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Quantifying Cyber Risks: The Impact of DoS
Attacks on Vehicle Safety in V2X Networks

Zsombor Pethő , Tamás Márton Kazár , Zsolt Szalay , and Árpád Török

Abstract— This paper presents a novel framework for analyz-
ing the interrelationships between vehicle dynamics, communi-
cation characteristics and cyberattacks on V2X-based functions,
highlighting their impact on vehicle safety. The research imple-
ments a simulation-based approach and uses various regression
models to describe the complex interactions between cyber-
physical components, providing a nuanced understanding of
the mathematical relationships. It provides a robust simulation
framework for assessing DoS attack’s impact on the traffic safety
risk. From a societal perspective, it addresses fundamental road
safety issues in the face of increasing reliance on connected
technologies. From a technical perspective, it presents an inno-
vative ASIL-compatible risk classification methodology for DoS
attacks, contributing to standardised cyber threat assessments
in line with automotive security standards. The research serves
as a methodological basis for investigating DoS attacks on
vehicle safety and introduces a quantifiable risk assessment
approach that can be used in adaptive security solutions. The
risk classification system facilitates scenario assessment, improve
intrusion detection and ensure the resilience of connected and
intelligent transport systems.

Index Terms— V2V communication, safety risk, cybersecurity,
denial-of-service (DoS), safety analysis, network performance.

I. INTRODUCTION

IN LIGHT of the overarching societal goal to significantly
reduce the number of accidents, the utilisation of V2X

(Vehicle-to-Everything) technology is becoming increasingly
important. Improving safety is a key objective of Cooperative
Intelligent Transportation Systems (C-ITS), but as systems
become more complex and interconnected, new types and
causes of accidents will emerge. In addition, with the inte-
gration of advanced communication technologies into the
transport system, various remote cyber-attacks against vehicle
systems and transport infrastructure are becoming feasible [1].

Wireless communication is particularly important where the
reliability of information from other environment perception
sensors cannot be guaranteed. Typical cases are Non-line of
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sight (NLoS) situations, e.g. intersections in densely built-up
urban environments where neither radar, LIDAR nor camera
can detect objects behind buildings [2]. The detection of a
dangerous situation and the appropriate decision can remain
uncertain if the quality of the wireless communication is
bad [3]. Accordingly, for safety applications, availability is
the most critical cybersecurity aspect of the CIA (Confiden-
tiality, Integrity, Availability) triad because if the information
is unavailable in time, the Automated Driving System /
Advanced Driver Assistance System (ADS / ADAS) functions
(e.g., AEB - Automated Emergency Braking) cannot intervene
in order to avoid the potential collision / accident [4], [5].

Given the importance of availability, for safety-critical
applications, such as collision warning systems, AEB, and
Adaptive Cruise Control (ACC), low end-to-end latency (E2E)
and a high packet delivery ratio (PDR) are crucial. In these
systems, data must arrive with predictable delay and jitter
to enable timely control decisions for safe driving [6], [7],
[8]. Attacks that compromise the availability of critical infor-
mation are a particular threat to the safety of connected
vehicles [9]. Therefore it is important to understand the
relationship between communication, physical system func-
tionality and risk associated with failures [10]. In this case,
a method is needed that can estimate the change in risk as a
function of the change in quality of service (QoS), so that
the system can be kept in a safe state [11]. Accordingly,
we can characterize one of the most important cybersecurity
parameters, availability, by analyzing the effect of Network
Performance Metrics (NPMs) such as PDR and E2E [12].

Due to a cyberattack [13] or any other unintentional wireless
communication failure, PDR and E2E can be degraded by
a certain level [3], [14]. So far, no modeling concept has
been developed to quantify cyber-attack’s impact on vehicle
safety focusing on vehicle-to-vehicle communications, in line
with the automotive safety principles (ISO26262 [15], [16]).
Although Javed et al. [17] have shown that cybersecurity, QoS,
and safety together have an impact on the operation of C-ITS,
they have not explored the functional relationships between the
factors and have not examined the impact of each intervention
on the probability and severity of a potential incident. In line
with this, the present research aims to develop a new modeling
framework to explore and quantify the relationships between
cybersecurity, vehicle safety, and wireless communication
quality, considering V2X-based automated vehicle functions.
Accordingly, the main contributions of this paper can be
summarized as follows.
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• A notable aspect of this paper is the integration of
hardware and software system components, which has
enabled the creation of a unique framework for testing
cyber-physical processes by combining vehicle simula-
tion, network simulation and standard communication
devices.

• In this research, we laid the methodological foundation
for investigating the impact of Denial-of-Service (DoS)
attacks on vehicle safety for connected vehicles, taking
into account relevant vehicle dynamics factors.

• Another unique novelty achieved by this research is that
we can quantify safety risk with our simulation frame-
work, depending on the vehicle dynamics and cyberattack
parameters. This is an essential research milestone to
implement adaptive security solutions to handle network
disruption and degraded performance in inter-vehicular
wireless communication.

• A key achievement is that we have successfully built a
risk classification system, allowing us to evaluate differ-
ent cyberattack-related driving scenarios, considering the
vehicle dynamics under investigation and the fundamental
characteristics of cyber-attacks.

II. RELATED WORKS

Recently, V2X communication technologies has signif-
icantly enhanced the capabilities of intelligent transport
systems. These advances have led to an increased interest
in understanding the cybersecurity challenges posed by the
integration of vehicle networks and cyber-physical systems.
A number of studies have examined the vulnerabilities of V2X
communications, specifically the challenging aspects of DoS
attacks [18]. Lyamin et al. [19], [20] proposed solutions for
real-time jamming detection in 802.11p vehicular networks.
Based on these studies, the results supported that commu-
nication link metrics (e.g., jitter) have a crucial effect on
predictable and uniform message reception, and accordingly,
on the whole system reliability. Kim and colleagues [21] inves-
tigate DoS attacks on Cellular Vehicle-to-Everything (C-V2X)
networks from several perspectives. They applied system-
based simulations and quantified the impact of a DoS attack on
communication quality indicators such as reliability, coverage
and timeliness. The simulation results show that DoS attacks
can significantly affect the detection and decision-making
processes of highly automated vehicles. Similarly, Twardokus
and Rahbari [22] proposed mitigation techniques in order to
maintain QoS in C-V2X networks. This article [23] focuses
on the importance of secure transmission for intelligent V2X
communications in the context of increasing connectivity.
It highlights the limitations of existing cryptographic and phys-
ical layer security techniques, which often reduce throughput
performance due to high vehicle mobility and low short-term
channel quality statistics. The concept of statistical security is
introduced, which uses time-sensitive information to increase
throughput while maintaining security. The paper proposes an
optimal power allocation scheme within a queueing system
model that addresses different security QoS requirements
and demonstrates significant performance improvements over
existing baseline schemes through simulation results. However

the above introduced research studies did not focus on the
safety consequences of degraded wireless performance. These
papers did not investigate the potential collision risk associated
with different cyberattacks on the V2X network. Petit et al.
[24] presented the Coordinated Mobility for X (CMX) frame-
work, which is designed to ensure safety, privacy, efficiency,
and cybersecurity (SPEC) in networks of highly automated
vehicles. The CMX framework incorporates various cyber-
physical components and relies on protocols and algorithms
for reliable inter-vehicle communication and coordination.
Although they considered safety and cybersecurity in an inte-
grated way, the framework did not numerically represent the
safety risk. This study [25] investigated the impact of driving
assistance from a connected environment on driving behaviour
and safety through an innovative driving simulator experiment.
Communication delay and loss scenarios were included to real-
istically imitate connected environment conditions. The study
also examined the impact of these communication impairments
on specific driving events along the motorway, suggesting
further research into their impact on other traffic interactions.
However, this research focuses on the interaction between QoS
and safety, without considering cyberattack characteristics,
systematic analysis and V2X-specific safety indicators.

III. METHODOLOGY

Based on the introduction, it is imperative to define
a methodological framework that captures the sequential
effects resulting from cyber-attacks, compromising commu-
nication QoS, influencing vehicle dynamics and degrading
vehicle safety. This requires the development of a structured
approach that comprehensively accounts for the interrelated
and cascading effects of these multiple domains. Accordingly,
a significant contribution of this research is the integration
of hardware and software elements, which allowed the estab-
lishment of a novel environment for testing and analysing
cyber-physical processes by combining vehicle simulation,
network simulation and standard communication devices.
By using real devices in the communication process and
integrating different simulation solutions to model the inter-
acting mobility and data exchange processes, it is possible
to study the traffic safety aspects of denial of service
attacks.

Various statistical and machine learning (ML) methods, such
as polynomial regression, neural networks, and also random
forest algorithms can be used to estimate the correlations
between accident probability and severity based on the cyber-
physical parameters of a given test scenario. Building on our
previously established testing concept [3], we adapted the
theory of the introduced risk estimation approach to develop
the methodological framework and the estimation procedure
for simulating hazardous events and quantifying the associated
risks due to a deliberate communication failure caused by
a DoS attack. As part of our innovation efforts, we aim to
introduce a complex simulation toolchain based on a consistent
theoretical background that can quantify the expected risk of
traffic accidents by simulating the impact of DoS attacks,
taking into account attack rate (AR) and attack packet length
(APL).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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TABLE I
DRIVING TEST SCENARIOS WITH THE DEFINED SPEED LEVELS

Our investigation aims to explore the relationships between
cyber threats, communication QoS, and vehicle safety. There-
fore we chose a test scenario:

• that is statistically characterised by an increased level of
risk

• where the other environmental sensors cannot detect
hazardous events in time, and only V2X communication
can currently provide accurate detection from a sufficient
distance.

The study focuses on Straight Crossing Path (SCP) intersec-
tion scenarios (see Table I), where a Host Vehicle (HV) and
a Remote Vehicle (RV) approach a right-angled intersection
at different speeds and cross each other’s paths simulta-
neously in the conflict zone. The flowchart in Figure 1
represents the steps of the methodology of this research, the
individual phases are detailed in the following subsections.
To achieve the research objective, we define common driving
test scenarios (Figure 1 - block 1) for both Hardware-in-the-
loop (HIL) and network simulation. During HIL simulation
phase (Figure 1 - blocks 2, 3, 4, 5) we quantify the vehicle
safety impact based on NPMs. During the network sim-
ulation phase (block 6) we compute NPMs based on the
attack parameters. We then process these results to obtain
the generalized estimator function characterizing the Safety
Risk posed by the attack - S RIAT T (Figure 1 - block 7) and
derive the risk classification matrix (Figure 1 - block 8) to
identify critical cases (Figure 1 - block 9). As can be seen
from the overall research methodology described, the fol-
lowing subsections detail the steps of the simulation and
modelling processes. However, it is important to emphasize
that a detailed description of the process and the shar-
ing of data is necessary to ensure the replicability of the
research.

A. Hardware-in-the-Loop Simulation

The simulations (see Figure 1 - HIL simulation block)
provided the GNSS feed for the Cohda MK5 On Board
Units (OBU), which communicated with each other on the
802.11p physical layer. The OBUs logged the communica-
tion data to Packet Capture (PCAP) files. The standardized
logging procedure provides the transmitted and received Coop-
erative Awareness Messages (CAM). V2X data extracted
from logged messages contain vehicle dynamics parameters
(VDPs), including vehicle speed and acceleration, as well as
GNSS position. This data generated from simulated driving
scenarios was modified to comply with the predefined NPMs
(e.g, PDR, E2E), as shown in Figure 1 - Data processing
block.

Fig. 1. Process flow diagram.

B. Data Augmentation Based on NPMs
The subcases were created by modifying the data set offline

using previously defined PDR and E2E parameter values
(PDR: 10%, 50%, 100%, E2E: 100ms, 500ms, 1000ms).
A certain percentage of the packets were dropped in order to
match the desired PDR value. At PDR = 100% no packets
were dropped from the dataset. For applying E2E values,
we shifted the received CAMs in time to process the messages
with a specific latency value. The investigated PDR and
E2E network performance metrics were defined based on the
following formulas:

P DR =

∑
nr. of packets successfully received∑

nr. of packets transmitted
(1)

E2E = N−1
·

N∑
i=1

τi (2)

where τi is the aggregated delay of the following components,

• Transmission delay, τtrans - the time it takes to push the
packet’s bits onto the link;

• Propagation delay, τprop - the time required for a signal
to propagate through the transmission medium;
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• Processing delay, τproc - the time it takes a router to
process the packet header;

• Queuing delay, τqueue - the time the packet spends in
routing queues, and

• N - nr. of packets transmitted.

C. Safety Risk Calculation and Estimation

Following the data augmentation step, we calculated the
Safety Risk Index (SRI) value (Eq. 3) for each sub-
case (see Figure 1 - SRI calculation and S RIN P M
regression blocks). SRI is a Surrogate Measure of Safety
(SMoS) indicator that has been previously introduced [3] and
is specifically tailored to measure safety risk in V2X-based
applications.

S RI = (tM SG − tC E N T E R) · dSS (3)

To assess the risk of a hazardous event, we estimated param-
eter values that directly correlate with the probability and
severity of a collision resulting from delayed or missed recep-
tion of V2X safety messages. The time difference between the
reception of the V2X message (tM SG) and the center of the
safe interval (tC E N T E R) determines the probability of delayed
or missed reception. Severity is proportional to the kinetic
energy of the collision [26], as per Equation 4. Therefore,
we can represent severity by dSS , which is approximately
proportional to the square of the velocity.

dSS = (vH V · tP R) +
v2

H V
2 · µ · g

+ dsa f e (4)

where,
• dSS is the stopping sight distance in [m];
• vH V is the speed of the HV in [ m

s ];
• tP R is the perception-reaction time [s];
• µ is the friction coefficient;
• g is gravitational acceleration in [ m

s2 ];
• dsa f e is the safe stopping distance in [m].
In [3] we previously presented the SRI indicator for the For-

ward Collision Warning (FCW) type safety application. In this
article, we adapted the SRI to SCP scenarios. When applying
the SRI approach to intersection scenarios, we examined the
cases where the ego vehicle collides with the crossing vehicle
from the side. In this case, we assumed that the velocity vector
of the remote vehicle is perpendicular to the velocity vector
of the host vehicle.

In the next step we estimate the relationship between the
risk of crossing vehicle movements and the QoS parameters
(Eq. 5) depending on PDR, E2E, vRV ,vH V . The following ML
models were applied to reveal the correlation between the stud-
ied factors: Ordinary Least Squares Polynomial Regression
(OLS-PR), Support Vector Regression (SVR), Feedforward
Neural Network (FFNN) and Random Forest (RF) [27]. The
input features of the regression models are presented on the
right side of the Eq. 5.

S RIN P M = f (vH V , vRV , P DR, E2E) (5)

Fig. 2. Network simulation mobility scenario with two vehicles (HV, RV)
and one malicious node (marked with M).

D. Network Simulation

We used the open-source discrete-event simulator ns-3 to
model wireless communication process (see Figure 1 - NS3
static network simulation block). Benin et al. [28]
validated that these models can accurately model the physical
propagation characteristics of 5.9 GHz radio waves under
certain parameter settings.

In the simulated scenarios, HV and RV transmit periodic
CAMs with a frequency of 10 Hz with an average packet size
of 350 bytes [29].

In our research, we conducted a comprehensive explo-
ration of propagation models to replicate a well-understood
output characteristic – the relationship between PDR and
inter-vehicular distance. After experimenting with multiple
configurations, we opted for a hybrid approach, combining the
Nakagami-m fading model with the ThreeLogDistance
propagation model. The Nakagami-m model introduced statis-
tical fading effects, allowing us to simulate NLoS conditions,
where signal strength fluctuates due to obstructions or reflec-
tions. However, we encountered a challenge with limited
communication range. To address this issue, we implemented
an adaptive transmitter power strategy, varying the power
level according to inter-vehicular distance (see power level
values in Table II). This compensation effectively extended our
communication range to match with analytical results [30] and
real world measurements [31]. Notably, our scenario, despite
lacking physical obstructions, matched NLoS characteristics
due to virtual obstructions (See Fig. 2), which significantly
impacted radio propagation.

In our simulation methodology, we established driving
scenarios wherein the trajectory of each vehicular node was
discretized into a series of fixed trajectory points. Net-
work performance metrics were computed at each of these
static positions. To facilitate this process, we employed the
ConstantPositionMobilityModel to manipulate the
relative air distances between vehicles. Consequently, for each
specific driving scenario, we subdivided the trajectories of
the two vehicles into equidistant points. Subsequently, the
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TABLE II
NS3 PARAMETERS FOR THE VEHICULAR COMMUNICATION

SIMULATIONS

network metrics generated for each scenario were derived by
calculating the mean values across all the individual points.
This systematic approach allowed us to rigorously evaluate
and analyze network performance under various conditions.

For measuring network performance metrics, ns-3 pro-
vides several tools and methods for a simulated network.
We used the FlowMonitor module, which is specifically
designed to measure network performance metrics at the flow
level. During the network simulation, this module collects real-
time statistics for each data link in the network, including the
number of packets exchanged, packet loss rate, delay, jitter
and throughput.

Based on the six driving scenarios (Table I) and the attack
parameters (attack packet length, attack rate), 780 scenarios
were simulated for a total of 15,600 unique test points. The
dataset created with the above settings during the tests was
made available in the Zenodo open repository [32].

E. Risk Estimation Based on Attack Parameters

As discussed earlier, availability can be significantly
affected by DoS-type attacks [22], therefore network per-
formance parameters can degrade. DoS-type attacks can be
implemented in such a way that the routing services are
disrupted, thus, the given node will be forced into isolation
and no longer transmit V2X messages. Cyberattack can force
the network nodes to drop data packets or even flood the
V2X communication channel with meaningless messages and
unnecessary route request messages (RREQ) [33], [34]. Most
DoS-type attacks affect the network and transport layers

(according to OSI model) of network nodes (OBUs). Addi-
tionally, physical layer attacks, such as jamming (disrupting
radio signals with overpowered signals), influence the arrival
of already packets.

Based on our assumptions, the intruder node has already
infiltrated the vehicular communication system and possesses
a valid authentication certificate. As a result, the malicious
node can transmit corrupted V2X messages to other vehicles,
thereby causing the recipient node to perceive them as authen-
tic messages. We put the focus on high risk and hard-to-detect
scenarios, therefore, we modelled the attack using standard
communication protocols. To make it more difficult to detect,
we considered unicast communication to make the attack more
efficient, as unicast transmissions require acknowledgements
from the receiver, which adds overhead in terms of signalling
and processing time. If the network is congested due to a
DoS attack, these acknowledgments may be delayed or lost,
resulting in increased latency as the sender needs to retransmit
packets.

We investigated a possible attack scenario (see Fig. 2), that
describes when the attacker floods the V2X communication
channel, which can be described as follows:

• The attacker positions itself close to the target vehicle.
• The attacker generates a large number of messages to

flood the V2X communication channel.
• Intense messaging causes the V2X communication chan-

nel to become congested, potentially making it difficult
for the target vehicle to receive legitimate messages from
other nearby vehicles.

• As a result, the legimitate nodes may experience delays
or be unable to receive critical safety-related messages,
such as warnings about potential collisions or hazardous
road conditions.

• If the attack is successful, the quality of communication
between the target vehicle and other vehicles can deteri-
orate, leading to potentially dangerous situations on the
roads.

To study the impact of the attack, we needed to differentiate
the strength of the attack based on the primary communication
parameters. Thus we considered two communication parame-
ters: the attacker’s data transmission rate (AR) and the attack
packet’s length (APL). We divided the AR and APL values
into three categories each, as follows:

• No attack - is the case when there is no attack, but we
still evaluated the SRI based on the PDR and E2E. This
can be the base of comparison.

• AR1 - this category includes lower data rates [0.5 - 3
Mbps];

• AR2 - this category includes higher data rates [3.5 - 6
Mbps];

• APL1 - this category includes the 100 - 300 byte long
packets;

• APL2 - this category includes the 400 - 600 byte long
packets;

• APL3 - this category includes the 700 - 1000 byte long
packets.

Dos-type attacks typically have a cascading effect on differ-
ent layers of the ITS stack [33], mostly affecting bandwidth,
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so we need to investigate how channel saturation affects
network performance metrics.

Accordingly, in the next step, the PDR and E2E values were
calculated from the simulation data in each static measurement
point. The network performance metrics of the static measure-
ment points were then averaged per scenario. Using this data,
the characteristic SRI values of the scenarios were calculated
(see Figure 1 - S RIN P M regression block) using the
adapted SRI ML models. This enabled the identification of the
optimal ML model that best describes the relationship between
the scenario-specific AR and APL values and the SRI indicator
(see Figure 1 - S RIAT T regression block). The general
form of the function (Eq. 6) relating the attack parameters, the
vehicle speeds under consideration (as input features) and the
safety risk (as the output variable) is given below.

S RIAT T = f (vH V , vRV , AR, AP L) (6)

To select the appropriate regression model, several ML
methods were compared. In a first step, OLS-PR analysis
was performed assuming a nonlinear relationship. The polyno-
mial reduction was performed using the backward elimination
method, and components with less influence on the effi-
ciency of the estimation were removed from the regression
function. The elimination criterion was to ensure that the
change in R-squared (R2) remained below 10%. Besides
OLS-PR, we investigated RF regression which is a flexible
ML method for estimating the nonlinear relationship between
different variables. It aggregates the predictions of various
decision trees to minimise overfitting and enhance accuracy.
Another model examined was SVR, which is used to identify
a function that best predicts the continuous output variables
for a given regression problem by capturing complex patterns.
Finally, we implmented a FFNN, which can learn hierarchi-
cal representations of the input features through the hidden
layers. Each hidden layer learns to extract and transform
features from the previous layer, enabling the network to
discover relevant representations of the data for regression
tasks.

Utilizing the formulated estimation models, it becomes
feasible to establish a framework for the risk factors (see
Figure 1 - Risk classification matrix block) that
is compatible with the Automotive Safety Integrity Level
(ASIL) related standard [15]. We can then identify the critical
cases (see Figure 1 - Critical case identification
block) and carry out a more in-depth analysis.

IV. RESULTS AND DISCUSSION

In this section, we derive the impact of attack characteristics
on communication parameters and safety risk based on a
systematic analysis of the given attack mechanism. Firstly, the
relationship between the relevant attack parameters (AR, APL)
and the network performance metrics (PDR, E2E) is described.
Using the developed risk estimation methods, we investigate
the relationship between VDPs, NPMs and safety risk.

Finally, a detailed analysis of the relationship and interac-
tions among the attack, communication quality, and safety risk
in selected critical scenarios was performed.

Fig. 3. PDR mean values for each scenario (S1-S6) for different attack rates
(AR).

Fig. 4. E2E mean values for each scenario for different attack rates (AR).

A. Simulation Results

Considering the relevant attack parameters and the network
performance metrics, the effect of different attack rates on
PDR was analyzed.

It can be observed in Fig 3 that there is a breakpoint (over
1.5 Mbps) beyond which the increasing DoS attack rate (AR)
does not further degrade the PDR significantly. The main
reason for this is that the communication protocol defines stan-
dard methods (such as Carrier Sense Multiple Access/Collision
Avoidance - CSMA/CA) that have a significant impact on
the temporal distribution of packets. This includes variables
such as the interval between successive transmissions and the
effective utilisation of the channel, as indicated by Inter-Frame
Space (IFS) values and the Contention Window (CW) value
adjusted in accordance with the backoff algorithm. In line with
the above, we also tested, on a purely experimental basis, what
would happen if we deviated from the standard protocol and
minimised the different inter-packet intervals. In fact, we did
see a significant reduction in the PDR.

Figure 3 indicates that the speed of the two vehicles involved
in the driving scenario significantly impacts the sensitivity of
the communication quality (particularly the PDR) to the attack
(the speeds corresponding to S1-S6 scenarios in Table I).
Accordingly, S6 is the most sensitive to the specified DoS
attack, in which both involved vehicles have the highest speed
among the examined scenarios. In line with this, S1 is the least
sensitive to the given attack type.

Figure 4 shows that latency growth slows significantly after
the AR threshold of 1.5 Mbps. This phenomenon is essentially
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due to the unicast nature of the communication, as increased
channel contention and potential packet loss results in a signif-
icant delay in transmission. Consistent with the literature [35],
our tests in broadcast communication environments generally
showed latencies of less than 1-2 ms, with a monotonically
increasing characteristic. For APL, the simulation shows that
the PDR and E2E degrade up to about 200 bytes, but beyond
this threshold the effect of the change in APL on the NPMs
is not significant. As a result of the network simulation,
the AR, APL, PDR and E2E values are available for the
scenarios tested (see Figure 1 - block 6, AR and APL values in
Table II). Based on this, the SRI values of the scenarios were
determined using the developed ML models. The estimation
models linking VDPs, AR, APL and S RIAT T were then
identified.

B. Comparison of Different Regression Models

In a first step, the relationships between the data provided
by the V2X HiL simulation and the calculated S RIN P M were
investigated using the different methods. In the case of the
polynomial function, the second-degree forms of the factors
and their combined multiplications (R2

= 0.95) were used.
The reason for this is that increasing the number of degrees in a
polynomial may increase the achievable correlation, but it also
significantly raises the probability of overfitting. A shallow
FFNN model (with one hidden layer; [64,32,1]) was applied
with ReLU (rectified linear unit) activation functions in the
hidden layer and a linear function in the output layer. For the
training process, the ‘Adam’ optimizer algorithm was applied
using the Mean Square Error (MSE) and R2 as performance
indicators. The number of neurons significantly affects the effi-
ciency of the FFNN model; an inadequate number of neurons
will deteriorate the generalisation ability of the model as it
cannot represent different nonlinear functions, while too many
neurons will significantly prolong the training time and even
lead to overtraining. A number of experiments were carried
out to train the FFNN with different numbers of neurons in
order to define the best performing network (R2

= 0.92).
In order to identify the appropriate SVR model, it is necessary
to set the hyperparameters C and ϵ in a reasonable way, and
to select proper kernel type as inappropriate parameterisation
will degrade the performance of the model. In this case, the
optimal values of the parameters were C = 8, ϵ = 0.01 and the
applied kernel was radial basis function (R2

= 0.9). Using the
RF algorithm, we set the number of estimators and the chosen
criterion function to calibrate the regression method. In this
case, we used 100 trees and the Poisson criterion to measure
the quality of the split (R2

= 0.93). The ML methods pre-
sented were then used to investigate the relationships between
the data obtained from the attack simulation and the estimated
S RIAT T . For the polynomial function, the third-degree forms
of the factors and their combined multiplications (R2

= 0.98)
were used. The shallow FFNN model was applied with the
same inner architecture as previously (R2

= 0.98). The SVR
method was applied with the following optimized parameters
C = 1, ϵ = 0.01 with radial basis function (R2

= 0.97).
In this case of RF method, we used the same parametrization
as in the case of S RIN P M estimation (R2

= 0.99).

TABLE III

COMPARISON OF IMPLEMENTED ML REGRESSION MODELS BASED ON R2

Table III summarises the R2 values of the compared ML
models.

Based on the R2 correlation indicator, it can be concluded
that OLS-PR gave the best results for S RIN P M , while RF
proved to be the most accurate regression estimator for
S RIAT T .

The developed estimator methods can be integrated into a
cybersecurity framework so that once an attack is detected,
the system can estimate the expected impact of the attack on
vehicle safety risk.

Applying a network monitoring module, the regression esti-
mator can effectively detect anomalies or suspicious patterns
in V2X communication by incorporating features such as
PDR and E2E. This is critical for early threat detection in
next-generation intrusion detection systems (IDSs), enabling
timely response to potential security incidents. The estimator’s
ability to account for factors such as VDPs further enhance its
adaptability to dynamic conditions, making it well suited for
improved IDSs that need to respond to evolving threats in real-
time. Adaptive security solutions can modify 802.11p PHY
layer parameters (e.g. modulation coding scheme, channel
switching, transmit power) or tune the VDPs to achieve a
tolerable risk level in response to changing network conditions.

C. Risk Classification Framework

With the input and output factors of the network simulation
(AR, APL, PDR, E2E), risk estimation was performed using
S RIN P M and risk classes were defined based on the resulting
dataset.

According to Table IV, as AR and APL increase, so does
the risk of the adverse impact of an unexpected event caused
by an attack. It can also be observed that higher vehicle
speeds result in increased safety risk. In order to get a more
comprehensive picture of the consequences of the risk values
presented, a detailed interpretation of the risk level of a
possible scenario is presented below. For example, considering
scenario S6, with attack factor pair [APL = 300 bytes,
AR = 4 Mbps], it is possible to estimate the packet delivery
ratio and the latency.

This approach is well suitable for performing Threat Anal-
ysis and Risk Assessment (TARA) since we can determine
the scenario parameters by identifying VDPs and can model
the impact of different DoS attack scenarios by tuning attack
parameters. For Connected and Automated Vehicles (CAVs),
it will be possible to integrate the associated risk function into
the control concept at the design stage of the ADAS/ADS
functions and to minimise the high-risk domains associated
with the Operational Design Domain (ODD).
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TABLE IV
S RIAT T VALUES ACCORDING TO ATTACK MATRIX (SEE ARCAT AND

APLCAT DESCRIPTIONS IN SUBSECTION III-E)

In terms of severity, in the investigated test cases, the largest
possible instantaneous theoretical kinetic energy change can
occur during the deceleration from 130 km/h to 0 km/h, which
can conceivably occur in connection with the S6 scenario.
In the case of perpendicular transverse vehicle motions, if the
mass of the host vehicle is orders of magnitude less than the
mass of the remote vehicle (e.g., the remote vehicle is an
oversized heavy truck), and if the crossing remote vehicle’s
perpendicular velocity component - which is parallel to the
host vehicle’s velocity - is zero, then the collision energy
likely approaches the theoretical upper limit. Consequently,
we can also expect that the biomechanical load on the human
body approaches the introduced theoretical upper limit in this
scenario.

In the case of an 80 kg person, during sudden deceleration
from 130 km/h to 0 km/h, the theoretical upper limit of
the change in the kinetic energy of the human body is
1Ke,130 =

1
2 · 80 · ( 130

3.6 )2
= 52160.5 J . However, similarly

to the probability of occurrence (Pexp) we would like the
value of severity indicator to fall between 0 and 1. Thus,
we use the normalized values of the expected change in kinetic
energy. In accordance with this, if we consider a 70 km/h
scenario, the theoretical upper limit of the change in the kinetic
energy of the human body is 1Ke,70 =

1
2 · 80 · ( 70

3.6 )2
=

15123.5J , in which case the normalized severity value can be
calculated as the ratio of scale interval’s upper boundary and
the investigated indicator value S =

Ke,70
Ke,130

= 0.29. In addition
to quantifying the severity, the presented method can also be
used to support estimation procedures for expected injuries;
since by specifying the examined scenario and the modeled
collision speed, it is already possible to estimate risk related to
Abbreviated Injury Scale (AIS) levels, using previous research
results of the field [36]. For example, in the case of a side
collision, in which the investigated vehicles travel at 70 km/h,
the expected probability that the investigated accident will
have a severe or fatal outcome (MAIS3+F) is more than
50% [36].

Therefore, the risk values above 0.2 in the presented risk
classification matrix can be interpreted as the product of a
high occurrence probability value (e.g., 0.237) and a high
severity indicator value (e.g., 1). As we can see, the introduced
classification method can estimate the risk level of typical

Fig. 5. Box plot diagrams for S RIAT T values.

Fig. 6. Representation of certain safety-critical cases on a radar chart.

scenarios and compare the impact of different attacks on
vehicle safety.

Displaying the results in a boxplot diagram (see Figure 5)
can provide further valuable insight into the relationship
between attack and risk, as it includes information on the vari-
ance, range, minimum and maximum values of the patterns,
in addition to the scenario averages.

The boxplot indicates that as the values of the (AR, APL)
pair increase, the expected risk of an accident resulting from a
DoS attack exhibits greater variability across most scenarios.
As the (AR, APL) value pairs increase, providing a precise
estimate of the anticipated risk of a DoS attack-related accident
becomes increasingly challenging. It is worth mentioning that
in S2, except for the no-attack scenarios, the anticipated risk
values for the attack have a considerable degree of variation.
However, it is important to note that the highest estimated risk
value for S2 is reasonably low.

Specific cases have been selected for further analysis to
illustrate (see Fig. 6) the interaction of cyber-physical fac-
tors concerning DoS attacks. The axes show the normalized
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values of the cyber-physical factors under investigation. After
removing the outliers, the maximum values considered are,
in consecutive order, AR = 6 Mbps, APL = 1000 bytes,
PDR = 100%, E2E = 410 ms, and SRI = 1.

In the first investigated case (S1 - marked in blue in Fig. 6),
the attack occurs in low-speed conditions (20 and 40 km/h).
The APL is 700 bytes, and the AR is 1.5 Mbps. The estimated
PDR resulting from the DoS attack is 67%, and the associated
delay E2E = 130 ms. The network performance parameter
values indicate that the attack’s impact is significant, but the
vehicle safety risk level is not high (SRI = 0.01). This is
mainly due to the low-speed conditions.

In the second investigated case (S4 - marked in orange in
Fig. 6), the attack occurs in medium-speed conditions (50 and
100 km/h). The APL is 200 bytes, and the AR is 1.5 Mbps.
The anticipated PDR due to the DoS attack is 54.3%, and the
corresponding E2E delay is 147 ms. Although the network
performance parameter values suggest a notable impact of the
attack, the risk to vehicle safety remains low (SRI = 0.053).
Detecting this attack can be difficult, as the AR and APL are
relatively low, and the APL is similar in size to an average
CAM message. Nevertheless, it is an effective attack, as it
achieves a significant impact in terms of PDR and E2E.

In the third case (S6 - marked in green in Fig. 6), the
attack occurs in relatively high-speed conditions (50 and
130 km/h). The APL is 900 bytes, and the AR is 3.5 Mbps. The
expected PDR resulting from the DoS attack is 49.2%, and the
associated E2E delay is 177.7 ms. These network performance
parameter values indicate a considerable impact of the attack,
and the safety risk level is also markedly high in this case
(SRI = 0.272). The high SRI value is mainly due to the fact
that the speed difference between the two vehicles is 80 km/h,
which is considered high, and also because of the PDR, every
second message is received with a relatively high latency.

V. CONCLUSION

This paper focuses on examining the impact of specific
cyber attacks (DoS) on vehicle safety by varying communica-
tion parameters such as packet length and attacker data rate
in a simulation of six different scenarios. As a main result,
our methodology enables a comprehensive, systematic and
standardised assessment of cyber threat risks and help develop
effective risk mitigation strategies in the context of automotive
safety standards and requirements.

Following the generated boxplot diagrams, we also recog-
nized that as the applied attack factors increase, the standard
deviation of the expected risk also becomes larger, which
significantly complicates the estimation of risk values during
an intensive attack process. For analyzing additional scenarios,
the method presented should be used to estimate a new SRI
function. The propagation loss models used in ns-3 are specific
to the scenarios studied and, therefore, cannot be generalized
in their present form. The radio propagation models and their
parameters have to be adapted for different scenarios and
environments. In the present research, the type of attack that
has a significant impact on the availability of information was
investigated, for other types of attacks the methodology needs
to be adapted.

To summarize the purpose and applicability of the devel-
oped methodology, we can say that the presented approach
allows to test V2X-based vehicle functions from a cyber
security point of view and to explore the correlations between
cyber-physical parameters, with particular attention to the
characteristics of the cyber attacks under investigation. Given
the dynamic nature of ad hoc networks, real-time threat
detection and response mechanisms becoming crucial. Our
research shows that the network performance may vary rapidly,
necessitating adaptive security solutions capable of responding
swiftly to emerging threats or disruptions [37]. Following this,
the presented methodology is capable of quantifying risk asso-
ciated with DoS-like attacks and supports development and
testing of defensive strategies. By using attack rate and attack
packet length parameters, our method increases the realism
of the simulations, helping to identify and proactively detect
cyber threats, thereby enhancing intrusion detection capabil-
ities. As real-time risk assessment plays an important role
in adaptive security solutions, our methodology contributes
to an immediate response to detected malicious intrusions.
Consequently, by incorporating an ASIL-like framework, our
approach facilitates the development of inherently secure sys-
tems that can dynamically respond to changing threat levels,
thereby ensuring the resilience and security of C-ITS.
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