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Abstract— Road administrators require fine-scaled information
regarding road surface conditions to ensure efficient opera-
tion during winter periods. However, conventional models offer
low-resolution information at a scale comparable to meteoro-
logical meshes or the spatial configuration of road weather
information systems. Additionally, few methods have been pro-
posed for predicting road surface conditions specifically in
urban areas, where roads frequently experience shading from
surrounding buildings. This study proposes a statistical approach
for predicting road surface temperature and conditions in urban
road networks. The complicated accumulated distribution of
solar radiation along each road is calculated and used as an
effective explanatory variable that considers the complex shading
effects of nearby structures. The proposed model adopts a
Bayesian spatiotemporal hierarchical framework for predicting
road surface temperature using a solar radiation variable.
Furthermore, a spatial machine learning model is implemented
to estimate road surface conditions. The model classifies icy
road conditions into six distinct types, achieving a sensitivity of
0.7712 and a balanced accuracy of 0.8637. Ultimately, the model
provides significant information required for decision-making
processes aimed at ensuring efficient winter road management.
These results indicate that the applicability of the proposed
approach can extend beyond the studied area, demonstrating
its potential for broader implementation.

Index Terms— Road surface temperature, road surface condi-
tions, solar radiation, Bayesian hierarchical model, spatiotempo-
ral model, machine learning, winter road operations.

I. INTRODUCTION

ROAD surface weather conditions such as snow and ice
significantly affect driving conditions, which can lead

to serious accidents [1]. Therefore, providing and maintain-
ing safe driving conditions on roads in urban areas is a
formidable challenge for road administrators; these challenges
are often characterized by complicated road networks and
rapidly varying weather conditions [2], [3]. To mitigate these
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risks, road administrators often rely on precise and timely
forecasts of road weather for optimizing snow-plowing routes,
fleet sizes, and courses of sprinkling de-icing agents. Several
maintenance decision support systems (MDSSs) have been
developed for winter roads, particularly in cold regions [4], [5],
[6]. An MDSS uses a combination of several data sources, such
as weather stations, road weather information systems (RWIS),
traffic sensors, and historical records of road maintenance
operations, to provide accurate predictions of road weather
to road agents and to offer valuable recommendations for
optimal maintenance operations. Efficient operations can help
reduce the economic burden on local authorities and the
environmental impact caused by de-icing chemicals.

However, existing methods cannot be fully employed in
practical operations because their spatial resolutions are
coarser than the actual range of winter road operations [7].
This can be attributed to the significant variations in road
weather conditions within a relatively small area, compared
to that with weather meshes and the arrangement of RWIS.
In urban areas, accurate forecasting becomes an arduous
task because of the shading effect of buildings and roadside
trees [8], [9]. The spatial distribution of solar radiation on road
surfaces can considerably vary road weather conditions over
a short range. In addition, road weather conditions change
easily because of traffic conditions and the effect of heat
emitted from car tires and engines [10]. Snow often does not
melt easily on local, low-traffic, and narrow roads. Therefore,
a method that considers local spatial variations in road weather
and other significant factors is required to ensure urban road
maintenance.

Thus far, we propose a framework to provide accurate
road surface condition (RSC) predictions with a high spatial
resolution for urban areas. This study makes three main
contributions. First, the proposed model incorporates the solar
radiation characteristics of each road link by considering the
accumulated spatial distribution of solar radiation. Second, the
spatiotemporal structure of the road surface temperature (RST)
is considered for enhancing the prediction performance of the
RST model. A fine-scale prediction of the RST was obtained.
Third, the proposed method offers an accurate prediction of
RSCs with a high resolution by using the predicted RST
results.

The remainder of this paper is organized as follows.
Section II presents a review of the relevant literature.
Section III details the proposed model. Section IV presents the
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validation of this model using actual measured data. Section V
discusses the obtained results in detail. Finally, Section VI
concludes the paper and discusses future research directions.

II. RELATED WORKS

The RST is the most important explanatory variable for
accurately predicting the RSC required to achieve efficient
winter road maintenance.

A. Previous Models for RST

Thus far, several RST models have been proposed because
RST prediction is an important step in civil engineering, and
it is imperative for winter road maintenance. Further, these
models can characterize the properties of asphalt; therefore,
they are used for pavement design and analysis. The predictive
models of the RST can be classified into analytical and
empirical models. The former is based on physical laws and
explicitly represents the mechanisms that affect the RST [11],
[12], [13], [14], [15]. The analytical model considers a one-
dimensional (1-D) heat balance on the road surface. Weather
and human activity, including the effects of traffic, induce a
heat flux on the road surfaces; then, the surface emits heat
into the air. In addition, it transfers heat in the depth direction
because of thermal diffusion. A 1-D heat conduction differen-
tial equation was solved in the depth direction with appropriate
boundary conditions to estimate the RST. The boundary
condition is typically a heat-balance equation. An analytical
model is complex and requires many parameters that cannot be
obtained from meteorological data [16]. Therefore, the most
crucial issue of the urban road weather model is fine-scale
parameterization because it may be difficult to obtain detailed
parameters that vary over a short range.

Several empirical models have been proposed to circumvent
this difficulty. Many researchers have adopted multiple linear
or nonlinear regression models for RST prediction [17], [18],
[19]. For example, Chapman et al. [20] evaluated the impor-
tance of five explanatory variables (altitude, sky-view factor,
road type, land use, and cold-air advection) using a multiple
regression analysis. These five variables explain approximately
75% of the variation. Sreedhar and Biligiri [21] used a linear
regression model to consider physical phenomena and included
not only weather variables but also physical constants such
as the heat capacity and thermal conductivity of the road as
explanatory variables.

Statistical methods besides multiple regression analyses
have been widely researched; for example, the statistical
ensemble approach [22], least absolute shrinkage and selection
operator [23], random forest (RF) [23], and gradient boosting
regression tree [23]. Neural network models are frequently
used for time-series regression tasks [24]. Shao [25] used
unique explanatory variables such as variations in atmospheric
temperature, differences in atmospheric temperature from one
time point before, and RSC. Liu et al. [26] adopted a learning
machine, which is a type of neural network, and reported
that it appropriately selected activation functions. ReLU and
SoftPlus enhanced the performance of the model. However,
using statistical methods such as machine learning and neural

networks, which are black-box approaches, can reduce the
explanatory power of the models.

Few models incorporate temporal or spatial structures.
Conventional models focus on the prediction of RST at a
single location (in many cases, at the RWIS location). Feng
and Fu [27] forecasted the RST using an autoregressive
moving average with an exogenous input model and derived
models incorporating various explanatory variables such as
weather, traffic, and maintenance. For the spatial relationship,
Berrocal et al. [28] created a Gaussian process (GP)-based
model that considers the spatial dependence of the RST
calculated using semi-variograms for winter mountain road
maintenance. Kwon and Gu [29] obtained road weather data
from a measurement vehicle and proposed an interpolation
method for the RST using spatial kriging. The GIS technique
is useful for spatially mapping the RST [30].

As indicated by the existing literature cited above, only
some empirical models consider both the spatial and temporal
structures of the RST for enhancing performance, although
several models have been proposed in other fields of traffic
engineering [31]. Further, only a few prediction methods can
be applied in urban areas, where the spatial distribution of solar
radiation is complicated because of the shading of buildings.

B. Conventional RSC Models

Conventional methods that discriminate RSC as a classi-
fication task are presented. Some models can estimate the
RSC on a rule basis by predicting the RST and considering
the presence of moisture on the road surface. For example,
Saegusa and Fujiwara [32] created a method that predicted
the RST beforehand and then determined the RSC using a
rule-based approach. The authors predicted the conditions
using sky conditions, ambient temperature, and RST. Recently,
machine learning approaches have been widely used to solve
such tasks. Many studies feed weather and traffic data into
machine learning models to enhance classification accuracy.
An ensemble tree-based approach was adopted to identify six
different RSCs using data measured by sensors attached to
vehicle tires [33]. Takasaki et al. [34] proposed an RF model to
classify RSCs using RWIS data. Ishizuki et al. [35] proposed a
multimodal classification model that combines a convolutional
neural network with tire sensing.

However, the conventional methods can only provide infor-
mation with coarse spatial resolution, which is insufficient for
practical operations. This coarser prediction resolution can be
attributed to the resolution depending on data characteristics,
such as the mesh sizes of the weather data and the spatial
arrangement of the RWIS. Further, few models consider spatial
information regarding solar radiation to implement a fine
prediction for RSC. An appropriate method is required to
provide fine-scale information for actual operations.

III. PROPOSED MODEL

The predictive method for RSCs includes three steps:
Step 1: The spatial distributions of the solar radiation inci-

dent on the road surfaces are calculated using GIS software.
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Fig. 1. Flow of the prediction system for RSCs.

Fig. 2. Example of the 3-D view of building data.

This calculation considers the shading effect of urban buildings
and the azimuth of the sun.

Step 2: Bayesian spatiotemporal hierarchical models are
used to predict the RST for each road link using the calculated
solar radiation variable.

Step 3: The RSC is classified using spatial machine learning
models with both solar radiation and RST.

The various types of data fed into the prediction model
included 3-D building data for calculating the spatial dis-
tribution of solar radiation. Geographic, meteorological, and
traffic data, which affect the road weather, were input into
the model. Further, hazard maps (inland water and flood risk)
published by the local government were used as explanatory
variables to identify areas on the road that were prone to water
accumulation and freezing. The flow of the proposed method
is illustrated in Fig. 1.

A. Calculation of Solar Radiation Variables

GIS was used to compute the complicated spatial distri-
bution of solar radiation on roads in urban areas. First, 3-D
building data, which were polygon data, as shown in Fig. 2,
were converted to raster data, including height information.
Digital elevation model (DEM) data were then transformed
into raster data using the inverse distance weighting (IDW)
interpolation. Subsequently, the raster data were merged.
Using the raster data, the spatial distribution of solar radiation
on each road link was calculated using the ArcGIS solar
radiation toolset of ArcGIS [36]. Furthermore, solar radiation

was calculated by measuring the position of the sun every
3 h from 0:00 to 24:00 on January 1, 2022, and the total
amount of solar radiation was plotted on a map. Because this
calculation is costly, the plot was based only on data collected
on a specific day. The diffusion proportion was set to 0.2,
assuming clear skies. Details of the data we used are described
in Section IV-B.

The calculation results for the solar radiation distribution
poking through the buildings were converted as the explana-
tory variables for each road link. The distributions were
overlaid on a road map to create raster data, and they were
clipped to each road link based on road geometry. Histograms
of the accumulated solar radiation for the roads were plotted
from the raster data. The median, variance, skewness, and kur-
tosis of the distributions were used as the potential explanatory
variables selected in a stepwise manner.

The calculations of the spatial distribution of solar radiation
provides information on a road link-by-link basis, which
can be used for forecasts with a sufficiently high resolution
for snow removal operations. This is because many of the
conventional prediction models discussed in Section II use
solar radiation data from the few meteorological observation
facilities located in the target area or the solar radiation data
provided by a meteorological mesh. Consequently, predicting
RST and RSC at the road link level becomes challenging.

However, this method has some limitations in that cal-
culating solar radiation over a wide area is extremely
time-consuming. Therefore, the calculations are repeated for
small rectangular areas, which leads to discontinuous solar
radiation values at the boundaries between the rectangles.
In addition, the buildings are assumed to be rectangular
in shape, which can cause errors in the solar radiation
computation.

B. Bayesian Spatiotemporal Hierarchical Models for RST

To enhance the accuracy of RST predictions, Bayesian
spatiotemporal hierarchical models were adopted. We assumed
that RST adheres to the first law of geography, which posits
that proximity in both time and location correlates with greater
similarity in RST values. Consequently, roads situated closely
to one another, even if not directly connected, should exhibit
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TABLE I
BRIEF SUMMARY OF RST PREDICTION MODELS

similar RST values. The parameters of these models are
estimated using the Markov chain Monte Carlo (MCMC)
method. In this section, we provide a concise overview and an
explanation of the fundamental structures of the eight models
listed in Table I, which include one linear regression, one
separable, and six spatiotemporal hierarchical models.

The first level of the spatiotemporal hierarchical model is
expressed as [37]

Y (si , t) = µ(si , t) + e(si , t), (1)

µ(si , t) = xT (si , t)β(si , t) =

p∑
j

x j (si , t)β j (si , t), (2)

where Y (si , t) represents the RST at the i-th site si and
time t ; i = 1, · · · , n and t = 1, · · · , T . The site is expressed
as the latitude and longitude of the mid-point of the road
link. Further, µ(si , t), e(si , t), x(si , t), x j (si , t), β j (si , t),
and p represent the spatiotemporal process that represents
the average structure of the data, an error term, a vector of
the explanatory variables, the j-th explanatory variable, the
j-th regression coefficient, and the number of explanatory
variables, respectively.

e(si , t) can be interpreted to model spatiotemporal pro-
cesses, and it is assumed as a spatiotemporal GP, with a mean
of zero; it is flexible for modeling a spatiotemporal structure.

To model more complex spatiotemporal structures, a spa-
tiotemporal random effect was adopted. The error term e(si , t)
can be expressed as two separate terms.

e(si , t) = w(si , t) + ϵ(si , t), (3)

where w(si , t) and ϵ(si , t) represent the measurement errors,
both of which have mean values of zero. A random effects
model was used to model the spatiotemporal dependence
of the data. The measurement error that follows ϵ(si , t) ∼

N (0, σ 2
ϵ (t)) is assumed to be independent of the site, time,

and random effect. Furthermore, there is a difference in the
variance at each time point. The variance is expressed as σ 2

ϵ (t).
The third level of the spatiotemporal model indicates prior

distributions of the parameters and hyper-parameters. Here,
we used noninformative distributions as prior distributions.

To fit the RST data, several R packages, including
bmstdr [37], spTimer [41], spTDyn [42], rstan [43], and
spBayes [44], were used to estimate the parameters using the
MCMC method. The bmstdr package is a wrapper class for
other packages and is used as the main package, whereas the
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TABLE II
EXPLANATORY VARIABLES INCORPORATED INTO

RST AND RSC PREDICTION MODELS

other packages are used individually when detailed settings
are required.

The use of a spatio-temporal model to predict RST facili-
tates the integration of temporal relationships with historical
RST values and spatial structure that are neglected in the heat
balance models, thereby enhancing the estimation accuracy.
The road surface temperature on a particular road is assumed
to be similar to the value at a nearby point in time. Moreover,
even if the road is not directly connected to that road, RST
is considered to be similar to the value in case the road is
nearby. Consequently, the spatio-temporal model can explicitly
incorporate these relationships into the model.

C. Classification Models for RSC

Six road weather conditions that are significant for win-
ter road maintenance were classified using machine learning
models based on weather variables, traffic conditions, and
geographic information. Explanatory variables incorporated
into this model are presented in Table II. Further, the road
network of the course was incorporated into the model because
the RSC can vary significantly depending on the traffic vol-
ume, even on adjacent roads. We assumed that the spatial
structure of the RSC data was based on the road network,
instead of the distance-based relationships assumed in the
RST model. Spatial machine learning models were adopted to
consider the spatial structure. These models are divided into
two types [45]: The first type uses explanatory variables with

spatial structures, and the other model is trained on the spatial
structure. This study employed the former approach.

The road network is transformed into an adjacent matrix and
used as the explanatory variable. The calculated distributions
of the accumulated solar radiation are also used because
snow can melt to some extent and change to slush in places
where the sun shines even though the RST does not change
significantly.

This study adopted six spatial machine learning models to
solve the RSC classification task and compared the perfor-
mance of these models. The models included support vector
machines (SVMs) with radial basis function kernels [46],
RFs [47], feed-forward neural networks with a single hidden
layer (nnet) [48], eXtreme Gradient Boosting (XGBoost) [49],
scalable weighted subspace RFs [50], and logistic model
trees (LMTs) [51]. These six machine learning models were
selected due to their proven efficacy in other classification
tasks and their ability to capture the nonlinear structure of data.
The computations were executed using the caret package in
R [52], with the explanatory variables being fed in a consistent
manner.

Spatial machine learning models facilitates the flexible input
of spatial variables such as road network and traffic volume.
Road surface conditions are not necessarily similar on roads
that are close to each other; however, they are expected to be
similar when roads are connected with traffic flowing through
them.

IV. EXPERIMENT

A. Problem Setting

Let us assume that a patrol car regularly patrols the area
to maintain winter road surfaces; however, this patrol car
cannot monitor all roads because of cost and time constraints.
Therefore, in addition to the data acquired by the patrol car,
the RST and RSC must be spatially interpolated on roads that
are not patrolled.

B. Data

A patrol car was driven around the course to measure the
RST and RSC. The vehicle was equipped with various mea-
surement instruments. For example, a radiation thermometer
(Snowtech Niigata, RTM-002) was mounted on the bumper
in front of the vehicle to measure the RST, and a GPS
sensor (Pioneer, GPS-M1ZZ) was used to record the driving
position. The vehicle was occupied by two people, a driver
and measurer, who visually determined the six types of RSCs
and input the data into a PC mounted in the vehicle. The data
were recorded approximately every 2 m. To ensure consistent
visual assessments of the RSCs, we provided thorough training
to our measurers and shared our criteria for determining the
RSC.

The measurements were conducted in both urban and moun-
tainous areas in Aizuwakamatsu, Japan. Aizuwakamatsu is one
of the major cities in the Tohoku region with heavy snowfall.
The course is managed by a local road administrator for actual
winter road operations. Fig. 3 shows the course, which is
approximately 50 km long, and the number of road links.
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Fig. 3. Measurement course and road link numbers in Aizuwakamatsu city.
A number indicates the road link number. The four roads in blue will be
discussed as examples of the analytical method.

A road link is a road between two nodes, i.e., an intersection,
with main and arterial roads; each road link is numbered 1–40.
The test was conducted for approximately four months, from
December 13, 2021 to March 31, 2022. Measurements were
performed three times, once every Monday and on weekends,
at approximately 10:00 am, 6:00 pm, and 00:00. The size of
measured RST and RSC data was 334,928.

The measured RST and RSC data were aggregated based on
the number of roads in each road link to use the positioning
accuracy problem of the GPS, which caused a deviation of
several hundred meters from the actual results. The deviations
were corrected by simple map matching because the measure-
ment vehicle traveled on the nearest road link. The RST is the
average value within a road link, RSC is defined as a mode
condition, and the location of the road link is defined as its
mid-point. Ultimately, the data size was changed into 2,048.

There are missing values in the data because of cancellations
caused by the unusually heavy snowfall and other safety issues
that arose during the test period or because the course was
shortened. Further, some data storage failed because of an
Internet glitch. The missing data were input using the average
of the measured values for the same travel.

Meteorological data were extracted from hourly data
obtained from three observatories (Wakamatsu, Inawashiro,
and Kanayama) near the course; these data are publicly
available from the Japan Meteorological Agency. The IDW
interpolation method was used to calculate the weather condi-
tions at the mid-point of each road link. The detailed weather
variables are presented in Table II.

Several maps of the Aizuwakamatsu area were incorporated
in addition to weather data. The maps were drawn using
ArcGIS. The data for the 3-D buildings in Fig. 2 and road
maps in Fig. 3 were obtained from the ArcGIS Stat Suite.
The Geospatial Information Authority of Japan provided the
5-meter-mesh DEM. The road traffic statistics computed by
ArcGIS were used for obtaining the traffic volume, travel time,
and vehicle speed data every 6 h for each road. Hazard maps
for inland water and flood risks published by the Aizuwaka-
matsu city government were used to highlight the locations on
each road link where water accumulated. These variables were

Fig. 4. Calculation results of accumulated solar radiation in Aizuwakamatsu.

incorporated into the model as binary explanatory variables for
each road link. A summary of the explanatory variables input
into our model is presented in Table II.

C. Model Validation

Of the RST and RSC data obtained from the patrol car,
87.5% was used as training data and the remaining 12.5% as
test data. Our model was trained using the training data and
evaluated based on its predictive performance on the test data.
The predictions were computed at a road-link scale, which
is particularly relevant for winter road operations. To assess
the performance of the RST models, several metrics were
employed, namely the goodness of fit (GOF), predictive model
choice criteria (PMCC) [53], root mean square error (RMSE),
and mean absolute error (MAE). Similarly, four metrics were
used to evaluate the RSC models with respect to the ice
condition: accuracy, sensitivity, precision, and balanced accu-
racy. In this experiment, the occurrence of ice conditions was
associated with relatively rare but harmful events. Balanced
accuracy, which can be expressed as Balanced accuracy =
1
2 · (Sensi tivi t y + Precision), is a particularly useful metric
for tasks involving imbalanced data; hence, it was deemed
essential for evaluating the ice condition predictive perfor-
mance in this study.

D. Accumulated Spatial Distributions of Solar Radiation

The amount of solar radiation incident on the course was
computed by considering the shading effect of the surrounding
buildings, as shown in Fig. 4. Fig. 4 presents the results for
Aizuwakamatsu. The maps on the left-hand side of Fig. 5
illustrate four specific locations: Road links 6, 10, 23, and
30. In these maps, areas exposed to stronger solar radiation
are indicated in yellow and red, whereas the weaker areas are
indicated in blue and purple. The color bar of these maps is
shown in Fig. 5 (a1).

Histograms of the accumulated solar radiation of the four
road links are also illustrated in Fig. 5 from (a2) to (d2), which
were calculated from the clipped maps shown on the left-hand
side of Fig. 5 according to the shape of the road links. Road
links 6 and 10 had lower solar radiation because the roads were
narrow and passed through residential areas. In contrast, road
links 23 and 30 received more solar radiation; there were few
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Fig. 5. Maps of accumulated solar radiation around (a1) road links 6, (b1)
10, (c1) 23, and (d1) 30. The dashed line represents a road link in each map.
The color bar in (a1) is common to the other three maps. The four histograms
from (a2) to (d2) show distributions of accumulated solar radiation for the
same roads as the maps shown to the left of them.

Fig. 6. Measured RST (raw data) in Aizuwakamatsu city course and air
temperature observed by the Wakamatsu observatory in the course.

buildings around road link 23, and road link 30 went through
the city center; however, the road was relatively wide. These
graphs illustrate the characteristics of each road link. With
an increase in the amount of accumulated solar radiation, the
RST may increase and the conditions provided by RSC may
improve.

E. RST Prediction

The experimental data measured by the patrol car during
the experimental period is shown in Fig. 6. This graph shows
the air temperatures observed by the Wakamatsu observatory
located within the patrol course. Air temperature exhibited
a trend similar to that of the RST. The temperature val-

TABLE III
PERFORMANCES OF MODELS FOR PREDICTING THE RST

Fig. 7. Comparisons of measured RST with the one predicted using (a) the
marginal model and (b) GPP model.

ues gradually decreased from December 2021 to January
2022. Although the air temperature was stable in January
and February 2022, the RST exhibited the lowest values.
However, they both exhibited increasing trends in March
2022. The RST tended to be lower in mountainous areas,
i.e., the high-elevation area located in the southeastern part
of Aizuwakamatsu (road link 34).

A performance comparison of the various spatiotemporal
models is summarized in Table III. Compared to the control
model, which is a linear regression, the spatiotemporal random
effect models outperformed the other models. The simple
separable model performed poorly considering that a complex
spatiotemporal structure is effective for improving the predic-
tion accuracy for this task. The marginal model exhibited the
best performance in terms of these metrics partly because this
model has fewer parameters to estimate, compared to the other
models. The GPP model had the lowest GOF value and was
comparable to the marginal model in terms of the RMSE and
MAE. Fig. 7 shows the comparisons of the predicted RST with
the measured RST of the marginal model; the GPP mode was
implemented. These graphs illustrate that these two models
showed good predictive performances; however, the marginal
model achieved slightly better results than the GPP model.

F. Performances of RSC Models

Six conditions were classified for each road link using vari-
ous explanatory variables such as the predicted RST obtained
in the previous subsection; traffic, weather, and geographical
data; and road networks. These explanatory variables are based
on road links. We compared six different machine learning
classifiers to select the best model. All input explanatory
variables were the same.
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Fig. 8. Road condition maps: (a) at 00:12 (JST) on Feb. 7th, (b) at 20:53 on Feb. 7th, and (c) at 14:27 on Feb. 8th.

TABLE IV
PERFORMANCES OF MACHINE LEARNING MODELS FOR

CLASSIFYING THE RSC

The comparison results in Table IV indicate that XGBoost
is the best model for this task because it exhibits the highest
sensitivity and balanced accuracy with respect to ice.

Next, for a more detailed analysis, we compared the pre-
diction performances of these machine learning models using
RSC data from the night of February 6, 2022 to the evening
of February 8, 2022. This is because the RSC changed rapidly
during this short period, and all six conditions occurred.

Fig. 8 illustrates the maps showing the transition of the
RSC prediction during this period and is an example of the
output of this system. At 00:12 on February 7, almost the entire
course was covered with snow, as shown in Fig. 8(a). During
daytime, owing to sunlight, the snow surface melted into a
damp condition. Later, during the night the RSC changed into
the icy condition shown in Fig. 8(b). The next day, the ice
melted again under the influence of the sun, and the road
surface gradually dried out (Fig. 8(c)).

Fig. 9 shows graphs comparing the top four machine
learning methods with respect to accuracy: (a) SVM, (b) RF,
(c) nnet, (d) XGBoost, (e) WSRF, and (f) LMT. These graphs
are the results of predicting test data randomly selected from
the RSC data for this period. In Fig. 9, labels are shown as gray
bars, and colored plots indicate the prediction results for each
model. Red plots indicate incorrect predictions. These graphs
show how each model missed its predictions. All models
tended to have relatively high prediction performances on
snowy and icy conditions. Although it is essential to have high
classification accuracy, it is undesirable to erroneously classify
adverse road surface conditions as dry, from a practical point
of view. In this respect, XGBoost and RF are better than other
models.

Fig. 9. Prediction results of machine learning models between the night
of February, 6 and mid-night of February, 8: (a) SVM, (b) RF, (c) nnet,
(d) XGBoost, (e) WSRF, and (f) LMT. Gray bars represent the labels, and
colored plots refer to the predicted RSC. The red points represent incorrect
predictions, whereas the others indicate correct predictions.

The bottleneck with respect to the computational efficiency
in this method is the machine learning training time. The
solar radiation calculation is considerably time consuming;
however, it can be pre-computed. In addition, all the RST
spatio-temporal models require only a few tens of seconds to
train. XGBoost, the most accurate model, required 4175.51 s,
or approximately 1.16 h to train. In contrast, RF was compu-
tationally lighter, requiring 684.23 s, or approximately 0.19 h.
In this problem setting, the patrol car should be driven at least
1 h prior to the snow ploughing operations to obtain actual
road surface condition data. This is operationally feasible.

V. DISCUSSION

This study devised a method for predicting the RST using
Bayesian spatiotemporal hierarchical models considering the
distributions of accumulated solar radiation and for predicting
the use of machine learning models with spatial explanatory
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variables. This model provides fine-scale RSC information for
each road link. Although the incorporation of solar radiation
into RST prediction models for urban areas is important, many
existing models have used it in a limited manner. Diefend-
erfer et al. [54] considered the position of the sun, which
affects the amount of solar radiation; however, the authors
calculated the solar radiation that decreased to a certain point
where they aimed to predict the RST. In addition, only some
models consider the effects of buildings and trees [8] and sky-
view factors [55]. Our method overcomes the shortcomings
of conventional models by considering the spatial distribution
of solar radiation, which is precisely calculated using GIS
software. In Figs. 4 and 5, the maps clearly demonstrate
changes in the shading effect of buildings according to the
position of the sun. Fig. 5 (a1) and (b1) show roads that pass
through residential areas, thus receiving a lower amount of
sunlight, even though they may shine through the buildings
to the roads when the sun is in a certain position. These are
observed as streaks of light on the map. In contrast, Fig. 5 (c1)
shows an open area that receives sunlight for most of the
day. Fig. 5 (d1) indicates that wide roads extending to the
north from the south receive a relatively larger amount of solar
radiation. Fig. 5 (a2) through (d2) confirm the variation in the
solar radiation for each road link.

As per the RST prediction, the marginal model performed
well when estimating the RST in terms of the four metrics
(Table III) because it has fewer parameters than others and
because the random effects are integrated. The GPP model also
exhibited a good performance. This model assumes first-order
temporal dependence and considers the spatial autocorrelation
of the grid of knots, rather than that of all data. This intention-
ally reduced the number of sites to be considered, which might
have resulted in better convergence during the estimation.
In other models, a separable model may indicate that RST
prediction must be assumed to have a more complex spa-
tiotemporal structure, rather than a simple covariance, which is
the product of a purely spatial and purely temporal covariance.
Hierarchical centering reduces the estimation time of param-
eters; however, its performance is poor. For the temporal and
spatial dynamic models, the convergence varied significantly
depending on the regression coefficients used in the dynamic
form. Only the temperature was estimated assuming dynamic
regression coefficients. However, both temporal and spatial
dynamic models did not perform well in this task.

Even differences in the RSCs between adjacent roads within
one grid mesh of weather variables must be predicted to
provide useful information for winter road operations.

In the RSC prediction task, tree-based models, specifically
RFs and XGBoost, outperformed other models in terms of
accuracy. We posit that sensitivity to ice conditions emerges as
the most critical metric, given the profound impact of adverse
road surfaces on safety. Considering that a predictive model
should minimize false negatives regarding ice conditions to
effectively safeguard road users, XGBoost emerged as the
superior model, exhibiting the highest sensitivity (0.7712) and
balanced accuracy (0.8637) for icy road surfaces, as depicted
in Fig. 9. However, our findings indicate a performance level
lower than that reported in prior studies, including that of the

RF used by Takasaki et al. [34] to predict RSC. One potential
explanation for the diminished performance of our model lies
in the different nature of the tasks involved. In particular,
during our experiment, models were tasked with estimating
RSC with a notably higher resolution, since it is deemed that
predicting RSC disparities even among adjacent roads within
a single grid mesh of weather variables is essential to provide
pertinent information for winter road operations.

The event history data of road operations must be incorpo-
rated to enhance the performance of RSC models. The spread
of de-icing agents can continue to affect the RSC until it is
completely drained from the road surface, making it difficult
to predict. Fujimoto et al. [13] considered salt balance on the
road surface in their prediction method. However, the proposed
method had several limitations:

1) We assumed that the buildings were rectangular and did
not consider trees along the roads.

2) Historical road operation data were not used in this
model.

3) The positioning precision of the GPS installed on the
patrol car was poor, indicating that the quality of the
RST and RSC data was also poor.

This model can provide near-future forecast information
(e.g., 24 h ahead) required for operational planning decisions.
However, this study could not verify the forecasting perfor-
mance because of the intervals between measurements and
the small number of measurements; therefore, it focused on
achieving spatial prediction at approximately the same time as
the patrol car.

The notable findings of this study are as follows:
• Utilizing the spatial distributions of solar radiation and

a Bayesian spatiotemporal hierarchical model enabled us
to implement the RST prediction for each road link.

• The marginal and GPP models performed better than the
other spatiotemporal models for RST prediction.

• For the RSC prediction task for each road link, the recall
and balanced accuracy (ice) of XGBoost outperformed
the other machine learning models.

VI. CONCLUSION

This study developed a framework that provides accurate
RST and RSC predictions in urban areas with high spatial
resolutions to improve winter road operations and traffic
safety. Complex solar radiation distributions were incorporated
in a city area to consider the shading effect of buildings
into the prediction model for the RST using GIS. The RST
was predicted using a Bayesian spatiotemporal hierarchical
model with various explanatory variables such as weather.
The model assumed a spatiotemporal autocorrelation in the
RST. Thus, the RSC was predicted using machine learning
models considering the spatial structure of the road network.
Weather variables, an adjacent matrix of the road network, and
traffic conditions were incorporated into the machine learning
models.

The proposed method was applied to a real scenario in
which a patrol car occasionally collected information; the
mechanism used by the proposed model to spatially interpolate
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the observation gaps was investigated. The marginal and GPP
models achieved better performances for RST prediction.
For predicting RSCs in dirty conditions, tree-based models
such as XGBoost, delivered a high performance (sensitivity:
0.7712 and balanced accuracy: 0.8637). However, this study
had some limitations. Limited data on the 3-D shapes of
buildings, positions of patrol cars, and road operation history
can deteriorate prediction performance.

By resolving some of the data limitations, the model
becomes more useful for real-world operations. High fre-
quency data acquisition will enable this model to predict road
surface conditions with high accuracy in the near future. The
use of 3D data with precise building geometry and digital
surface model (DSM) data that includes 3D shapes such
as street trees will improve the accuracy of solar radiation
calculations [56]. The accuracy can be improved by installing a
weather data observation system on patrol cars to capture local
weather changes. Incorporating the operational history of snow
plowing and sprinkling de-icing agents and the concentration
of salinity on the road surface is important for attaining a better
performance of the model. The performance of this framework
will be verified in other areas, and potential applications will
be studied.
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