutsopoulos, P. Noursalehi, Y. Zhu, and N. H. M. Wilson,
“Automated data in transit: Recent developments and applications,” in
Proc. 5th IEEE Int. Conf. Models Technol. Intell. Transp. Syst. (MT-ITS),
Jun. 2017, pp. 604–609.

[15] L. Henn, N. Douglas, and K. Sloan, “Surveying Sydney rail commuters’
willingness to change travel time,” in Proc. 34th Australas. Transp. Res.
Forum, Adelaide, SA, Australia, 2011.

[16] Z. Zhang, H. Fujii, and S. Managi, “How does commuting behavior
change due to incentives? An empirical study of the Beijing subway
system,” Transp. Res. F, Traffic Psychol. Behaviour, vol. 24, pp. 17–26,
May 2014.

[17] Y. Tang, H. Yang, B. Wang, J. Huang, and Y. Bai, “A Pareto-improving
and revenue-neutral scheme to manage mass transit congestion with
heterogeneous commuters,” Transp. Res. C, Emerging Technol., vol. 113,
pp. 245–259, Apr. 2020.

[18] R. Greene-Roesel, J. Castiglione, C. Guiriba, and M. Bradley,
“BART perks: Using incentives to manage transit demand,” Transp.
Res. Rec., J. Transp. Res. Board, vol. 2672, no. 8, pp. 557–565,
Dec. 2018.

[19] D. Rey, V. V. Dixit, J.-L. Ygnace, and S. T. Waller, “An endoge-
nous lottery-based incentive mechanism to promote off-peak usage
in congested transit systems,” Transp. Policy, vol. 46, pp. 46–55,
Feb. 2016.

[20] C. Xiong, M. Shahabi, J. Zhao, Y. Yin, X. Zhou, and L. Zhang,
“An integrated and personalized traveler information and incentive
scheme for energy efficient mobility systems,” Transp. Res. C, Emerg.
Technol., vol. 113, pp. 57–73, Apr. 2020.

[21] A. Araldo et al., “System-level optimization of multi-modal trans-
portation networks for energy efficiency using personalized incentives:
Formulation, implementation, and performance,” Transp. Res. Rec.,
vol. 2673, no. 12, pp. 425–438, 2019.

[22] J. L. Simon and G. Visvabhanathy, “The auction solution to airline
overbooking: The data fit the theory,” J. Transp. Econ. Policy, vol. 11,
pp. 277–283, Sep. 1977.

[23] J. L. Simon, “The airline oversales auction plan: The results,” J. Transp.
Econ. Policy, vol. 28, pp. 319–323, Sep. 1994.

[24] Z. Zhong, “Call-back auction mechanism for oversold flights,” Doctoral
dissertation, Dept. Syst. Eng. Eng. Manag., Chinese Univ. Hong Kong,
Hong Kong, 2012.

[25] A. Halvorsen, H. N. Koutsopoulos, Z. Ma, and J. Zhao, “Demand man-
agement of congested public transport systems: A conceptual framework
and application using smart card data,” Transportation, vol. 47, no. 5,
pp. 2337–2365, Oct. 2020.

[26] G. Ji, Z. Yao, B. Zhang, and C. Li, “A reverse auction-based incentive
mechanism for mobile crowdsensing,” IEEE Internet Things J., vol. 7,
no. 9, pp. 8238–8248, Sep. 2020.

[27] J.-S. Lee and B. Hoh, “Sell your experiences: A market mech-
anism based incentive for participatory sensing,” in Proc. IEEE
Int. Conf. Pervasive Comput. Commun. (PerCom), Mar. 2010,
pp. 60–68.

[28] A. Tafreshian and N. Masoud, “A truthful subsidy scheme for a peer-
to-peer ridesharing market with incomplete information,” Transp. Res.
B, Methodol., vol. 162, pp. 130–161, Aug. 2022.

[29] H. Luckock, “A steady-state model of the continuous double auction,”
Quant. Finance, vol. 3, no. 5, pp. 385–404, Oct. 2003.

[30] S. Sengupta and M. Chatterjee, “Designing auction mechanisms for
dynamic spectrum access,” Mobile Netw. Appl., vol. 13, no. 5,
pp. 498–515, Oct. 2008.

[31] D. McFadden, “Modelling the choice of residential location,” Transp.
Res. Rec., no. 673, pp. 72–77, 1978.

[32] M. E. Ben-Akiva and S. R. Lerman, Discrete Choice Analysis: Theory
and Application to Travel Demand, vol. 9. Cambridge, MA, USA:
MIT Press, 1985.

[33] M. Richardson, E. Dominowska, and R. Ragno, “Predicting clicks:
Estimating the click-through rate for new ads,” in Proc. 16th Int. Conf.
World Wide Web, May 2007, pp. 521–530.

[34] X. Li and D. Guan, “Programmatic buying bidding strategies with win
rate and winning price estimation in real time mobile advertising,”
in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining, 2014,
pp. 447–460.

[35] Gurobi Optimizer Reference Manual. Gurobi Optimization, LLC.
Accessed: Jul. 2022. [Online]. Available: https://www.gurobi.com

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1007/s11116-023-10419-8


JIANG et al.: REVERSE AUCTION-BASED INDIVIDUALIZED INCENTIVE SYSTEM 15

[36] (2022). Ten-Year Statistics. [Online]. Available: https://www.mtr.com.
hk/archive/corporate/en/investor/10yr_stat_en.pdf

[37] Parameter Description. Accessed: Jul. 2022. [Online]. Available:
https://www.gurobi.com/documentation/9.1/refman/mipgap2.html

[38] P. Zhang, H. N. Koutsopoulos, and Z. Ma, “DeepTrip: A deep learning
model for the individual next trip prediction with arbitrary prediction
times,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 6, pp. 5842–5855,
Jun. 2023.

[39] Z. Ma and P. Zhang, “Individual mobility prediction review: Data,
problem, method and application,” Multimodal Transp., vol. 1, no. 1,
Mar. 2022, Art. no. 100002, doi: 10.1016/j.multra.2022.100002.

Wenhua Jiang received the Ph.D. degree in
transportation engineering from Monash Univer-
sity, Australia, in 2022, with a focus on passenger
demand and management within urban rail tran-
sit systems. She is currently a Research Associate
with The Alan Turing Institute, U.K. Her primary
research interests include enhancing the accuracy
of transport modeling analysis and decision-making
processes through the use of data integration, simu-
lation, and optimization techniques.

Haris N. Koutsopoulos received the Ph.D. degree in
transportation from Massachusetts Institute of Tech-
nology (MIT). He is currently a Professor with the
Department of Civil and Environmental Engineering,
Northeastern University, Boston, MA, USA. His
research interests include modeling intelligent trans-
portation systems and developing simulation-based
dynamic traffic assignment methods, traffic simu-
lation models at various levels of resolution, and
methods for using data from opportunistic sensors
for the monitoring and control of transport opera-

tions. He received the IBM Smarter Planet Award in 2010, the TRB Traffic
Simulation Lifetime Achievement Award in 2016, and the IEEE Intelligent
Transportation Systems Society Outstanding Application Award in 2011 for
the development of two influential simulation models, MITSIMLab and
DynaMIT.

Zhenliang Ma received the B.Sc. degree in electri-
cal engineering from Shandong University in 2009,
the M.Sc. degree in information technology in 2012,
and the Ph.D. degree in transportation engineering
from The University of Queensland in 2015. He is
currently an Associate Professor of transportation
science and a Faculty Member of digital futures
with the KTH Royal Institute of Technology. His
research interests include statistics, machine learn-
ing, computer science-based modeling, simulation,
optimization, and control within the framework of

selected mobility-related complex systems, which are intelligent transport
systems (traffic/public transport/rails) and personal information systems (trans-
port/energy).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1016/j.multra.2022.100002

