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Reduced-Scale Mobile Robots for Autonomous
Driving Research

Zhuopeng Xie , Mohsen Ramezani , and David Levinson

Abstract— Reduced-scale mobile robots (RSMRs) are exten-
sively used for studying autonomous driving due to their ability
to test models and algorithms in physical environments, their
lack of constraints related to regulations and laws, and their
advantages of low cost and space-saving. Nevertheless, there
is currently a lack of systematic analysis and review of these
autonomous driving studies involving RSMRs. Hence, this paper
comprehensively reviews 134 studies on the application of RSMRs
in autonomous driving research. Through the analysis of these
studies, we summarize the commonly used methods for three
modules (perception, decision-making, and actuation) of the
autonomous driving process of RSMRs, and thoroughly examine
the main applications (navigation and obstacle avoidance, vehicle
fleet coordination, intersection management, parking control,
drift control, passenger unease, and hands-free control) covered
in these studies. Furthermore, we identify the limitations and
gaps in the existing studies related to RSMRs, and provide
recommendations for future research initiatives: 1) focusing on
common interactive driving events in real-world traffic such as
lane changing, merging, cut-in, and overtaking, 2) extending the
experiment duration and distance, 3) increasing the random-
ness in experimental design, 4) exploring the transferability of
autonomous driving algorithms from RSMRs to real vehicles, 5)
researching on the mixed fleet consisting of manually controlled
RSMRs and self-driving RSMRs.

Index Terms— Autonomous driving, reduced-scale mobile
robot, control, intelligent transportation systems, review.

NOMENCLATURE

α The steering angle of RSMR’s inner wheel.
β The steering angle of RSMR’s outer wheel.
δ The steering angle in the bicycle model.
γ The discount factor for calculating Q-values in

RL.
µfx Longitudinal friction coefficient of the front

wheel in the bicycle model.
µfy Lateral friction coefficient of the front wheel in

the bicycle model.
µrx Longitudinal friction coefficient of the rear wheel

in the bicycle model.
µry Lateral friction coefficient of the rear wheel in

the bicycle model.
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ω RSMR’s wheel rotation speed.
ψ RSMR’s heading angle.
τ An episode, i.e., a sequence of state, action, and

reward in PG.
θ The parameters of approximators or models.
a The action in RL.
ad The desired acceleration in the third order model.
at The action performed by the expert at time t .
b The expected reward in PG.
ce A constant that reflects the engine dynamics in the

third order model.
ds

i The standstill distance between vehicle i and vehicle
i − 1 in a fleet.

di (t) The desired distance between vehicle i and vehicle
i − 1 in a fleet.

E The function used to explain the unobservable infor-
mation in IL.

ePID The input error of a PID controller.
F The approximator used to learn the expert’s bahavior

in IL.
f w
fx Longitudinal friction force in the wheel frame.

f w
fy Lateral friction force in the wheel frame.

ffz The support force of the front wheel in the bicycle
model.

fM The model used to predict RSMR’s motion state in
MPC.

f b
rx Longitudinal friction force in the body frame.

f b
ry Lateral friction force in the body frame.

frz The support force of the rear wheel in the bicycle
model.

h Unobservable information in IL.
hc The constant time headway in a fleet.
i Vehicle index in a fleet.
Iz RSMR’s rotational inertia along the z-axis.
J The objective function in MPC.
K The distance between the two kingpins of RSMR’s

front axle.
Kd The coefficient for derivative term of a PID controller.
Ki The coefficient for integral term of a PID controller.
Kp The coefficient for proportional term of a PID

controller.
L RSMR’s wheelbase.
lf The distance between RSMR’s front axle and its

center of gravity.
lr The distance between RSMR’s rear axle and its

center of gravity.
m RSMR’s mass.
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Nf The number of vehicles in a fleet.
ot The information observed by RSMR at time t .
Q The action-value function in RL.
Q̂ The action-value function value after iteration in

RL.
R̄ The estimation of cumulative reward for an episode

in PG.
R The reward function in RL.
r The reward value at each moment in RL.
s The state in RL.
st Laplace transform of v(t).
td The delay that reflects the throttle actuator dynamics

in the third order model.
Tn The number of time steps of episode n in PG.
Tp The length of prediction in MPC.
U RSMR’s input signal.
Ul The lower limit of RSMR’s input signal.
uPID The output of a PID controller.
Uu The upper limit of RSMR’s input signal.
v RSMR’s velocity.
vd RSMR’s desired velocity.
X RSMR’s position and motion state.
x The horizontal coordinate of RSMR’s position.
Xd(t) The current desired motion state of RSMR.
Xl The lower limit of RSMR’s motion state.
Xu The upper limit of RSMR’s motion state.
y The vertical coordinate of RSMR’s position.
˙ The first order derivative.
¨ The second order derivative.
∇ The gradient operator.

I. INTRODUCTION

TODAY, autonomous driving (AD) is increasingly becom-
ing a research hot-spot in both academia and industry.

It has the potential to improve roadway safety, mitigate
traffic congestion, and reduce energy consumption. In this
context, numerous studies conducted AD experiments and
designed models and algorithms to tackle different AD tasks.
The experimental equipment used in existing studies can be
categorized into four main types: full-size vehicles, driving
simulators, simulation models or software, and reduced-scale
mobile robots (RSMRs).

Undoubtedly, the most authentic and effective form of
experimentation among these types is the real-world, full-size
vehicle test, as it fully captures the characteristics of actual
vehicles and the real driving environment [1], [2], [3]. How-
ever, this type of test comes with limitations. First, it requires
autonomous vehicles (AVs), test tracks, and various expensive
devices such as high-performance sensors and computers,
which can result in high costs. Second, due to relevant laws,
regulations, and ethical considerations, some experiments that
might endanger people’s safety are not permitted, e.g., assess-
ing a vehicle’s ability to identify pedestrians and apply brakes
to avoid collisions.

Driving simulators provide an effective approach to simu-
lating different scenarios and the movements of vehicles in
a high-fidelity environment. The flexibility and controllability
offered by driving simulation tests are relatively high, allowing

developers to design various scenarios and repeat the tests
multiple times to meet research requirements [4]. However, the
simulation environment is not physical but computer-based,
which lacks fidelity and introduces discrepancies compared to
real-world situations.

In addition to driving simulators, simulation models and
software such as AIMSUN [5], Vissim [6], SUMO [7],
Silo [8], Gazebo [9], Carla [10], CarSim [11], Cellular
Automata [12], and MATLAB [13], are widely used in AD
research. These methods are cost-effective and convenient
for implementing and evaluating AD algorithms. However,
similar to driving simulators, they lack the ability to accurately
replicate realistic traffic conditions, as they are computational
environments.

To tackle these challenges, RSMRs with corresponding
reduced-scale test tracks have been employed in AD research.
For instance, Vasconcelos Filho et al. [14] developed a coop-
erative robotic platooning testbed, using a 1/10 scale platform
to assess the reliability and safety of wireless communications
in safety-critical scenarios. Lee et al. [15] built a 1/10 scale
traffic environment that includes 50 RSMRs and a set of
traffic facilities such as roads, traffic signs, and signals. This
platform has facilitated numerous workshops and exchange
events, attracting participation from over 11 research institu-
tions in China. Also, various AD competitions of RSMRs have
been held around the world to promote the development of
AD. Some well-known competitions include DARPA Robotics
Challenge [16], Festival Nacional de Robótica [17], and Euro-
pean Land Robot Trial [18]. In addition, several manufacturers
produce programmable RSMRs to support the development of
AD algorithms and academic research, including companies
like Yahboom, ZMP, and Quanser [19], [20], [21], [22].

Due to their wide application in the field of AD, this paper
aims to review the existing studies that use such RSMRs for
AD research to showcase the academic progress made in AD.
In order to make the review content more clear and specific,
we will first define and briefly introduce the RSMR.

The RSMR in this paper refers to a physical, scaled-down,
car-like, and programmable device with AD capabilities. Com-
mon scale ratios for RSMRs include 1/5 [23], 1/10 [15], 1/16
[24], or 1/20 [25], as shown in Figure 1.

Typically, the AD system of a RSMR comprises three func-
tional modules: perception, decision-making, and actuation.
These modules represent the primary research components of
the existing studies.

The perception module integrates various sensors into the
RSMR, including camera, LiDAR, radar, and inertial measure-
ment units (IMUs), to perceive the surrounding environment.
By using these sensors, the RSMR gains the ability to capture
visual, depth, and spatial information, enabling it to detect
and track objects, identify road characteristics, and estimate
its own pose and motion. The perception module processes
the sensor data using different techniques such as computer
vision, Machine Learning (ML), and sensor fusion, to ana-
lyze and interpret the perceived information and generate a
representation of the surrounding environment. This repre-
sentation is the basis of RSMR decision-making and RSMR
actuation.
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Fig. 1. Schematic diagrams of RSMRs with different scales: (a) 1/5 [23], (b) 1/10 [15], (c) 1/16 [24], (d) 1/20 [25].

The decision-making module incorporates algorithms that
analyze the RSMR’s current state, predict future environments,
and determine appropriate actions. It facilitates informed
decisions relating to actions like moving at constant speed,
accelerating, or changing lanes, and provides the RSMR with
motion commands in the form of vehicle kinematic parameters
such as linear velocity, angular velocity, or acceleration.

The actuation system further processes the commands
generated by the decision-making module to enhance the
smoothness and steadiness of RSMR’s motion. Subsequently,
these processed commands are transmitted to the RSMR’s
actuator to initiate the desired movements.

Compared to other experimental devices or approaches like
full-size vehicles, driving simulators, and simulation models
or software, the RSMR used for AD research offers several
advantages:

• First, the designed AD algorithms can be visually
achieved and tested in a physical environment, ensuring
the experiments’ validity and reliability.

• Second, experiments conducted with RSMRs are not sub-
ject to regulatory and ethical constraints, which provides
greater flexibility and controllability.

• Third, the RSMRs and reduced-scale test tracks can
significantly reduce the space requirements and expenses.

The remainder of this paper is structured as follows.
Section II outlines the process of gathering and selecting
relevant studies. Section III presents the commonly used
methods for the three modules (perception, decision-making,
and actuation) of RSMRs’ autonomous driving. Section IV
categorizes the main applications covered in the literature.
Section V concludes this paper by summarizing the findings,
identifying the limitations and gaps in RSMR research, and
providing suggestions for future research.

II. LITERATURE SEARCH AND SELECTION

This paper uses three databases for the literature search,
including Web of Science, Scopus, and IEEE. The search
expression (“wheeled robot” OR “robocar” OR “robot car”
OR “robotic vehicle” OR “mobile robot” OR “car-like robot”)
AND (“driverless” OR “unmanned driving” OR “self-driving”
OR “autonomous driving” OR “autonomous vehicle” OR
“automated vehicle”) was employed to retrieve relevant papers
in the abstract from Web of Science and IEEE. However,
due to the limitation of maximum eight logical operators in
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TABLE I
THE REFERENCE NUMBER IN EACH SECTION

Scopus, the aforementioned search expression was divided
into two parts for separate retrieval in the title, abstract,
and keywords. After removing duplicate papers, a total of
862 papers were obtained. The literature was then selected
and supplemented according to the following steps in order to
adhere to the requirements of the review.

• First, 533 papers that focused on RSMRs but did not use
physical RSMRs were excluded. These papers typically
relied solely on mathematical models, numerical simu-
lations, or software to simulate the motion of RSMRs,
which lies outside the scope of this paper.

• Second, as explained in Section I, the RSMRs employed
in the studies should be reduced in size, car-like, and
possess AD functions. Otherwise, the studies would pro-
vide limited reference value for AD research and fail
to adequately demonstrate the advantages of RSMRs.
Consequently, 162 papers that employed full-size vehicles
for AD experiments, concentrated on unmanned aerial
vehicles or humanoid robots for automated transportation,
or developed physical models of RSMRs lacking self-
driving capabilities were excluded.

• Third, the central research topic must revolve around
the motion and control of RSMRs for roadway AD
research. According to this requirement, 36 papers that
primarily focused on aspects such as construction, assem-
bly, hardware development, sensor calibration of RSMRs,
or explored robot development and operation in hazardous
environments like nuclear radiation, or merely treated
RSMRs as research samples (e.g., using computer vision
technology to detect RSMRs) were excluded.

• Fourth, the selected studies must tackle and solve at least
one specific problem, such as speed planning, navigation,
or parking control. Consequently, 22 papers that only
provided an overview of the structure or components of
RSMRs’ AD systems were excluded from this paper.

• The first four steps resulted in the selection of 109 papers.
From these papers, forward and backward snowballing
techniques were employed to recursively search for appli-
cable references and citations. Note that the papers
obtained in each round of snowballing must undergo
the first four steps before proceeding to the next round.
Consequently, 25 additional papers were obtained through
this process.

Finally, 134 relevant papers were identified for review. The
process of paper search and selection is illustrated in Figure 2.
Table I shows the reference number in each section. Note
that the same references may be cited in multiple sections.
In addition to these 134 references that used RSMRs for
AD research, this paper includes an additional 24 references
used to introduce the research context or support arguments.
Furthermore, to help readers understand the notations used in
this paper, we have provided a notation table at the beginning
of this paper.

III. REVIEW OF METHODS

As described in Section I, the AD task of RSMRs is to per-
ceive information from the environment using sensors, process
and analyze this information through models and algorithms to
make decisions and give commands, and subsequently execute
the commands through actuators. Perception, decision-making,
and actuation are the three modules of AD and also the
main focus of research in this field. However, due to the
fundamentally different principles of various decision-making
methods, we divide them into two sections for discussion:
model-based decision-making and learning-based decision-
making.

A. Perception

RSMRs rely on sensors to observe the surrounding envi-
ronment and monitor their own states. This observation is
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TABLE II
OVERVIEW OF IMPORTANT SENSORS OF RSMR

Fig. 2. Literature search and selection.

transformed into processable and measurable quantities neces-
sary for analysis and decision-making. The sensors embedded
in RSMRs can be categorized into two types: exteroceptive
sensors and proprioceptive sensors [152]. Exteroceptive sen-
sors, such as Radar, LiDAR, cameras, and hearing sensors,
are employed to perceive and gather information regarding
the external environment. This information includes distances
to obstacles, images of lanes and traffic signs, and human’s
voice commands. In comparison, proprioceptive sensors are
used to monitor and retrieve information of the RSMRs
themselves, including their position, motion states, and battery
status. Common examples of proprioceptive sensors include

the Global Positioning System (GPS), odometry, and Inertial
Measurement Units (IMUs).

Among the sensors embedded in RSMRs, cameras provide
images and videos containing a large amount of information
necessary for most AD tasks. Images and videos are unstruc-
tured data, so the processing methods are relatively complex,
requiring the extraction and processing of information from the
data. In contrast, the data from other sensors are structured and
thus can generally be used directly. The following subsections
will introduce some of the most commonly used sensors used
in RSMRs, and the functions, advantages, and disadvantages
of these sensors are summarized in Table II.

1) Camera: For AD tasks of RSMRs, two types of cameras
are typically used: RGB cameras and RGB-D cameras. RGB
cameras are able to capture color images and videos, allowing
for the recording of visual appearances and color information
of objects. These images and videos can be used for various
purposes such as object detection and classification, color and
object tracking, as well as vehicle’s and pedestrian’s movement
prediction [26], [36], [39]. For example, Rosas-Cervantes et al.
[26] used a monocular camera for extracting two-dimensional
(2D) features in trajectory estimation on multilevel surfaces.
The camera captures color images, enabling the detection of
main corners and features in the environment, which enhance
object detection, feature recognition, and robot localization.
Everett et al. [39] used a camera in conjunction with a 2D
LiDAR sensor to estimate pedestrian positions and veloci-
ties through clustering and image classification techniques,
enabling the RSMR to navigate safely among pedestrians in
real-time scenarios.

In comparison, RGB-D cameras can capture depth images
of the surroundings and record the distance to objects in
pixels, which enables the generation of a three-dimensional
environment model, reconstruction of object appearance, and
estimation of object posture [27], [30], [31]. For example,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Molska and Belter [27] used a RGB-D camera to identify
and measure obstacles, including walls and narrow obstacles,
in the surrounding environment. By capturing depth images,
robots perceive the environment more accurately and move
towards the target location while avoiding obstacles. However,
the higher cost of RGB-D cameras has led some studies to
conduct AD experiments using only RGB cameras [28], [36].

The method for processing images is mainly categorized
into two methods: traditional methods and Deep Learning
(DL) algorithms.

Traditional methods rely on manual feature extraction and
pattern matching, typically involving multiple steps of extrac-
tion, transformation, detection, and classification. Commonly
used methods include color transformation, Sobel Operator,
Hough Transform, Scale Invariant Feature Transform, or His-
togram of Oriented Gradient. Traditional methods are widely
used for the problems of lane and traffic sign detection [29],
[37], [40], [42], [44], [46], vehicle tracking [30], and collision
warning [31].

In contrast to the manual extraction of image features
in traditional methods, DL algorithms can automatically
extract image features. The most common DL algorithm
is Convolutional Neural Network (CNN), which can be
divided into two-dimensional and three-dimensional CNN.
Two-dimensional CNN is used for processing individual color,
grayscale, or binary images [27], [32], [36], [43], [45], [47],
[48], while three-dimensional CNN introduces a temporal
dimension and is used for processing videos to capture the
dynamic changes of images and the correlations between
different frames [33], [38], [41]. In addition, there are other
DL Algorithms used to replace or combine with CNN. For
example, Generative Adversarial Networks are used for image
generation, image restoration, and data augmentation [33].
Furthermore, You Only Look Once (YOLO) is used to identify
the positions and categories of different objects such as vehi-
cles, pedestrians, and traffic signs in an image or a video [34].

Despite being the core sensor of RSMRs, cameras have
certain limitations. Extreme weather such as snowy, foggy,
or rainy conditions, can significantly impact the accuracy
of the camera. Additionally, when driving on bumpy roads,
the camera may experience vibrations and movements that
negatively affect the quality of captured images and videos.
In such cases, cameras can be used in tandem with IMUs
to compensate for errors in image acquisition and processing
caused by road bumps [35].

2) LiDAR: LiDAR measures the distances between the
RSMR and surrounding objects in a 360-degree range by
emitting and receiving laser pulses. Compared to radar, LiDAR
is costlier and has a smaller perception range, as it can be
easily affected by adverse weather conditions such as fog or
snow. However, LiDAR offers significantly higher accuracy
than radar and is capable of generating high-resolution point
cloud maps, which can be used for various applications such
as environment perception [49], [50], distance estimation [51],
[52], obstacle detection and identification [26], localization
and mapping [53], [54]. In [49], LiDAR functions as a critical
component within the perception block of a control architec-
ture designed for multi-vehicle navigation in formation. It was

used to capture environmental data to identify obstacles in
real-time, enabling dynamic adjustments to the fleet formation.
Since RSMRs are reduced-scale, the requirements for percep-
tion range is relatively low, while accuracy remains crucial.
Consequently, LiDAR is the preferred choice for equipping
RSMRs.

3) Global Positioning System: GPS provides precise posi-
tional information, such as longitude, latitude, and elevation,
which plays a crucial role in navigation and localization
for RSMRs [49], [55], [56]. Farooq et al. [55] used GPS
to acquire the RSMR’s latitude and longitude coordinates.
These data were fed to the goal reaching controller, one
of the two main neural network controllers proposed. Then
the positional information was processed to generate steering
angle commands, enabling the vehicle to navigate towards the
goal effectively.

GPS also allows for accurate timestamp acquisition from
satellite signals. Leveraging this time information, multiple
RSMRs can achieve time synchronization, facilitating data
fusion and enabling cooperation and interaction among the
vehicles. Additionally, continuous collection of GPS position
data enables real-time map creation and updates, aiding in
environment modeling and path planning [58], [153].

Note that GPS can experience signal degradation indoors or
in areas with significant shading, which may lead to imprecise
localization or delays in information [57]. To mitigate these
issues, additional sensors such as LiDAR and IMU are usually
used alongside GPS. This sensor fusion approach enhances the
accuracy and reliability of positioning.

4) Inertial Measurement Units: IMUs of a RSMR consist
of several integrated inertial sensors, primarily accelerometers
and gyroscopes. Accelerometers apply the law of conservation
of inertial forces to measure the tri-axial acceleration of the
RSMR, while gyroscopes use the law of conservation of angu-
lar momentum to measure the tri-axial angular velocity. These
data on tri-axial acceleration and angular velocity are crucial
for monitoring the RSMR’s motion states and estimating its
posture [48], [59]. Liu et al. [48] used IMUs to collect essential
data regarding the RSMR’s current motion states, including
acceleration and orientation, which enables precise real-time
pose estimation, and thus ensures the RSMR can navigate
complex indoor environments reliably and efficiently.

While the IMU offers advantages like a compact size and
high accuracy, it has some limitations. The calculation of the
RSMR’s tri-axial angles through the integration of angular
velocity can introduce errors that accumulate over time [60].
Additionally, the IMU is susceptible to external disturbances
such as vibration, temperature changes, and electromagnetic
interference [61]. Furthermore, the IMU has a restricted mea-
surement range, meaning accelerations or angular velocities
exceeding this range may result in measurement distortions or
saturation.

5) Odometry: Odometry estimates the displacement of the
RSMR by measuring the rotation of its wheels. It is character-
ized by a relatively simple measurement principle, low cost,
and suitability for a wide range of environments. However,
measurements based on wheel rotation are susceptible to errors
caused by wheel slippage, variations in ground friction, and
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inconsistent wheel diameters. As a result, these factors can
cause the accumulation of errors over time [154]. RSMRs
are typically small in size, so roads that may appear smooth
for full-size cars can be rough and bumpy for RSMRs.
Consequently, in situations where roads are in poor conditions,
odometry is frequently combined with other sensors such
as IMU, LiDAR, and GPS to enhance the accuracy and
robustness of measurement [35], [49], [62], [155]. Tran et al.
[62] used odometry in conjunction with a 2D Simultaneous
Localization and Mapping framework to estimate the robot’s
position for both two and three-dimensional mapping tasks.
Specifically, the odometry information contributes to the local-
ization process that was underpinned by a Rao-Blackwellized
particle filter with improved proposal distribution. This enables
the system to accurately predict the RSMR’s pose by selec-
tively sampling within significant areas indicated by the
scan-matcher.

6) Sensor Fusion: The capability of individual sensors is
limited, so sensor fusion is necessary. Sensor fusion integrates
measurements from multiple sensors in order to enhance the
performance and efficiency of monitoring the state of a RSMR
and perceiving its environment. The data collected from each
sensor can either be redundant or independent of each other.
Sensor fusion patterns can be divided into three types: data
level fusion, feature level fusion, and decision level fusion.

Among these sensor fusion types, feature level fusion is
most commonly used [35], [60], [64]. This approach is typi-
cally based on various deep neural networks used to combine
the data from cameras and other sensors. For example, to gen-
erate feasible trajectories, Ayalew et al. [38] used an Attentive
Fully Connected Neural Networks to encode the historical
trajectories, an attentive three-dimensional CNN to extract
spatial-temporal information from videos, and an LSTM to
fuse both attentive intermediate features. To estimate trajectory
on a multilevel surface, Rosas-Cervantes et al. [26] used
a faster region CNN and normal distribution to extract the
features of images collected by a RGB camera and three-
dimensional point clouds collected by a LiDAR, and then used
a clustering algorithm to fuse these features.

In addition to deep neural networks, other sensor fusion
algorithms employed in AD research involving RSMRs
include extended Kalman filter [63], particle filter [67],
Gaussian Mixture Model [66], and Backpropagation Neural
Network (BPNN) [68]. These algorithms are mainly used to
fuse structured data collected by other sensors except for the
camera.

Tran et al. [62] compared the three sensor fusion
approaches, namely, data level, feature level, and decision
level fusion. They created a map of the RSMR’s surrounding
environment by combining the data from a two-dimensional
LiDAR and a three-dimensional ultrasonic sensor.

Sensor fusion allows different sensors to calibrate and
complement each other, thereby acquiring more accurate
and reliable information and facilitating collaboration for
AD tasks [156]. In addition, sensor fusion can leverage the
redundancy among different sensors. If one sensor fails or
generates inaccurate data, the information from other sensors
can compensate for this deficiency, thereby improving the

Fig. 3. Ackermann steering angle [44].

robustness of the system. Although some studies emphasise
that they have used only one sensor to achieve the task (usually
an RGB camera) and do not rely on other sensors to indicate
that their approach is advanced or low-cost [65], the gains in
driving performance from sensor fusion cannot be ignored.

B. Model-Based Decision-Making

Model-based decision making relies on predefined physi-
cal motion models, optimization methods, and path planning
techniques to predict and decide RSMR’s maneuvers. These
methods usually use mathematical representations of the envi-
ronment and vehicle dynamics that possess explicit physical
interpretations to compute optimal paths and decisions based
on specific criteria such as safety and efficiency. Their princi-
ple, advantages, and disadvantages are shown in Table III.

1) Physical Motion Model: Some studies have used
physical models and motion equations based on Newton’s
laws of motion to plan the movement of vehicles. RSMRs
with different chassis correspond to different motion patterns
and motion models. Common chassis types include the
differential drive, four-wheeled omni-directional, four-
wheeled Ackerman, and four-wheeled Mecanum wheel
robots. In AD studies, the four-wheeled Ackermann robot is
the most frequently used chassis, as it is the most commonly
used chassis in real-world vehicles [69], [70], [71]. When an
Ackermann RSMR steers in a circular motion, the steering
angles of the left and right front wheels differ. The steering
angle of the inner wheel is greater than that of the outer
wheel, and this difference is referred to as the Ackermann
steering angle, as illustrated in (1) and Figure 3.

cotβ − cotα =
K
L

(1)

where α and β are the steering angles of the inner and
outer wheels, respectively. K is the distance between the two
kingpins of the front axle, and L is the wheelbase.

In order to minimize the computational load, most stud-
ies have simplified the motion of Ackermann RSMRs by
employing a bicycle model. Suppose that the RSMR’s state
is denoted by X =

[
x, y, ψ, ẋ, ẏ, ψ̇

]T , and the input signal
is represented by U = [δ, ω]T . Here, x and y denote the
positional coordinates of the RSMR in a two-dimensional
plane, ψ represents the heading angle, and ẋ , ẏ, and ψ̇ refer
to the first-order derivatives of x , y, and ψ with respect to
time. Furthermore, δ corresponds to the steering angle, while
ω represents the wheel rotation speed. The force condition
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Fig. 4. Bicycle model [72].

and motion of the RSMR are depicted in Figure 4 and are
described by eq. (2)-(4).

mẍ = f w
fx cos(ψ + δ)− f w

fy sin(ψ + δ)+ f b
rx cosψ − f b

ry sinψ

(2)

mÿ = f w
fx sin(ψ+δ)− f w

fy cos(ψ+δ)+ f b
rx sinψ − f b

ry cosψ

(3)

Izψ̈ = ( f w
fy cos δ + f w

fx sin δ)lf − f b
rylr (4)

where m is the RSMR’s mass, Iz is the RSMR’s rotational iner-
tia along the z-axis, ẍ and ÿ are the second order derivatives
of x and y with respect to time, respectively, lf is the distance
between the RSMR’s front axle and the center of mass, and lr
is the distance between the RSMR’s rear axle and the center
of mass. f w

fx = µfx ffz, f w
fy = µfy ffz, f b

rx = µrx frz, f b
ry =

µry frz are the frictional forces. Subscripts f and r denote the
front and rear, respectively, and w and b denote the wheel
frame and the body frame, respectively. µfx, µfy, µrx, µry are
the friction coefficients, and ffz and frz are support forces.

Ackermann RSMRs typically do not exhibit lateral move-
ment, unless during drift states. Therefore, the bicycle model
is further simplified as shown in eq. (5)-(7) [73].

ẋ = v cosψ (5)
ẏ = v sinψ (6)

ψ̇ =
v

lf
+ lr tan δ (7)

where v is the RSMR’s velocity.
Using vehicle motion models offers a straightforward

approach with a deterministic analytic solution. However,
accurately modelling the decision-making mechanisms of
RSMRs in complex environments can be challenging when
relying solely on these vehicle motion models. Nonetheless,
these models hold significance in AD research as they serve
as the foundation for relatively complex or hybrid algorithms
like the Dynamic Window Approach (DWA), Model Predic-
tive Control (MPC), as well as some research under simple
assumptions [74], [75], [76].

2) Optimization Methods: Optimization methods are a type
of mathematical techniques aimed at adjusting the values of
variables to achieve the optimal value of a specific objec-
tive function while satisfying a set of constraints. The core
idea of optimization methods is to search for the optimal
solution within the feasible solution space, which can be

conducted through mathematical analysis, computer simula-
tion, or heuristic approaches.

Optimization methods can perform global search within the
feasible solution space, which makes them highly effective in
dealing with complex multidimensional problems and reducing
the risk of obtaining local optima. Also, they can incorporate
multiple objectives in the objective function, finding solutions
that balance the interests of various parties. Furthermore, opti-
mization methods typically have strong robustness, enabling
them to find desirable solutions even when the input data con-
tains noise or uncertainty. In addition, the objective function
and constraints of optimization methods can have direct links
to measurable parameters and variables.

However, optimization methods come with certain draw-
backs. Non-convex objective functions can lead to significant
computational burdens and no assurance of achieving the
optimal solution. In real-world AVs, traffic situations are
extremely complicated, and factors such as perception errors,
sensor measurement noise, and dynamic obstacles in real
environments can impact the performance of optimization
methods. Therefore, in such cases, optimization methods are
typically combined with other techniques such as ML to
enhance the decision-making capabilities of the self-driving
system.

In contrast, experiments conducted with RSMRs primarily
focus on model and algorithm validation in reduced-scale
and simplified environments. These experiments serve as a
foundation and provide guidance for real-world AD research.
Typically, the research involving RSMRs tackles one specific
problem at a time, which simplifies the construction of opti-
mization models. Additionally, the scaled-down environments
offer high controllability at a low cost, enabling adjust-
ments to the environmental setup and repeated evaluations
of optimization methods. As a result, optimization methods
are extensively employed and are used independently in AD
research with RSMRs.

For AD research with RSMR, the objective function often
aims to minimize path lengths, path tracking error, speed
tracking error, absolute value of acceleration, change in head-
ing angle, travel time, energy consumption, or maximize
the distance to an obstacle, among other factors. Constraints
encompass avoiding obstacles, satisfying vehicle motion char-
acteristics, and adhering to energy consumption limitations.

The most common optimization methods are linear pro-
gramming [77], [78] and quadratic programming [71], [72],
[79]. By altering various objective functions and constraints,
these programming models can address numerous prob-
lems related to RSMR path planning and motion strategies.
Walambe et al. [85] used optimization method with spline
interpolation for trajectory generation. The objective function
focuses on minimizing the trajectory path length and ensur-
ing smoothness and continuity, while avoiding the typical
singularities encountered in cubic polynomial-based meth-
ods. Constraints include the non-integrable conditions posed
by the RSMR’s differential flatness properties and physical
design limitations. Shen et al. [86] realized optimization setup
through an MPC framework. The objective is to navigate
safely and efficiently through tightly-constrained dynamic
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environments typically populated with multiple AVs and
human-driven vehicles. Constraints are generated in real-
time and are strategy-dependent, focusing on feasible regions
within the RSMR’s navigation space. Yang et al. [72] used
optimization method for RSMR drift maneuver control. The
framework proposed integrates feedforward and feedback con-
trollers that adjust the curvature of RSMR’s trajectory in
response to changes in tire-ground interaction. The objective
function aims to stabilize the drift around predefined paths
(like circular trajectories) while maintaining the desired drift
angle. Constraints revolve around the RSMR dynamics and
the interaction between tire and ground that vary significantly
under different environmental conditions.

For solving complex nonlinear optimization problems
within a limited time, heuristic algorithms are frequently
employed to find a feasible solution instead of the
optimal solution. Common heuristic algorithms include
Tabu Search [80], Simulated Annealing [81], Genetic
Algorithm [82], Particle Swarm Optimization [83], and Ant
Colony Optimization (ACO) [84]. Chen et al. [84] employed
the ACO algorithm to address the optimization problem of
identifying the most efficient path for real-time obstacle avoid-
ance. The ACO algorithm optimizes the path by iteratively
recalculating the route that the RSMR should follow to reach
its designated sub-goal, while navigating around obstacles
identified through LiDAR scans.

3) Path Planning Methods: Path planning is the foundation
of RSMRs’ autonomous driving, and there are many algo-
rithms specifically designed to solve path planning problems.

Some studies chose to use analytical curves generating
the paths for RSMRs. The most common is the polynomial
curve, because they are continuous and differentiable, and
can flexibly fit different shapes of paths by adjusting the
order and coefficients [77], [87]. Other curves include circular
arc [72], Bezier curves [88], B-splines [89], and Dubins
curves [90]. For example, Elbanhawi et al. [89] considered
path continuity while incorporating constraints related to the
RSMR’s maximum steering and path curvature. They used
Non-Uniform Rational B-Splines as the tracking path for the
RSMR, comparing and analyzing different curve parameters
for practical applications. In addition to curve fitting methods,
some other classic path generation algorithms include A*
[51], [81], [91], [92], Dijkstra [93], and Artificial Potential
Field [87].

Upon generating the paths, the motion commands that
adhere to the constraints of the RSMR’s kinematic characteris-
tics should be determined in order to track the path effectively.
Common algorithms for this purpose include Pure Pursuit
Control [94], Linear Quadratic Regulator [95], Feedback Lin-
earization [96], [97], and Fuzzy Inference System [98]. Several
studies have combined MPC with data-driven algorithms to
enhance the performance of path tracking. Drews et al. [35]
conducted aggressive driving tests using a 1:5 scale RSMR.
They employed model predictive path integral control to
sample and predict the RSMR’s trajectories in the upcoming
time steps, generating a cost map of the RSMR’s surrounding
environment based on GPS localization. Next, they used CNN
to calculate the associated cost values, and selected the optimal

trajectory based on these costs. Zhou et al. [71] employed a
neural network to fit the errors of the nominal vehicle dynamic
model to enhance its accuracy. Subsequently, they employed
MPC to maintain the desired equilibrium states of drift and
enable the RSMR to follow the intended path.

The above methods can be referred to as offline path plan-
ning, where the desired path is predetermined and generated
based on a map or predefined waypoints prior to path tracking.
Offline path planning allows for less real-time computations,
but it tends to compromise algorithms’ flexibility and RSMRs’
adaptability to the environment. Online path planning can
effectively solve this problem. It generates paths for RSMRs
in real-time with various constraints such as kinematic char-
acteristics and obstacle avoidance.

Common algorithms used for online path planning include
DWA [99], [100], Rapidly-exploring Random Trees (RRT)
[101], [102], [103], and Fuzzy Inference System [86]. For
example, Lee et al. [104] improved the DWA algorithm for
obstacle avoidance in RSMRs, introducing the finite distribu-
tion estimation-based DWA, which estimates the distribution
of obstacles in dynamic environments using a covariance
matrix adaptation evolution strategy and a finite memory filter.
Hess et al. [105] employed the RRT algorithm for generating
and planning the RSMR’s path. To prevent circular motion,
the maximum heading change in one expansion step was
limited. Ghaffari and Homaeinezhad [90] proposed Fuzzy
Adaptive Curvature-based Point Selection (FACPS) algorithm
for autonomous path planning. The inputs of FACPS consist of
the angle between the robot’s heading and the line connecting
the tracking point to the RSMR’s center of gravity, as well
as the angle between the tangent line at the tracking point and
the RSMR’s heading.

Path planning method has a clear physical interpretation and
can ensure safety by avoiding collisions. However, it cannot
guarantee the acquisition of the optimal path, and sometimes
depends on precise environmental modeling.

C. Learning-Based Decision-Making

Learning-based decision making uses data-driven tech-
niques to derive the optimal strategies of RSMRs for each
time step. This approach typically includes methods such as
Imitation Learning (IL) and Reinforcement Learning (RL).
Their principle, advantages, and disadvantages are shown in
Table III.

1) Imitation Learning (IL): IL enables RSMRs to perform
AD tasks by imitating human or expert behavior. This method
is based on supervised learning and typically used to achieve
RSMRs’ end-to-end decision-making that eliminates the need
for step-by-step design, tuning, and assessment.

In the IL, expert behavior can be collected through various
approaches. Many researchers choose to manually control
the RSMR while collecting sensor data and car motion
data as expert behavior. However, human-controlled car
movements tend to be uniform, stable, and rarely result in
collisions. This can cause the model to struggle with handling
unseen events such as lane deviation or encountering dead
ends. To address this issue, Seiya et al. [106] have used
a Pure Pursuit Algorithm to train the RSMR to return to
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the desired path from the current image viewpoint. Hoshino
and Sumiyoshi [107] adopted the method of learning action
sequences to prevent the RSMR from stopping or getting
stuck in dead end. In addition, in order to save the cost
of manual control, some studies have employed rule-based
algorithms to control RSMRs [108] or conducted AD
simulation experiment [109] to collect expert behavior.

In the process of training, IL algorithms learn the mapping
function from environments to expected actions by observing
expert driving behavior. In the process of testing, the sensor
data are directly inputted into the trained algorithms, and the
algorithms then output the control commands and send them
to the actuators.

Assume that the training data are represented as D =

{⟨ot , at ⟩}
N
t=1, where ot is the observed environmental informa-

tion at time t , and at is the actions performed by the expert
at time t . The task of IL is to use an approximator F with
parameter θ to fit at based on ot , as shown in (8) [110].

minimize
θ

∑
t

ℓ(F(ot ; θ), at ). (8)

where ℓ is the loss function, F is typically a supervised ML
algorithm that has strong learning capability required for end-
to-end AD systems.

Traditional ML methods can only process structured data
such as the RSMRs’ motion states and environmental informa-
tion at each time step gathered from sensors like GPS, IMU,
odometry, and LiDAR. Common traditional ML algorithms
include Support Vector Machine [157], Random Forest [111],
Bayesian Network [112], BPNN [68], and Fuzzy Inference
System [46], [90], [113].

In comparison, DL is a powerful and flexible ML method
that can handle unstructured data such as images and videos
captured by cameras or time-series data segments captured by
other sensors.

CNN is the most commonly used DL algorithm for directly
processing images and videos by automatically extracting
features [35], [114]. For example, Kim et al. [65] employed a
CNN called AlexNet to achieve a RSMR’s indoor navigation
and obstacle avoidance in an end-to-end manner. In order to
complete the lane following task, Kang et al. [24] integrated
two-dimensional CNN and one-dimensional CNN in a single
network, respectively used for processing RGB images and
LiDAR data. Consequently, the data were fused through fully
connected layers and the throttle and steering were output to
control the RSMR to follow the designated lane.

Some studies have realized that using the data of each
moment independently as input makes it difficult to capture
the temporal characteristics of expert behavior. As a result,
RNN is used to address this issue. Lai and Bräunl [108] first
used CNN to extract image features for each frame, and then
used Long Short Term Memory (LSTM) network, a variant of
RNN, to further extract features from the sequence of image
features. To enable the RSMR to restart after stopping and
to escape from the dead end, Hoshino and Sumiyoshi [107]
employed deep RNN with the input of the distance data from
the LiDAR for the last twenty time steps.

The above studies assume that the expected actions of
RSMRs are entirely determined by the observed information,

as shown in (8). However, Codevilla et al. [110] indicated
that this assumption is inconsistent with reality. For example,
the decision to turn or go straight at an intersection cannot
be made solely based on sensor information, but requires
direction instructions based on the desired route. Therefore,
it is necessary to include unobservable information as inputs,
as shown in (9).

minimize
θ

∑
t

ℓ
(
F(ot ; θ), E(ot ,ht )

)
(9)

where h is the unobservable information, and E is the function
used to explain the unobservable information.

In addition to [110], some studies have also noticed this
point and added the directional guidance information to the
input of the approximator F [106], [107].

IL requires a substantial amount of labeled data, which in
turn requires a significant amount of manual labor. To expand
datasets while reducing costs, some studies have used data
augmentation to artificially generate data [106], [115] or data
diversification to enhance the diversity of the data [110]. These
techniques are particularly common in the processing of image
data. However, Tampuu et al. [158] pointed out that data
augmentation may lead to model overfitting, and adding noise
to the data can be excessively risky when the algorithms are
eventually deployed in real-world scenarios. As is well known,
for ML, any data augmentation technique is not as effective as
expanding the data scale. Therefore, it is necessary to leverage
the advantages of low cost and small size of RSMRs to conduct
more experiments in various scenarios to provide abundant
training data for IL algorithms.

While IL, especially DL, provides a powerful framework
for AD with RSMRs, its training requires a significant amount
of time and computational resources. Moreover, its generaliz-
ability is relatively weak, as models trained well may be only
effective for the current dataset, which limit its potential. This
is a problem that needs to be addressed in future research.

2) Reinforcement Learning (RL): RL represents a third
view of ML in addition to supervised and unsupervised learn-
ing methods. It is a method for an agent to learn the optimal
strategy by interacting with environment. For AD research,
RSMRs select the predefined alternative actions based on the
perceived environmental states, receive rewards as feedback
at each moment, and accordingly adjust their motion strategy
to maximize the cumulative rewards. Through continuous
exploration and trial and error, the RSMR gradually learns
the strategy of taking optimal actions in different states, and
thus achieves autonomous intelligent decision-making. The
period from the start of the RSMR executing an AD task to
the completion of a specific objective or a failure is defined
as an episode. The RSMR’s actions can be discrete such as
moving forward or turning left, or continuous such as changing
linear and angular velocity. The reward is usually related to the
distance to the target or obstacles, the magnitude and variation
of velocity, cumulative traveled distance, and tracking error,
among other factors.

Q-learning is an effective RL algorithm. It stores the quality
values (Q-values) for different states and actions in a table
and iteratively calculates the Q-values to convergence using
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the Bellman equation, as shown in (10).

Q̂(s, a) = Q(s, a)+ α[R(s, a)+ γ max
a′

Q′(s′, a′)− Q(s, a)]

(10)

where Q(s, a) and Q̂(s, a) are the Q-values before and after
iteration, respectively. α is the learning rate. R(s, a) is the
reward for taking action a in state s, γ is the discount
factor, and max

a′
Q′(s′, a′) is the maximum Q-value that can

be obtained in new state s′.
Nevertheless, the observed states are often in the form of

images or videos, making it unrealistic to represent such high-
dimensional state spaces with tables. Therefore, few studies
utilize Q-learning to accomplish AD tasks [116], while Deep
Reinforcement Learning (DRL) is more commonly used.

Deep Q-learning is the most common DRL algorithm that
uses a deep neural network with states as input to estimate the
Q-values for each action. Zhang et al. [117] used a Double
Deep Q-learning algorithm to accomplish the path tracking
task for the RSMR. They used a deep fully connected network,
with lateral position error and angle error as inputs. They
selected eight hundred discrete steering curvatures as actions
and used the negative value of the accumulated error over
time as the reward. Lu [118] employed a CNN to extract
the features of the street and car images. The actions are
the RSMR’s steering angle, and the reward is based on the
RSMR’s current velocity and the distance to the nearest
obstacle or road edge. Kendall et al. [119] used a variational
autoencoder to process the images collected from a monocular
camera, selected the distance travelled as the reward, and used
the steering angle and speed as the RSMR’s actions.

Q-learning and Deep Q-learning belong to value-based
algorithms that focus on efficiently estimating Q-values.
Policy-based algorithms provide another approach by directly
using actions as the output of neural networks. The most com-
mon policy-based algorithm is Policy Gradient (PG) algorithm.
Assuming that πθ (a|s, θ) with the parameter θ is RSMR’s
motion policy, and each episode generates a sequence τ =

{s1, a1, r2, . . . , sT −1, aT −1, rT } ∼ πθ , where s, a, r are the
state, action, and reward, respectively. The goal of PG is to
maximize the cumulative reward and update the parameters of
the policy network. Equation (11) demonstrates the gradient of
the cumulative reward of a batch of episodes with respect to
the parameters θ . Policy-based algorithms can directly output
continuous action values, thus are widely applied in AD tasks
of RSMRs [39], [118], [119], [120].

∇ R̄(τ ) =
1
N

N∑
n=1

Tn∑
t=1

(

Tn∑
t ′=t

rn
t ′γ

t ′−t
− b)∇logπθ (an

t |sn
t ) (11)

where ∇ is the gradient operator, ∇ R̄(τ ) is the gradient of the
cumulative rewards with respect to the parameters θ , N is the
batch size, Tn is the number of time steps of episode n, and
b is the expected reward.

Value-based algorithms can introduce high bias when esti-
mating Q-values, while policy-based algorithms require a large
amount of sampling, resulting in high variance. Actor-Critic
is a combined approach that aims to address the limitations

of both. In this approach, the actor network is responsible
for generating policies, while the critic network approximates
the Q-values. For example, in the case of sensor occlusion,
Ryu et al. [50] used the actor-critic algorithm to complete the
avoidance of static and dynamic obstacles. The input to the
actor network includes point cloud, RSMR state, goal state,
and confidence vector that represents the reliability of sensor
data, and the input to the critic network is the RSMR’s actions.

In DRL algorithms, some studies used RNN and its variants
such as Gate Recurrent Unit and LSTM to capture the temporal
characteristics of state and action sequences [50], [121]. This is
encouraged because in similar environments, RSMR may not
necessarily take the same actions. The current desired actions
may depend on previous states and actions. Additionally, RNN
can be used to predict the motion trajectory of dynamic
obstacles that greatly influences the subsequent actions and
potential rewards for RSMR.

RL is suitable for AD task because it does not require
a large amount of manually labeled data. It only needs to
define the reward function in advance, and then the RSMR
will continuously explore the environment, collect data, and
train the models on its own. However, its training efficiency is
proved to be lower than that of IL. Therefore, some studies pre-
trained the models of RL in a simulated environment and then
transfer the models to RSMRs and fine-tune the parameters of
models [120], [122], [123], [124].

D. Actuation

RSMRs are controlled through actuators, mainly comprising
electric drive motors and steering servos. The electric drive
motor is used to convert electrical energy into mechanical
energy to propel the vehicle forward or backward. The speed
and torque of the electric drive motor are controlled and
adjusted to achieve the desired acceleration and deceleration
of the RSMR. Meanwhile, the steering servo is responsible
for controlling the RSMR’s steering angle, thereby altering
its direction of travel. Notably, in contrast to real AVs, most
AD research with RSMRs employs linear and angular velocity
as control commands, rather than relying on the accelerator,
brake pedal, or the steering wheel. This command approach
simplifies control logic, eliminating the need to understand
specific control mechanisms and sensor principles. Moreover,
it facilitates the application of AD algorithms across various
vehicle types and brands. Additionally, the use of velocity
as a command is more direct and precise than relying on
pedal forces and the steering wheel angle. Specifically, RSMRs
can dynamically adjust sensor settings in real-time to achieve
the desired velocity, enhancing adaptability to the surrounding
environment.

Nevertheless, when designing AD algorithms, it is some-
times necessary to incorporate control algorithms that ensure
smoother and more stable vehicle movements. The common
actuation methods include Proportional-Integral-Derivative
(PID) controller, MPC, Linear Quadratic Regulator [95], Feed-
back Linearization [96], Internal Model Control [125], and
Sliding Mode Control [126]. Due to space limitations, only
the two most commonly used methods, i.e., PID controller
and MPC, will be introduced.
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TABLE III
OVERVIEW OF THE DECISION MAKING MODELS OF RSMR

1) PID Controller: A PID controller is a feedback loop
component widely employed in industrial control. Its function
involves comparing acquired data with a predefined reference
value and computing an appropriate control value. It uses
historical data and the difference from the target value to
dynamically adjust the control value, to stabilize the sys-
tem [32], [75], [76], [127]. The general (time-continious) form
of a PID controller is represented as (12).

u(t) = Kpe(t)+ Ki

t∫
0

e(τ )dτ + Kdė(t) (12)

where e(t) is the error and u(t) is the control value at time
t . Kp, Ki, and Kd are the coefficients for the proportional,
integral, and derivative terms, respectively. In the context of
AD research with RSMRs, u is typically RSMR’s velocity
or acceleration, and e represents the difference between the
desired values of position, velocity, heading angle and their
actual counterparts.

Assuming that u is RSMR’s acceleration, and e is the
velocity difference, it is not difficult to find that the magnitude
of the gap between the current velocity and the desired velocity
governs the level of acceleration. A larger gap leads to more
aggressive acceleration, while a smaller gap corresponds to
a more conservative acceleration strategy. The parameter Ki

is specifically designed to eliminate steady-state errors and
ensure the current speed gradually approaches the target value.
Additionally, Kd is used to prevent significant fluctuations in
the RSMR’s speed during high-frequency control. Specifically,
if the proportional term’s value is excessively high, the deriva-
tive term will moderate the acceleration or deceleration.

2) Model Predictive Control: MPC is a comprehensive
framework that enables the prediction of RSMR’s future trajec-
tory and provides optimized control commands at the system
level [35], [71], [73], [86], [128]. MPC used for AD with
RSMR usually encompasses four main stages of modeling,
prediction, optimization, and actuation, specifically as follows:

• Modeling: A mathematical model is first established to
describe the dynamic behavior and evolution state of the
RSMR over time. The model can either be the vehicle
motion model as expressed in (2), (3), and (4), or a data-
driven model like a neural network.

• Prediction: Based on the current motion state and alter-
native mode of motion, MPC employs the system model
to predict the position and moving posture of the RSMR
over a series of future time steps.

• Optimization: MPC solves an optimization problem to
select the optimal sequence of control inputs, aiming to
meeting the pre-defined objective, such as maximizing the
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linear speed and the distance to obstacles, and minimizing
the angular velocity variation and energy consumption.

• Execution: The first value from the optimized control
input sequence is applied to the RSMR, and the whole
system transitions to the next time step. The entire process
repeats periodically.

The general form of MPC is expressed as (13) and (14).
As shown, MPC is essentially an optimization model.

min J (X,U) =

Tp∑
k=1

∥X(t + k)− Xd(t + k)∥2 (13)

s.t.


X(t + 1) = fM(X(t),U(t))
U(t) ∈ [Ul,Uu]

X(t) ∈ [Xl,Xu]

(14)

where X(t) and Xd(t) typically represent RSMR’s current and
desired motion state at time t . Meanwhile, U(t) corresponds to
the control signal at time t , which usually denotes the linear
and angular velocity of RSMRs. Tp denotes the prediction
length, and J (X,U) represents the objective function. The
motion state at time t + 1, denoted as X(t + 1), is predicted
based on the motion state at time t and the model fM.
U(t) ∈ [Ul,Uu] and X(t) ∈ [Xl,Xu] indicate that the inputs
and motion state of RSMRs should fall within a specific range.
To enhance computational efficiency, MPC adopts a greedy
approach, optimizing RSMRs’ motion only for a short-term
future time horizon.

Drews et al. [35] used MPC for high-speed AD by optimiz-
ing a control sequence based on real-time visual inputs from
a CNN-generated cost map. The objective is to minimize the
driving path cost, while considering the RSMR dynamics and
track boundaries as constraints. Oyama and Nonaka [73] used
an MPC framewrok for parking control of a RSMR modeled
as a nonholonomic vehicle. The objective aims to minimize
the trajectory’s deviation from an optimal parking path, while
considering the steering limitations and parking slot alignment
as constraints.

IV. REVIEW OF APPLICATIONS

By combining the above methods, various applications
in AD can be achieved. The applications of existing stud-
ies include navigation and obstacle avoidance, vehicle fleet
coordination, intersection management, parking control, drift
control, passenger unease, and hands-free control. Figure 5
shows the schematic diagram of these applications.

A. Navigation and Obstacle Avoidance

In RSMR AD research, navigation and obstacle avoidance
are typically combined. The navigation task is accomplished
through global path planning, while obstacle avoidance is
accomplished through local path planning. Obstacles are
divided into static obstacles and dynamic obstacles. This con-
figuration makes the experiment more realistic. Specifically,
in order to reach their destination, drivers have a long-term
route planning, namely, global path planning. Meanwhile, they
also continuously engage in local path planning to avoid

various obstacles during the whole driving process. Static
obstacles include buildings, barriers, roadblocks, traffic signs,
streetlights, and parked vehicles, while dynamic obstacles
include moving vehicles, pedestrians, and animals. To ensure
driving safety, the priority of local path planning is usually
higher than global path planning. Before the task of navigation
and obstacle avoidance begins, detailed map information is
usually required, including the RSMR’s initial position and
target point, as well as the position, shape, and size of static
obstacles. Dynamic obstacles are typically recognized and
detected by the RSMR in real-time during the task.

Global path planning is to find a feasible shortest path from
the starting point to the destination, while avoiding collisions
with static obstacles. Most of the global path planning is done
offline, namely, completed before the RSMR starts its motion.
In this case, A* and Dijkstra algorithms regard the static
obstacles as impassable nodes or edges on the map [51], [132].
For the Artificial Potential Field Model, the repulsion and
attraction are respectively related to the distances to obstacles
and the destination [87].

Local path planning generates continuous smooth trajec-
tories or next waypoints that comply with RSMRs’ motion
characteristics, while avoiding collisions with dynamic obsta-
cles.

Some studies used predefined rules and logic to achieve
local path planning of RSMRs. Muhammad et al. [51] uni-
formly sampled eight candidate waypoints in real-time from
the LiDAR’s scanning circle. The probability of selecting each
waypoint is inversely proportional to the distance between
that point and the goal point and directly proportional to the
distance to static obstacles. In addition, dynamic obstacles’
motion velocity and direction were estimated in real-time,
and meanwhile the RSMR was guided to move towards the
direction closer to the goal point. Cherubini et al. [133] used
semicircles with different radii as candidate trajectories for
the RSMR. Based on the earliest collision time with dynamic
obstacles as the risk function, they provided the explicit
analytical equations for the RSMR’s velocity at each moment.

Some studies chose to employ the optimization method
framework, and their research process is similar. Specifically,
they set the distance to the goal point and obstacles as the
objective function and considered the motion characteristics of
RSMRs as constraints [87], [134]. In addition, some studies
used RRT [135], DWA [132], Neural Networks [55], [136],
[137], [138], and RL [52] for local path planning.

The studies of navigation and obstacle avoidance mentioned
above only involve a single RSMR. In order to enhance
navigation efficiency, Wen et al. [139] presented a hierarchical
search-based algorithm called car-like conflict-based search
for multi-RSMR navigation. This algorithm employs a body
conflict tree, considering the shapes of RSMRs, to effectively
avoid mutual collisions. In addition, the spatiotemporal hybrid-
state A* algorithm is used to generate paths that adhere to both
kinematic and spatiotemporal constraints.

Despite the extensive research on navigation and obstacle
avoidance for RSMRs, there is still a significant gap between
theoretical advances and practical applications. This disparity
can be attributed to the fact that existing studies have set
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Fig. 5. Overview of the applications of RSMR in AD research: (a) navigation and obstacle avoidance [51], (b) vehicle fleet coordination [129], (c) intersection
management [76], (d) parking control [86], (e) drift control [72], (f) passenger unease [130], and (g) hands-free control [131].
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dynamic obstacles with regular shapes that move at a constant
speed and lacks the capability to adapt their motion patterns
according to the surroundings. However, real-world scenarios
involve dynamic interactions between vehicles, pedestrians,
and roads, that is, the motion patterns of the dynamic obstacles
are much more complex. Consequently, local vehicle motion
planning in reality poses higher demands compared to the
existing research.

B. Vehicle Fleet Coordination

Vehicle fleet control is to arrange multiple RSMRs in a fleet
to follow the same or similar trajectory, ensuring small inter-
vehicle spacing while avoiding collisions, in order to increase
road throughput and reduce traffic congestion. Fundamentally,
this is an adaptive cruise control problem, and extensive
research has been conducted on it. The control pattern can
be classified into leader-follower approach, virtual structure
approach, or behavior-based approach, for example [140].

However, the methods for fleet control research using
RSMRs are relatively limited. They primarily rely on deriv-
ing the functions of RSMRs’ displacements, velocities, and
accelerations with respect to time based on physical motion
models. Some studies directly chose the safe braking distance
as the following distance between RSMRs [141], [142], [143].
This constant distance approach is intuitive and can roughly
reflect the proportional relationship between the distance and
the RSMR size. However, it is proved to be susceptible to error
accumulation with an increasing number of vehicles, leading
to potential issues with string stability [129], [144], [145].
To address this issue, many studies used time-based approach.
For example, Klančar et al. [144] derived the RSMR’s motion
equations based on the Ackermann motion model, and used
quadratic polynomial to fit the trajectory. They controlled
the following RSMR to consistently follow the state of the
leading RSMR T time units ago. Wu et al. [146] and Tuchner
and Haddad [129] adopted a constant time-headway spacing
policy, as shown in (15). Based on it, the RSMR’s motion
formula was derived as (16).

di (t) = ds
i + hcvi (t), 2 ≤ i ≤ Nf (15)

where di (t) and ds
i are the desired distance at time t and the

standstill distance between RSMR i and RSMR i − 1, hc is
the constant time headway, vi is the speed of RSMR i , and
Nf is the number of RSMR in the fleet.

G(st ) =
p(st )

ad(st )
=

1
s2

t (cest + 1)
e−tdst (16)

where st is the Laplace transform of v(t), p(st ) is the position
of the vehicle, ad is the desired acceleration, and ce and td
are a constant and a delay that reflect the engine and throttle
actuator dynamics, respectively.

A more flexible and efficient approach is to use a time-
varying time gap that changes with the variation in vehicle
spacing and relative motion states. For examples, Cruz-
Morales et al. [147] and Velasco-Villa et al. [148] used a
time-varying gap that is a bounded non-negative differentiable
function and increases as the following RSMR approaches to
the leading RSMR.

In the above studies, some studies were conducted in
a connected environment [129], [143], while other studies
assumed no communication between vehicles, with all vehicle
information sourced from their sensors [129], [141], [142],
[144], [145], [147], [148].

It can be observed that existing studies on vehicle fleet tend
to make simplistic assumptions about the motion of RSMRs.
However, the reality of the traffic environment is much more
complex, involving games, conflicts, and yielding between
vehicles and pedestrians. In this complex environment, vehi-
cles frequently need to accelerate, decelerate, or adjust the
steering wheel, which significantly deviates from the assump-
tions made in previous studies. Also, current studies only
consider a fleet of two or three RSMRs, which does not
reflect the actual fleet size in reality. For example, at an
intersection, the queue of vehicles may consist of dozens of
RSMRs. Consequently, research that includes a larger number
of RSMRs should be conducted. Furthermore, existing studies
assume that the RSMRs in the fleet are homogeneous in
terms of type, size, and motion characteristics. However,
in reality, vehicle fleets normally consist of different types of
vehicles, including trucks, buses, and cars. Hence, the research
on heterogeneous vehicle fleet is necessary to complement.
In addition, when a vehicle in the fleet performs an emergency
braking manoeuvre or suddenly stops, or when another vehicle
cuts into the fleet, the fleet will be temporarily interrupted.
In this case, an investigation into the restoration of the fleet
becomes a significant research topic.

C. Intersection Management

In the domain of intersection management, studies typically
assume that vehicles can communicate with each other through
an intersection manager (IM), enabling the exchange of posi-
tional and movement data, and the IM takes on the role of
coordinating and controlling these vehicles.

Fok et al. [149] proposed eight different management poli-
cies, including V2I-Sequential, V2I-Parallel, V2I-Reservation,
V2V-Sequential, V2V-Parallel, V2V-Reservation, Stop Sign,
and Traffic Signal. However, they only described the frame-
work and logic of these strategies, without providing detailed
decision-making and control methods for vehicle motion.

Some studies have used kinematic formulas based on New-
ton’s laws of motion to determine potential conflict points
among multiple vehicles and to optimize the trajectory and
speed of RSMRs. Khayatian et al. [75], [76] introduced an
intersection management algorithm designed to guide multiple
AVs safely across an unsignalized intersection. By applying a
first-come-first-service policy, they identified potential conflict
points among different vehicles and determined the desired
speed for each vehicle using the PID control algorithm.
These two studies assume that all vehicles will strictly obey
the commands of the intelligent management without any
errors, but in reality, this situation is impossible. Therefore,
in their subsequent research, Khayatian et al. [74] proposed a
communication mechanism aimed at addressing the issue of
“rogue vehicle”, which are vehicles that disobey intersection
managers’ instructions or provide false motion information.
In this study, the IM will regularly calculate the error between
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the actual positions and the expected positions of each vehicle.
If this error exceeds a certain threshold, the IM will activate an
emergency state, and command the rogue vehicle to decelerate
and stop depending on the potential occurrence of a collision.
For similar purposes, Dedinsky et al. [150] installed a camera
above a reduced-scale intersection to detect abnormalities
in the position and speed data of a RSMR through image
processing technology, and provide real-time notifications to
the IM.

In addition to simple physical motion models, some studies
used more complex motion models and optimization methods.
For example, Li et al. [151] involved a lane-free autonomous
intersection management method that relies on numerical
optimal control and a parameterized social force model. This
approach assumed that the motion of connected and automated
vehicles adheres to a third-order model with a delay. Log-
exp functions were employed to convert the non-differentiable
collision-avoidance constraints into convex functions while
establishing the relationship between vehicle spacing and input
control. An interpolating control approach is then employed to
identify the optimal input, while the parameterized social force
model provides an adjustable initial estimate for the numer-
ical optimal control. Cooperative trajectories are ultimately
achieved by adjusting the urgency weights in the social force
model.

Through the above summary, it is not difficult to notice that
the current research on intersection management focuses on
creating a connected environment for all vehicles to ensure
system safety and efficiency. However, the connected vehicles
and environments may never be fully deployed, making it
challenging to implement this intersection management model
in practical scenarios. So there remains a need for studies on
decentralized and unconnected intersection management.

D. Parking Control

Parking control involves planning the path of a RSMR to
enable it to stop at a specific parking location, and various
studies have been conducted to address this problem [73],
[86], [128]. Shen et al. [86] developed a hierarchical control
approach to facilitate the parking of a self-driving RSMR (SR)
in a designated parking space when confronted by another
human-controlled RSMR (HR) approaching in the opposite
direction. This approach incorporates a high-level data-driven
strategy predictor and a lower-level model-based feedback
controller. The strategy predictor employs a neural network
to establish a mapping from the dynamic environment to
high-level strategies. These strategies include: (1) the SR
passes the HR from the left side, (2) the SR passes the HR
from the right side, (3) the SR yields to the HR for safety.
Based on the selected strategy, a set of time-varying planes
is generated online in the SR’s position space. The associated
space constraints are integrated into the lower-level model-
based controller to guide the SR toward feasible areas.

E. Drift Control

Drift control is typically associated with fun driving maneu-
vers, racing performance, and slippery surfaces. It involves

controlling RSMRs to deliberately execute controlled side slip,
often by maintaining a fixed side-slip angle during cornering,
which enables agile and aggressive turning. Essentially, drift
control is a special kind of path generation and tracking. The
distinctive aspect of drift control is that it relaxes the curvature
constraints of the generated paths and allows lateral movement
of the vehicles.

Yang et al. [72] proposed three types of drift conditions:
fixed-circle drifting, moving-center drifting, and varying-
interaction drifting with different tire-ground interaction
parameters. Then, they derived the required steering angle and
wheel rotational speed to stabilize the heading angle and the
trajectory curvature. Zhang et al. [96] divided a road with a
corner into three distinct regions: free, drift, and transit. In the
free region, trajectories based on a bicycle model are generated
and selected using a rapidly-exploring random trees approach.
The drift region consists of three defined phases, namely turn-
in, counter-steering, and exit. A rule-based model is employed
to determine the desired steering and torque during these
phases. In the transit region, a PI controller is used to minimize
the deviations between the current kinematic parameters and
the desired kinematic parameters.

F. Passenger Unease

Takada and Nakagawa [130] employed a RSMR to
investigate the factors that contribute to passenger unease.
Participants were shown recordings from the RSMR’s front-
facing camera, which depicted the vehicle navigating through a
scaled-down city. Participants were instructed to press a button
when they felt uneasy (their safety is being threatened) to trig-
ger the recording of relevant influential factors. These factors
encompassed the degree of obstacles protruding towards the
road, the steering angle during right turns, the start timing
of right turns, vehicle speed, and the arrangement of mini-
pedestrians and buildings on the sidewalk.

G. Hands-Free Control

When human intervention is required in automated driving,
the driver needs to quickly regain the control of vehicle.
In this case, relying on the steering wheel and pedal can
cause delays. Therefore, Wang et al. [131] developed a hands-
free control method for robotic vehicles based on fuzzy logic.
This method employs electromyography sensors and IMUs
to capture forearm postures and muscle activity information,
which serve as indicators of the human driver’s intentions. The
collected information is fuzzified and ‘IF-THEN’ statements
are formulated to facilitate the RSMR’s understanding of the
driver’s intent. This research enables drivers to conveniently
interact with vehicles without physical contact. However,
further research is needed to investigate the impact of these
sensors on driver comfort and whether these sensors can be
widely adopted on a large scale.

V. CONCLUSION

This paper comprehensively reviews 134 studies that focus
on AD using RSMRs. First, we provide an overview of the
progress made in AD research with RSMRs, and highlight
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the characteristics, advantages, and disadvantages of RSMRs
compared to real-world tests, driving simulators, and simu-
lation models or software. Next, we provide an analysis of
three key modules of AD task, including perception, decision-
making, and actuation. Within each module, we describe
the commonly used devices or methods, and compare their
respective advantages and disadvantages. Additionally, we also
identify the main applications covered in existing studies,
including navigation and obstacle avoidance, vehicle fleet
coordination, intersection management, parking control, drift
control, passenger unease, and hands-free control.

The primary objective of AD experiments and research with
RSMRs is to develop and evaluate algorithms for perception,
decision-making, and actuation. These studies serve as a
foundation and reference for real-world AD experiments and
tasks. Although physical RSMRs can partially simulate the
characteristics of real-world traffic and vehicles, and the results
obtained from experiments conducted with RSMRs provide
more authentic and compelling evidence compared to simu-
lations, it is important to acknowledge that the experimental
environment still differs from reality. Consequently, we outline
the shortcomings and limitations of RSMRs as follows:

• First, experiments with RSMRs have a limited scope.
While RSMRs are well-suited for exploring the perfor-
mance of decision-making and actuation algorithms, they
are not applicable to certain issues such as human driving
experiment, human-machine interaction, takeover, driver
behavior and psychology when co-driving with machines,
and the societal impacts of AVs.

• Second, real-world traffic scenarios are often unpre-
dictable and significantly more complex than controlled
experimental environments. Specifically, real-world traffic
involves diverse road conditions and intricate interactions
with various types of vehicles and pedestrians. Emergen-
cies, traffic violations, and congestion can occur at any
time. Although physical RSMRs can simulate and model
some of these factors, accurately replicating the complete
complexity and variability of real-world traffic scenarios
is impossible. This suggests that RSMRs also exhibit a
lack of high-fidelity characteristics to some degree.

• Third, RSMRs are miniature and simplified versions of
real-world vehicles, typically characterized by smaller
size, lighter mass, lower speed, and different kinetic
characteristics and limitations compared to actual vehi-
cles. Consequently, many desired experiments cannot be
conducted in a robotic environment. Furthermore, due to
the kinetic disparities between RSMRs and real vehicles,
algorithms developed and tested on RSMRs cannot nec-
essarily be directly applied in practical settings without
further testing.

In addition to the inherent limitations of RSMRs, the
existing research on AD using RSMRs presents several unre-
solved issues and areas requiring improvement. In this context,
we outline the identified gaps and challenges of this research
as follows to provide reference for future research.

• First, the existing studies have primarily focused on spe-
cific problems, and the scenario design and assumptions
for these problems are simplistic, e.g., avoiding static

or uniformly moving dynamic obstacles. However, real-
world traffic involves complex interactions with various
vehicles and pedestrians that have autonomous mobility.
These traffic users have resulted in an environment much
more complex than the testing environment of RSMRs.
Therefore, a crucial task now is to closely simulate
reality in scenario design to enhance the practical value
of RSMR AD experiments and the experimental results.
Specifically, we argue for research on interactive driving
events commonly observed in real-world traffic. Exam-
ples include merging, lane changing, cut-in, overtaking,
and pedestrian avoidance behaviors. In addition, the num-
ber of RSMRs should be increased for the research of
vehicle interactions and intersection management to more
closely resemble reality.

• Second, the existing research has short experiment dura-
tion and distance, resulting in insufficient reliability of
algorithm evaluation results. Furthermore, the impact
of time and distance on the AD system’s performance
remains to be studied.
We think that by fully leveraging the advantages of low
cost and small size of RSMRs, extending the experiment
duration can serve as a reference for AD in long-distance
scenarios such as motorways and rural roads.

• Third, existing research assumes that the environment
is stable and the surroundings of RSMRs tend to
move as expected. However, in reality, emergencies,
traffic violations, and congestion can occur at any
time.
Therefore, we believe it is necessary to consider the
environmental uncertainty in the research, for example,
evaluating the emergency response capability of a RSMR
when the preceding vehicle suddenly brakes in a vehicle
fleet, introducing pedestrians that suddenly run out in
intersections, adding some randomness to the movement
of dynamic obstacles, or evaluating the measures taken
by the RSMR in the event of sensor failure.

• Fourth, there is a scarcity of studies that compare the
outcomes of RSMR experiments with those of real-
world vehicles. These reduced-scale systems differ from
reality in terms of size, vehicle speed, and various other
factors. Conclusions drawn from experiments conducted
with RSMRs may not always be applicable to real-world
scenarios.
Thus, we suggest additional comparative studies are
necessary to thoroughly assess the reliability and trans-
ferability of RSMR experiments.

• Fifth, existing studies typically involve one or more
fully autonomous RSMRs. However, fully autonomous
vehicles are still in the experimental stage. For a consid-
erable period in the future, the vehicles on the road will
transition towards a mixed traffic flow consisting of both
manually driven and autonomous vehicles.
To better understand mixed traffic with RSMRs,
we advise programming some RSMRs for full
autonomous driving while manually controlling others
(for example with a human in a driving simulator or
controlling the RSMR using a joystick).
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Through a detailed analysis of existing literature, we have
formed initial predictions about the future development direc-
tions and prospects of RSMR in AD applications, as outlined
below.

• First, future research will simulate more real-world sce-
narios and factors, aiming to enhance the realism of
AV experiments with RSMR. To achieve this, realistic
miniature cities will be established, consisting of lane
markings, central dividers, traffic lights, and artificial
pedestrians. Additionally, other road models and scenar-
ios will be designed, potentially including freeway ramps,
mountainous roads, tunnels, and elevated bridges.

• Second, as more advanced artificial intelligence algo-
rithms are integrated into the perception and decision-
making of RSMR, the level of intelligence of RSMR will
increase accordingly. This enables the testing of more AV
scenarios in environments like ramp merging and lane-
free traffic.

• Third, more AD functions and the corresponding hard-
ware and software will be developed and investigated,
such as voice control, gesture control, and human-
machine interaction interfaces.

In conclusion, the use of RSMRs in AD research shows
promise. However, further research is required to tackle the
existing challenges.
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