
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024 13767

Two-Layer MPC Architecture for Efficient
Mixed-Integer-Informed Obstacle

Avoidance in Real-Time
Alexander L. Gratzer , Maximilian M. Broger , Alexander Schirrer , and Stefan Jakubek

Abstract— Safe and efficient obstacle avoidance in complex
traffic situations is a major challenge for real-time motion control
of connected and automated vehicles (CAVs). Limited processing
power leads to a trade-off between real-time capability and
maneuver efficiency, especially for trajectory planning in highly
dynamic traffic environments like urban intersections. Address-
ing this problem, we propose a novel two-layer model predictive
control (MPC) architecture utilizing a differentially flat repre-
sentation of the kinematic single-track vehicle model for optimal
control. While a real-time capable quadratic programming-
based MPC ensures local obstacle avoidance at every time
step, its problem formulation is asynchronously updated by the
globally optimal solution of a computationally more expensive
mixed-integer MPC formulation. Both optimization problems are
computed in parallel and incorporate position predictions of sur-
rounding traffic participants available via vehicle-to-everything
(V2X) communication. Collision-free and efficient obstacle avoid-
ance in real time under realistic model errors is validated via
high-fidelity co-simulations of typical urban intersection and
highway scenarios with the traffic simulator CARLA.

Index Terms— Obstacle avoidance, model predictive control,
flatness-based control, mixed-integer programming, motion plan-
ning, trajectory planning, nonlinear control, single-track model.

I. INTRODUCTION

AUTOMATED driving can reduce conflicts between
individual traffic participants’ needs, safety, efficiency,

and environmental impact at urban traffic nodes [1], [2],
[3]. Collision-free and efficient obstacle avoidance (OA) in
real-time is a key aspect of automated driving and poses a
computationally expensive task. Especially in complex road
scenarios consisting of a multitude of traffic participants, it is
crucial to develop a well-informed motion planner that guaran-
tees collision-free and efficient maneuvers while considering
the trade-off between real-time capability and fidelity. In this
work, we seek to tackle this challenge by proposing a novel
two-layer obstacle avoidance model-predictive control (MPC)
architecture for optimal and collision-free vehicle control in

Manuscript received 30 May 2023; revised 9 March 2024; accepted 14 May
2024. Date of publication 30 May 2024; date of current version 4 October
2024. This work was supported in part by the Austrian Research Promotion
Agency (FFG) via the Research Project Intelligent Intersection [Informa-
tion and Communications Technologies (ICT) of the Future] under Grant
880830 and in part by Vienna University of Technology (TU Wien) Bibliothek
through its Open Access Funding Program. The Associate Editor for this
article was L. Li. (Corresponding author: Alexander L. Gratzer.)

The authors are with the Institute of Mechanics and Mechatronics, TU Wien,
1060 Vienna, Austria (e-mail: alexander.gratzer@tuwien.ac.at; maximilian.
broger@tuwien.ac.at; alexander.schirrer@tuwien.ac.at; stefan.jakubek@
tuwien.ac.at).

Digital Object Identifier 10.1109/TITS.2024.3402559

real-time that incorporates motion predictions of surrounding
traffic participants.

Recent methods suitable for trajectory generation for con-
nected and automated vehicles (CAVs) can be categorized
as machine-learning-based, sampling-based, geometry-based,
and optimization-based approaches [4], [5]. This work
focuses on optimization-based motion planning, specifically
model-predictive control methods. MPC allows to inherently
consider input and state constraints and predictions of other
traffic participants in an optimization problem formulated
over a receding prediction horizon. This optimal control
concept proves highly useful to realize efficient obstacle
avoidance with collision safety guarantees while exploiting
vehicle-to-everything (V2X) communication capabilities [6].
The computational efforts for online optimization conducted in
MPC algorithms are high and increase with the complexity of
the used prediction models, (collision avoidance) constraints,
and the number of considered obstacles.

While nonlinear MPC (NMPC) methods utilize high-fidelity
(nonlinear) prediction models and obstacle avoidance con-
straints, the solutions to the emanating nonlinear programming
(NLP) problems are not guaranteed to be globally optimal due
to the employed local minimum search algorithms. Further,
NLP-based trajectory optimization implies high computa-
tional effort which renders NMPC-based obstacle avoidance
approaches problematic for real-time application in complex
scenarios.

One method to reduce the computational load induced by
NMPC is successive system linearization which results in a lin-
ear time-variant MPC (LTV-MPC) formulation [7]. However,
the LTV approximation of the original NMPC problem intro-
duces linearization errors and requires a decent initialization
of the local search algorithm that might converge to a locally
optimal rather than a globally optimal solution. This means,
for example, that the decision to take another route around
an obstacle, an evident case of efficient obstacle avoidance,
is fundamentally not covered by LTV-MPC implementations.

Certain nonlinear prediction models, which possess the
property of differential flatness, can be exactly linearized [8]
through nonlinear system transformations. The resulting
equivalent linear system representation can be used for
flatness-based linear time-invariant MPC (LTI-MPC). LTI-
MPC outperforms LTV-MPC in tracking performance [9] and
guarantees a globally optimal solution, understood with respect
to the transformed (flat) problem description. Achieving global

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8969-180X
https://orcid.org/0009-0009-6988-9761
https://orcid.org/0000-0003-0331-0947

13768 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

optimality is vital for realizing efficient and agile obstacle
avoidance. Examples of differentially flat systems related
to automated driving are the well-known dynamic (holo-
nomic) [10] and kinematic (non-holonomic) [11] single-track
vehicle models. The kinematic single-track model, despite not
considering tire slip, is widely used in trajectory planning for
automated vehicles [12], [13], [14], [15], [16], [17]. It turns
out to be useful for obstacle avoidance modeling at low
and moderate speeds since it represents the relevant vehicle
dynamics with sufficient accuracy as shown in [18].

The structure of the emanating optimization problem is
determined not only by the properties of the prediction model
applied but also by the formulation of the implemented (obsta-
cle avoidance) constraints. Obstacle avoidance can be realized
by formulating linear half-space constraints and utilizing the
Big-M method [19], resulting in a mixed-integer programming
(MIP) formulation. Hereby the obstacle shapes are approx-
imated by convex polygonal regions with binary variables
defining the edges for the relevant exclusion constraints [20].
The MIP problem formulation provides globally optimal solu-
tions to the non-convex obstacle avoidance motion planning
problem, but it is still an NP-hard problem and therefore does
not provide useful worst-case bounds on solving effort, which
renders it problematic for real-time applications in complex
traffic scenarios [20], [21].

A. Related Work

Recent model-based obstacle avoidance approaches are col-
lected in Table I, whereby we consider an algorithm real-time
capable if its maximum core solver time lies below 0.05 s.
These concepts can be roughly categorized regarding the
utilized prediction model for the ego dynamics, the employed
obstacle avoidance constraints (which comprise the represen-
tations of the ego vehicle and obstacle shapes), the resulting
MPC implementation, and real-time capability.

All mentioned works employ nonlinear models to predict
the ego vehicle’s motion, whereby the dynamic [15], [22], [24]
and kinematic [13], [14], [15], [16], [17] single-track models
are most commonly used. Models with higher fidelity are used
in [23], [25], and [26].

The formulation of the obstacle avoidance constraints
heavily influences the optimal control problems’ (OCPs) com-
plexity and calculation time. In [24] the ego and obstacle
shapes are represented by sets of circles which captures the
effect of vehicle rotation and results in an NMPC problem
formulation that is not real-time capable and relies on an
initial trajectory provided by a higher-level planner. Refer-
ence [25] considers the space occupied by the ego vehicle
as a polygonal region while obstacles are represented as
static points obtained by a LIDAR sensor. While the resulting
linear obstacle avoidance constraints enable fast numerical
computation of the emanating convex quadratic program-
ming (CQP) problem, obstacle predictions are disregarded.
Essentially real-time-capable obstacle avoidance is achieved
in [22] by approximating the obstacles by ellipsoidal avoidance
constraints. These are simplified to be aligned axis-parallel
with the ego reference path. The resulting NLP problem is

solved by a local sequential quadratic programming (SQP)
approach. Real-time capable NMPC algorithms for avoid-
ing static obstacles are proposed in [14] and [23]. Both
approaches consider obstacles by a reduced lateral track width
in Frenet coordinates, making them not applicable for complex
multi-agent traffic scenarios. Obstacle avoidance in real-time
is realized in [13] utilizing intention predictions of other traffic
participants whose shapes are approximated as superellipses.
The emanating NLP optimization problem is approximated by
a convex quadratic program (QP) formulation resulting in an
LTV-MPC implementation with its aforementioned drawbacks.
The computational effort scales cubically with the number of
obstacles considered which may jeopardize real-time compu-
tation in dense urban traffic scenarios. In [16] the authors
use successive linearization to transform originally non-convex
obstacle avoidance constraints into linear ones whereas the
initial trajectory is obtained by an A*-reshaping algorithm
which requires a fully discretized configuration space. The
proposed algorithm shows a high success rate in finding
feasible trajectories for static environments but lacks real-time
capability. An adaptive Lagrange discretization and hybrid
obstacle avoidance constraints (elliptic and dynamical linear
ones) are proposed in [26]. While real-time computation could
not be achieved, the authors aim at converting the sequential
numerical solving process into a parallel one for utilizing
parallel processors. In [17] and [28] obstacle avoidance is
realized by constructing a spatial-temporal corridor around an
initial trajectory derived by a sampling-and-search algorithm
(dynamic programming) and formulating “within-corridor”
constraints. The emanating NLP control problem is iteratively
solved via a local search solver. A gradient descent-based
obstacle avoidance MPC implementation is proposed and
investigated with respect to the computational capabilities
of automotive electronic control units (ECUs) in [15]. It is
shown that the dynamic single-track model proves problematic
for real-time applications while the kinematic single-track
model captures vehicle motions very well in normal driving
conditions, but leads to more aggressive control actions. Static
circular obstacle shapes on a two-lane road are considered.

All concepts discussed up to this point utilize local search
algorithms to solve the emanating NLP problems which result
due to a combination of more or less detailed prediction
models and obstacle avoidance constraint formulations. As a
result, these concepts yield only locally optimal motion tra-
jectories, which may lead to inefficient maneuvers in complex
intersection traffic scenarios as illustrated in Fig. 1.

An overview of recent MIP-based motion control concepts
that provide globally optimal solutions to the non-convex
obstacle avoidance problem at the expense of an emanating
NP-hard OCP formulation can be found in [21]. Com-
pared to the broad research found on local approaches as
summarized above, significantly fewer recent obstacle avoid-
ance publications utilize mixed-integer-based formulations.
Addressing the computational complexity of mixed-integer
quadratic programming (MIQP), reference [29] proposes an
online algorithm that exploits the optimization problem’s
structure by reducing it to a neural network evaluation and a
linear system solution. A benchmark motion planning example

GRATZER et al.: TWO-LAYER MPC ARCHITECTURE FOR EFFICIENT MIXED-INTEGER-INFORMED OBSTACLE AVOIDANCE 13769

TABLE I
RELATED WORK

Fig. 1. MIQP concept illustration: Global versus local optimality in the
obstacle avoidance context. After detecting the decelerating cars in the right
lane a local search algorithm may not be able to find the global optimal
trajectory because it lies outside the local search neighborhood.

with avoidance of static obstacles realized via the Big-M
formulation [19] shows speedups from two to three orders of
magnitude compared to Gurobi [30], a state-of-the-art MIQP
solver. A MIP-based MPC decision maker (MIP-DM) for
automated driving is developed in [27] which uses a linear
vehicle model in road-aligned coordinates, including obstacle
avoidance, lane-change decisions, and traffic rules via mixed-
integer inequalities. The controller evaluates in real-time in
various low-speed (1 m/s) traffic scenario simulations using
the dedicated solvers BB-ASIPM [31] and Gurobi. Its limited
OA fidelity and coarse sampling time of Ts = 1 s, however,
could render the concept problematic in complex and highly
dynamic traffic situations such as crowded intersections.

These recent findings show that promising MIQP-based
obstacle avoidance concepts are on the verge of becoming
real-time capable while solving the OA problems in a globally
optimal way, thus effectively avoiding deadlocks.

B. Research Gap & Contributions

To the best of the authors’ knowledge, there exists no
obstacle avoidance control concept that enables globally opti-
mal automated driving in real-time while exploiting V2X
communication to multiple moving and/or static obstacles of
arbitrary shape and orientation. Limited available processing
power leads to a trade-off between achieving global optimality
or real-time capability. It is desirable to enable detailed and

efficient motion control while aiming for global optima and
real-time computation of the obstacle avoidance problem. It is
this research gap that we attempt to close with the obstacle
avoidance control architecture proposed in this work.

The main contribution of this work is the development of
a novel two-layer LTI-MPC architecture to solve the obstacle
avoidance and automated driving control problem. We extend
our work presented in [20] to design an upper-level MIQP-
based obstacle avoidance controller that provides globally
optimal performance and agility by exploiting the differential
flatness property of the used single-track vehicle model. Even
though sufficiently efficient on average, since MIQP problems
are generally NP-hard, however, no reasonable worst-case run-
time bounds can be stated [21]. Hence, this MPC alone does
not guarantee real-time solvability. The proposed lower-level
QP-MPC is designed as a closely related conservative convex
real-valued QP, informed by the last known upper-level MIQP
solution structure. It provides acceptable runtime guarantees
and is ensured to produce a stabilizing and collision-free
solution. Global optimality in the obstacle avoidance optimal
control problem sense is automatically recovered whenever the
upper-level MIQP-MPC computation time is sufficiently fast.
The proposed solution approach combines this global optimal-
ity aspect with safety and feasibility guarantees and the direct
integration of other road participants’ motion predictions,
providing excellent situational awareness and efficiency in
partially and fully automated road traffic scenarios. The novel
two-layer obstacle avoidance MPC (TL-OA-MPC) architecture
is analyzed and tested in typical complex urban intersection
and highway scenarios, and its excellent performance is vali-
dated in a high-fidelity co-simulation study with the CARLA
Simulator [32].

The contributions of this work are summarized as follows:

1) A two-layer LTI-MPC architecture is developed to solve
the obstacle avoidance and automated driving control
problem utilizing a differentially flat prediction model.

2) An upper-level OA-MPC provides globally optimal per-
formance by exploiting an MIQP problem formulation.

3) A lower-level controller provides collision-free solutions
in real-time via a QP-MPC formulation which is asyn-
chronously updated with upper-level solutions to recover
global optimality whenever computationally possible.

13770 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

4) The control architecture aims to provide safe, feasible,
and globally optimal maneuvers in real-time by integrat-
ing other road participants’ motion predictions.

5) The control concept is validated in a high-fidelity co-
simulation study.

The remainder of this work is organized as follows: The
problem formulation is given in Sec. II. The proposed two-
layer OA-MPC control architecture is presented in Sec. III
and discussed in Sec. IV. The performance of the proposed
control concept is validated in a realistic co-simulation study
in Sec. V while Sec. VI concludes this paper.

II. PROBLEM FORMULATION

This work considers the motion planning and control of
a single CAV in urban intersection traffic scenarios with an
emphasis on dynamic obstacle avoidance.

A. Control Goals

The following control goals need to be addressed when
realizing obstacle avoidance in road traffic: (i) Collision
safety against static and dynamic obstacles, (ii) stability, and
(iii) feasibility with respect to the vehicle dynamics have to
be guaranteed at all times, which requires (iv) the control
problem to evaluate in real-time. (v) The resulting maneuver
should be efficient while (vi) maximizing passenger comfort
and (vii) obeying traffic regulations.

The two-layer OA-MPC architecture proposed in this work
addresses all mentioned aspects efficiently. The novel combi-
nation of mixed-integer and quadratic programming combines
the advantages of both approaches and yields globally respec-
tive locally optimal trajectories in real-time.

B. Assumptions

The control problem is based on the following assumptions:
A1) A pre-defined reference path, usually mid-lane, is avail-

able (e.g., provided by an environmental perception unit).
A2) Backward vehicle motions are disregarded.
A3) The shape of the ego vehicle is represented as a circle

centered at the rear axle with radius r .
A4) The planar poses and shapes of surrounding traffic par-

ticipants together with their. . .
A5) deterministic motion predictions in the form of posi-

tion trajectories over a defined prediction horizon are
available.

A6) An external perception module detects, classifies, and
observes relevant traffic participants (and possibly orders
them by criticality).

CAV predictions are received via V2X communication
while HDV predictions are provided either via V2X com-
munication (e.g., prediction done by intelligent infrastructure,
collective perception) or an onboard prediction module.
As in [27], [33], and [34] we assume the prediction and com-
munication modules are present. We propose a deterministic
MPC design, yet the consideration of uncertainties will be
discussed in Sec- IV.

Fig. 2. Kinematic single-track vehicle model incl. Frenet coordinates (s, l)
with respect to a given reference path.

C. Vehicle Model

The vehicle dynamics used for the control design are
modeled according to a kinematic single-track model (non-
holonomic, zero slip, also referred to as bicycle model)
depicted in Fig. 2. The equations of motion are formulated
as (cf. [20])

ẋ =

Ẋ
Ẏ
ψ̇

v̇x

 =

vx cosψ
vx sinψ

vx tan (δ)/Lwb
ax

 , (1)

with the state vector x =
[
X, Y, ψ, vx

]T comprising the
global Cartesian coordinates X and Y , the heading angle
ψ , and the longitudinal velocity vx ≥ 0 (compare assump-
tion A2). Note that, here, the lateral velocity vanishes, i.e.
vy ≡ 0. The input vector u =

[
ax , δ

]T contains the lon-
gitudinal acceleration and the steering angle, respectively.
The parameter Lwb > 0 represents the wheelbase distance.
Although (1) by definition does not consider tire slip, the
model yields consistent results for limited lateral vehicle
accelerations as discussed in [18] and observed in Sec. V.

By exploiting the differential flatness property of the kine-
matic single-track model, (1) can be transformed to flat
coordinates, producing an exactly linearized LTI system com-
prised of two decoupled double integrators

ż =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

︸ ︷︷ ︸

Ac

z +

0 0
1 0
0 0
0 1

︸ ︷︷ ︸

Bc

ν , (2)

with the flat state vector z and virtual input vector ν depending
on the particular choice of flat outputs y. In this work,
the Frenet coordinates (s, l), with s being the arc length
and l being the lateral deviation with respect to a defined
differentiable reference path, see Fig. 2, are chosen as flat
outputs

y =
[
s, l

]T
, (3)

which yields the flat state and virtual input vectors

z =
[
s, ṡ, l, l̇

]T
, ν =

[
s̈, l̈

]T
. (4)

The reference path is assumed to be provided by an envi-
ronmental perception module (not discussed in this work).

GRATZER et al.: TWO-LAYER MPC ARCHITECTURE FOR EFFICIENT MIXED-INTEGER-INFORMED OBSTACLE AVOIDANCE 13771

Since no analytical transformation between the physical
and flat Frenet states is possible for general (arbitrarily
curved) reference paths, the numerical transformation meth-
ods global2frenet (F) respectively frenet2global
(F−1) as provided by the MATLAB® environment [35] are
used to map vertices into flat coordinates and vice versa.
By representing the vehicle dynamics in (flat) Frenet coordi-
nates it is possible to decouple longitudinal and lateral vehicle
dynamics control [35] which allows straightforward imple-
mentation of car-following strategies and lateral lane geometry
constraints [20]. In particular, vx = ṡ and ax = s̈ hold for
nominal motion along the reference path. While this represen-
tation is not applicable in unstructured road environments and
the mapping to Cartesian coordinates introduces distortions
for tightly curved roads [17], the Frenet frame is commonly
utilized for autonomous driving in (semi-)structured road
environments [4], [13], [14], [23], [36], [37]. The LTI vehicle
model representation (2) facilitates its straightforward appli-
cation for linear MPC design, as shown in the next section.

III. TWO-LAYER OBSTACLE AVOIDANCE CONTROL

This section presents the two-layer obstacle avoidance con-
trol architecture for optimal real-time control of a CAV in
urban traffic. It consists of two MPC formulations of similar
structure which only differ in their formulation of the obstacle
avoidance constraints, leading to different types of opti-
mization problems. On one hand, a mixed-integer quadratic
programming MPC (MIQP-MPC) formulation realizes glob-
ally optimal obstacle avoidance. On the other, a convex
quadratic programming MPC (QP-MPC) ensures real-time
capability with reduced OA fidelity. Both controllers are
evaluated asynchronously in parallel. The QP-MPC realizes
real-time control, being flexibly informed by the MIQP-MPC
once it produces a new solution. After presenting the general
MPC setup and the obstacle constraint variants, the control
architecture is completed by proposing a robustifying solution
selection concept.

A. Generic Flatness-Based OA-MPC Formulation

The generic OA-MPC formulation used for both, the MIQP-
and the QP-MPC designs is introduced as in [20]. The lin-
earized LTI system dynamics (2) is solved and expressed in
discrete time with sampling time Ts under the zero-order hold
assumption:

zk+1 =

1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

︸ ︷︷ ︸

Ad

zk +

T 2

s /2 0
Ts 0
0 T 2

s /2

0 Ts

︸ ︷︷ ︸

Bd

νk . (5)

It is used as the prediction model for the ego vehicle dynam-
ics. The discrete-time OCP at time step tk = k Ts with
k ∈ N is to find the optimal transformed input sequence
V∗k =

[
ν∗k , ν

∗

k+1, . . , ν
∗

k+Np

]
and flat state sequence Z∗k which

minimize the convex quadratic objective function (6a) subject
to the constraints (6b)–(6e) explained below:

min
V,Z

(
J + rT

s s + Jterm
)

(6a)

s.t. zk+ j+1 = Ad zk+ j + Bd νk+ j , (6b)
νk+ j ∈W , (6c)
zk+ j+1 ∈ Z , (6d)
s ≥ 0 , (6e)

with j = 0, 1 . . , Np − 1. The cost function J is defined in
Sec. III-A1, and optional terminal costs Jterm are discussed
in Sec. IV. The slack cost weight rs = rs 1ns×1 ≫ 0 is
chosen sufficiently large to enforce collision safety while
securing problem feasibility. The transformed input set W is
defined in Sec. III-A2, and the flat state set Z , realizing lane
keeping, speed limits, and obstacle avoidance, is discussed in
Sec. III-A3 and Sec. III-B.

1) Cost Function: The cost function J is defined as

J =
Np−1∑
j=0

(
eT

k+ j+1 Q ek+ j+1 + νT
k+ j R νk+ j

)
, (7)

with the tracking error e = [es, el]T and tuning matrices Q =
diag(qs, ql) and R = diag(r1, r2).

Remark: Increasing the acceleration input weighting r1 and
optionally adding a penalty term for the acceleration jerk ȧx to
the cost function (7) yields a more conservative, fuel-efficient
driving behavior (not focused on here).

The model representation in Frenet coordinates allows the
decoupling of lateral and longitudinal control and therefore
the essentially independent weighting of the longitudinal resp.
lateral cost functionals and virtual inputs (4). The lateral error
reads

el,k+ j+1 := lref,k+ j+1 − lk+ j+1 , (8)

with l ref,k =
[
lref,k, lref,k+1, . . , lref,k+Np

]
usually set to zero

(compare assumption A1). The longitudinal error is chosen
to realize one of several typical control modes. We show two
typical modes, namely velocity tracking and time-gap tracking:

a) Velocity tracking: Tracking of a desired reference
velocity signal vref,k =

[
vref,k, vref,k+1, . . , vref,k+Np

]
is

achieved by defining the longitudinal position error as

es,k+ j+1 :=

 j∑
i=0

Ts vref,k+i

− (
sk+ j+1 − sk

)
. (9)

To limit lateral vehicle accelerations an on curved roads,
vref,k+i is reduced depending on the local reference path
curvature κref(s) by

vref,k+i =

min

(
vref,

√
an,max∣∣κref(s∗k−1+i)

∣∣
)

if κref(s∗k−1+i) ̸= 0

vref otherwise ,

(10)

utilizing the flat state trajectory of the last time step Z∗k−1.
Alternatively, the lateral accelerations can be limited by imple-
menting corresponding (soft) constraints. As demonstrated
in [14], the kinematic single-track model describes vehicle
motion accurately up to a maximal lateral acceleration of about
an,max ≈ 4 m/s2 in dry road conditions.

13772 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

Fig. 3. The input set U in physical coordinates is mapped to the virtual input
space while the obtained optimal virtual inputs V∗k are transformed back to
physical inputs U∗k , here visualized for a curved ref. path and sample k.

b) Time-gap tracking: Direct access to s and ṡ enables
the straightforward implementation of time-gap tracking poli-
cies that aim to track an inter-vehicle distance of h · v, where
h is a chosen fixed time span and v the ego velocity. With
v ≈ ṡ the longitudinal error reads

es,k+ j+1 :=

j+1∑
i=0

(h ṡk+i)+s0︸ ︷︷ ︸
time−gap

−

(
spre

k+ j+1− sk+ j+1− Lego

)
︸ ︷︷ ︸

1sk+ j+1

.

(11)

Therein, s0 represents the desired standstill distance and 1s
the distance to the predecessor vehicle with Lego being the
length of the ego vehicle [6]. The (rear end) position of the
predecessor projected on the ego vehicle’s reference path is
denoted as spre. The parameters h, s0 are defined on the tactical
level, including the selection of the predecessor vehicle to be
followed. One method to realize an overtaking maneuver, for
example, is to drop the time-gap tracking objective (11) and
switch to the velocity tracking mode (9). Tracking a higher
reference velocity than the predecessor and the realized OA
capability automatically induces a safe overtaking maneuver.

Remark: In this work, the actual selection of the control
mode is specified externally by a decision module (out of
scope here). Directly including tactical decisions in the OCP
formulation is currently under development, compare Sec. VI.

2) Input Constraints: The input set in physical coordinates

U =
{
u : Gu u ≤ f u

}
(12)

typically comprises interval constraints on u of the form

U = {u : umin ≤ u ≤ umax} . (13)

These box constraints are then mapped to the virtual inputs
corresponding to the flat coordinates using the state and input
trajectories of the last time step’s solution X∗k−1 and U∗k−1,
respectively. This allows the formulation of constraints for the
transformed inputs ν (see Fig. 3) according to

W =
{
ν : Gνν ≤ f ν

}
. (14)

3) State Constraints: The problem formulation in flat
Frenet coordinates and the resulting decoupling of the lon-
gitudinal and lateral dynamics allow the direct formulation of
state constraints in the flat coordinate space. We formulate
the longitudinal velocity constraint as ṡ ≤ vmax (soft), lane

Fig. 4. Obstacle Q with ne = 4 edges represented in global Cartesian
and Frenet coordinates incl. applied convex hull approximation in red,
respectively. Increasing the number of mapped vertices (circles) results in
a finer approximation, but increases the face count and thus computational
load.

boundary constraints llhs ≤ l ≤ lrhs (soft), and 0 ≤ ṡ (hard).
Soft constraints are utilized to ensure the solvability of the
optimization problem in all cases. Here, soft constraints are
formed by re-defining a “hard” inequality constraint of the
form gTu ≤ f to gTu−s ≤ f , with s ≥ 0 and high penalty
cost on s, in which u and s are decision variables.

B. Obstacle Avoidance Constraints

The key idea of obstacle avoidance is to avoid any overlap
of the ego vehicle’s spatial footprint with any of the modeled
“obstacle regions” at any time. Obstacles with time-varying
postures and shapes are commonly called “dynamic obstacles”.
We represent such an obstacle i in terms of its convex obstacle
region Oi,k at time index k based on its known or predicted
position and rotation, as well as its shape inflated by chosen
buffer distances. All these quantities are considered known in
the scope of this work. Here, the ego vehicle shape is not
considered explicitly but accounted for by increased obstacle
size.

The main problem in the mathematical treatment of the
resulting obstacle avoidance constraint yk+ j /∈ Oi,k+ j is
that this exclusion renders the problem landscape non-
convex. By utilizing a suitable mixed-integer formulation
with auxiliary binary decision variables, a reasonably efficient
optimization problem is attained which can be solved to global
optimality with modern solver algorithms. MIQP problems
are generally NP-hard, so that no useful (polynomial) worst-
case runtime bounds can be given [38]. However, it becomes
evident that on today’s hardware, the investigated OA-MIQP-
MPC problems can be carefully formulated and solved on
average in times similar to the required sampling times.
This observation spawned the idea of the two-layer OA-MPC
algorithm structure presented in this paper, as detailed in
Sec. III-C.

While the MIQP formulation enables globally optimal
maneuvers, the heuristic QP formulation ensures real-time
capability with local optimality.

1) MIQP Formulation: The well-known Big-M method is
utilized to formulate the constraints to prevent the ego vehicle
2D-position y from entering a convex obstacle region [19],
[39]. Let a bounded convex polygonal obstacle region Q with
ne edges, compare Fig. 4, be given in the flat coordinates y
as

Q = { y : G y ≤ f } (15)

GRATZER et al.: TWO-LAYER MPC ARCHITECTURE FOR EFFICIENT MIXED-INTEGER-INFORMED OBSTACLE AVOIDANCE 13773

Fig. 5. Two-layer obstacle avoidance MPC (TL-OA-MPC) architecture. The QP-MPC is evaluated at every time step and its obstacle avoidance constraints
are informed/updated asynchronously with the globally optimal MIQP-MPC solution.

with coefficients Gne×2 and f ne×1. The Big-M method is
utilized to express the exclusion y /∈ Q by introducing a
large constant scalar M (interpreted as a constraint relaxation
distance), binary decision variables δne×1 ∈ {0, 1}ne and the
exclusion constraints

f − G y + (γ − s)1 ≤ M (1− δ) , (16a)
s ≥ 0 , (16b)

1T δ ≥ 1 . (16c)

These are realized in a soft (slacked) formulation. γ, s ∈ R
represent a buffer distance and slack variable, respectively. The
binary variables δ taking value 1 indicate which of the edge
constraints in (15) are violated, which has to hold true for at
least one edge due to (16c) with 1ne×1 =

[
1, 1, . . . , 1

]T︸ ︷︷ ︸
ne

. It is

evident that when formulating (16) for all known obstacles at
all time steps in the problem (6), the globally optimal, feasible
and collision-free ego trajectory is obtained if a collision-free
solution exists and if assumptions A1-A6 in Sec. II-B are
fulfilled. However, this approach produces a very large MIQP
problem formulation with many binary decision variables,
requiring high computational effort. Typical trajectories of
course do not interfere with all obstacles at each time step,
but only a few of these constraints are actually relevant.
This sparsity is easily exploited by only formulating those
OA constraints which are violated otherwise, and re-solving.
This iterative approach leads to significantly faster total MIQP
solver times.

To test a solution for OA constraint violations, and to
quantify the severity of the violations, the following constraint
residuals are determined for each obstacle i and each time step

k + j + 1, j = 0, . . . , Np − 1:

rviol
i,k+ j+1 :=max

[
−max

(
Gi,k+ j+1 yk+ j+1− f i,k+ j+1

)
+γ, 0

]
.

(17)

Positive values indicate violations. The corresponding OA
constraints are added to the OCP formulation, and it is re-
solved. This is repeated until no OA constraint violations
occur. This sequence of sparsely populated MIQP problems
eventually terminates with a collision-free solution if one
exists. The OA constraints that had to be considered in the
solution we denote as relevant obstacles / OA constraints.

2) QP Formulation: Solving the outlined MIQP problem
yields the globally optimal solution but still requires con-
siderable, variable computational effort and can take longer
than the chosen sampling time. To achieve a real-time-capable
control concept, we also solve a simplified problem in less (and
bounded) computation time — asynchronously and in parallel
to solving the MIQP-MPC problem: First, the OA constraint
structure (given by the values of δ) is initialized from the
last known MIQP-MPC-solution and updated as needed via
tailored heuristics (see below). Then, the remaining convex
QP-MPC problem is solved, which is typically accomplished
well within each sampling period. If this solution shows further
OA constraint violations, the constraints are updated via the
heuristics again, and the QP-MPC is re-solved. This iteration
procedure is done until no further OA constraint violations are
predicted. This method yields a collision-free, feasible, and
well-informed solution which is sub-optimal, but constructed
typically quickly enough to meet real-time requirements. The
key ideas of the constraint update heuristics are proposed as
follows for two situations:

13774 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

a) New relevant obstacle detected: If the current solu-
tion violates OA constraints with a new obstacle, its critical
face is determined and formulated as a half-space inequality
constraint. The critical face is that whose normal vector
aligns best with the predicted ego vehicle orientation (velocity
vector). This strategy yields a simplified, efficient, and safe OA
constraint for the new obstacle.

b) Informing OA constraints from prior solution: If an
obstacle that has already been considered causes new viola-
tions at different points in time, the corresponding constraints
are derived from the previously known OA constraints utilizing
their formulated faces: if earlier OA constraints are known,
the closest earlier OA constraint is formulated at the current
time step. Otherwise, i.e, if later OA constraints are known,
the closest later OA constraint is formulated at the current
time step. This heuristic algorithm proved useful to extend
OA constraints to neighbouring time steps if necessary. These
heuristic rules are summarized in Alg. 1. The resulting prob-
lem is then solved and the obstacle violations are checked
again. If any new violations occur, the described procedure is
repeated which results in the iterative solution of the obstacle
avoidance problem.

Algorithm 1 QP-MPC Constraint Updating Heuristics
Input: obstacle violations

1: if violations of new obstacle detected Qi /∈ O then
2: identify earliest violation
3: identify critical face
4: formulate corresponding half-space constraint (16) for

first violated sample
5: else if new violations for known obstacle Qi ∈ O then
6: if preceding constraints formulated then
7: assign to nearest preceding constraint
8: else if no preceding constraints formulated then
9: assign to nearest subsequent constraint

10: end if
11: end if
12: return integer variables

c) Fail-safe controller variant: For the proposed iterative
MIQP and the QP variants above, the number of iterations
could be high. Conceptually, a specific fail-safe variant of the
QP-MPC with a strongly limited number of maximum itera-
tions is proposed here. It is constructed as a standard QP-MPC
variant of (6), however with simplified OA constraints with
at most 1 iteration per considered obstacle with the aim of
achieving guaranteed, small computation times. We assume
that such a controller can be formulated and proven to be
stabilizing (without constraints) and feasible (with admissible
OA constraints). To do so, Jterm in (6a) can be chosen as
Riccati terminal costs for the constant-velocity steady-state
case. To limit the number of iterations (at the expense of
increased conservativism), we propose to start the fail-safe QP-
MPC-formulation without OA constraints. The OA violations
are determined, and for each obstacle for which any violations
occur, the critical-face half-space constraints are formulated
for all time steps, for all obstacles with violations. Fig. 6

Fig. 6. Exemplary illustration of a conservative fail-safe constraint formu-
lation.

illustrates an exemplary, conservative OA constraint utilized to
find the fail-safe QP-MPC. This approach leads to a maximum
of |Q| (number of obstacles) iterations.

3) Ego and Obstacle Shape Representations: When eval-
uating the collision constraints, the shape of the ego vehicle
is approximated by a circle with radius rego centered at the
rear axle. All spatial obstacles and constraints are inflated by
this radius, so as to condense the ego shape to a point in the
2D plane, compare Fig. 2. Note that choosing the reference
point at the front axle is possible by utilizing feed-forward
control and adapting the mapping algorithms. However, for
illustrative purposes, we stick to the reference point on the
rear axle, noting that this choice may be suboptimal for
high-precision obstacle avoidance when using reduced buffer
distances. Solutions considering the ego vehicle’s shape, how-
ever also by implying higher computational complexity are
found in [24] and [25].

The obstacle shapes are approximated by convex polygons
as depicted in red in Fig. 4. As a result of a possible curvature
of the reference path, originally straight lines appear bent in
the Frenet coordinate frame. This effect is compensated by
inflating the hull approximations of the transformed obstacle
shapes with the buffer distance γ similar to [40]. Alterna-
tively, a finer convex shape approximation can be obtained by
increasing the number of mapped vertices (compare dashed
approximation in Fig. 4), albeit increasing the number of
binary variables and therefore computational load.

C. Control Architecture

On the one hand, an MIQP-formulation of the OA
problem is solved to global optimality. To ensure realtime-
capability, a suboptimal convex QP-MPC variant in which
the mixed-integer OA constraint formulation is simplified,
informed by a known MIQP solution, and corrected by heuris-
tics. As a result, the QP-MPC can be solved, fulfilling the
real-time computation requirements in each time step, and its
solution is also a valid but a suboptimal solution to the MIQP
problem. The proposed two-layer obstacle avoidance control
architecture comprising the MIQP- and QP-MPC is depicted in
Fig. 5: First, the current state xk , reference X ref,k , and current
and predicted vertices of the obstacle regions Qi ∈ O are
transformed from local to flat coordinates. Then, the input
constraints (13) are mapped into flat coordinates utilizing the
state and input trajectory of the last time step as described in
Sec. III-A2.

GRATZER et al.: TWO-LAYER MPC ARCHITECTURE FOR EFFICIENT MIXED-INTEGER-INFORMED OBSTACLE AVOIDANCE 13775

Fig. 7. The QP-MPC evaluates at every time step and updates its considered
obstacles and obstacle faces as soon as a new MIQP-MPC solution (which
needs to be shifted) is available.

The solution of the MIQP-MPC is obtained by iterative
testing for collisions with obstacles: First, the optimization
problem is solved without the consideration of any obstacles.
Then the relevant obstacle shapes, that need to be avoided, are
identified and successively added to the optimization problem
by formulating the corresponding exclusion constraints. This
is done by cycling through O and testing for collisions via the
iterative evaluation of the respective interior constraints (15)
for each obstacle Qi at each time step tk, tk+1, . . , tk+NP .
Once added, the respective obstacle avoidance constraints (16)
remain in the current OCP formulation to ensure convergence
to a globally optimal solution and avoid infinite loops.

The real-time capable QP-MPC combines the conservative
OA heuristic described in Sec. III-B2 together with the global
information and binary variables provided by the MIQP-MPC
solution to update its obstacle avoidance constraints accord-
ingly. The QP problem is evaluated asynchronously in parallel
to the MIQP problem and provides (depending on the MIQP
update) the locally resp. globally optimal solution V∗k at each
time step. As a consequence, the closed-loop dynamics are
saved and we do not need to give up on optimality with this
real-time capable two-layer OA control architecture.

Finally, the obtained optimal virtual input sequence V∗k is
transformed back to physical inputs, and the first control action
U∗k(1) = u∗k =

[
a∗x,k, δ

∗

k
]T is applied to the controlled vehicle.

The data exchange between the two OA-MPCs is illustrated
in Fig. 7: While the QP-MPC provides a locally optimal
solution at every time step, the evaluation of the global optimal
MIQP-MPC may take more time. E.g., the solution of the
MIQP formulated at k = 3 is available at k = 5. Therefore,
at k = 5 the relevant obstacle faces of the QP-MPC are
updated with the ones selected by the MIQP solution by fixing
the binary variables (δMIQP → δQP). If the solution of the
MIQP-MPC is obtained in real-time, it is basically directly
applied, e.g., at k ∈ {1, 2, 8} in Fig. 7.

D. Solution Selection Strategy to Retain Optimality

We discuss the idea of global optimality and feasibility with
respect to the following verification strategy. Let

Pverif : J as defined in (7) (18a)
s.t. (6b)–(6d), (18b)

yk+ j+1 /∈ Qi,k+ j+1, (18c)

with j = 0, 1, . . . , Np − 1 and Qi ∈ O define the verifica-
tion problem with cost function J and the essential system,
input, and output constraints (18b), and obstacle-avoidance
constraints (18c) based on the current problem (and obstacle)
information at time step k. Any solution V,Z defined com-
patibly with the generic OA OCP in Sec. III-A can hence be
tested against the constraints of Pverif, (18b)–(18c), and its cost
J expressed according to (18a). Hence, if a solution fulfills
the constraints (18b)–(18c) it is admissible and avoids any
collisions under the assumptions that the obstacle predictions
are correct. The solution’s performance is quantified by (18a).

A real-time-capable, safe, and efficient solution selection
strategy (at each time step k) is proposed in Algorithm 2. The
algorithm employs a two-stage selection process that utilizes
the verification problem as a unified criterion to grade the
solutions. In the first step, all solutions that fulfill the verifica-
tion constraints (18b)–(18c) are selected and their verification
objective costs (18a) are computed. The comparison of the
verification objective cost then allows the identification of the
best solution in the second algorithm step.

Algorithm 2 Collision-Free and Efficient OCP Solution Selec-
tion
Input: Failsafe solution (V,Z)fs that fulfills (18b)–(18c)
Input: Available solution set L = {l : (V,Z)l available}

1: I ← {fs}
2: for l ∈ L do
3: if (V,Z)l fulfils (18b)–(18c) then
4: I ← I ∪ {l}
5: Jl ← (18a) ▷ calculate cost
6: end if
7: end for
8: l∗← arg minl∈I Jl ▷ select best solution
9: return ν∗k of selected solution l∗

IV. CONTROL SYSTEM DISCUSSION

In this section, important aspects, features, and limitations
of the proposed control architecture are discussed.

A. Real Time Capability

The motivation of the proposed two-layer control architec-
ture lies in the lack of a (useful) upper bound on MIQP-MPC
solution complexity. Even though the MIQP-MPC can often be
solved in a reasonable time, its worst-case runtime, represent-
ing an NP-hard mixed-integer problem, cannot be guaranteed.
Instead, the convex (fail-safe) QP-MPC setting is utilized to
ensure control law computation in bounded time. Still, this
QP-MPC-problem is iteratively refined: if predicted violations
are detected, a conservative heuristics is utilized to add relevant
obstacle constraints, and the QP-MPC-problem is solved again,
until no violations are predicted anymore. The number of
these iterations can be limited by the design of the constraint
inclusion heuristics. It is noted here that this solution does
not solve the MIQP-MPC problem optimally anymore, but

13776 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

its solution is a feasible solution for the MIQP-MPC setting.
The real-time capability of the fail-safe QP-MPC problem is
guaranteed if

Ts > Nit,max · tsolve,max (19)

whereby Nit,max is the upper bound of the number of iterations
per time step, and tsolve,max is the upper bound of the compu-
tation time of a single iteration of the QP-MPC solution.

B. Optimality

This simple strategy always provides collision safety (under
the assumption that the fail-safe OA OCP solution is always
feasible) and utilizes better (lower-cost) solutions whenever
they are safe and available. It is evident that this strategy
recovers globally optimal OA performance if a sequence of
globally optimal solutions is available (i.e. if they are available
with sufficiently small computational effort), but automatically
falls back to lower-performance solutions if necessary. Also,
this strategy is highly generic in that it allows to exploit any
heuristic attempt to improve solution quality by including these
in the set of available solutions L.

C. Stability & Feasibility

The control problems (6) are designed to be always feasi-
ble because all state constraints (except the hard constraint
ensuring vx ≥ 0) are formulated as soft constraints with
slacks. Since the involved MPC problems are expressed in
linear time-invariant coordinates, standard LTI-MPC stabiliza-
tion arguments (terminal set constraint and Riccati terminal
cost terms) are readily available [41] if needed to guarantee
the closed-loop stability of the constrained problems under
uncertainty, external disturbances [42], and suitable infinite-
horizon regularity conditions. An approach to formulating the
(optional) terminal costs Jterm in (6a) is given in Appendix A.
The feasibility of the hard-constrained control problem can
fundamentally be destroyed by critical or malicious obsta-
cles if a collision cannot be avoided by the ego vehicle’s
control authority. However, in these cases, the proposed
soft-constrained problem formulation yields a solution that can
be deemed as a sensible trade-off. For example, maximum
braking would be employed to minimize collision penalty
cost in an unavoidable head-on collision, hence also reducing
collision severity in reality.

A comment on the key aspects to ensuring closed-loop
stability and recursive feasibility can be sketched as follows:
First, we note that always realizing the fail-safe solution is
assumed to be Lyapunov stable in an appropriate sense with
the cost function (18a) being a Lyapunov function for the
verification problem under the fail-safe control law. This can
be achieved by designing the fail-safe solution under rea-
sonable feasibility conditions via standard MPC stabilization
methods [41], i.e. formulating the fail-safe control problem as
a local LTI MPC problem with nominal closed-loop stability
guarantees with conservative OA constraints and with cost
function (18a). Building on this foundation, if we realize a
control solution with an even smaller cost (18a), for example,
achieved by the MIQP-MPC with detailed OA constraints,

this solution would be selected and realized as outlined in
Alg. 2. Consequently, the cost under this control law is still
a Lyapunov function of the problem (because it is bounded
above by the fail-safe cost value), hence also ensuring closed-
loop stability. We omit a rigorous proof here but refer to Sec. V
for a co-simulation-based validation of closed-loop stability
and performance.

D. Robustness of Collision Safety

The main motivation for formulating an obstacle avoidance
MPC is to solve the vehicle control problem with collision
safety requirements in the best-informed way possible. Two
aspects need to be resolved in this regard:

(I) The fact that the formulated collision constraints only
approximate the collision problem setting requires a suitable
choice of (small) additional safety buffer distances. Using soft
constraints (i.e., the possibility of marginal violation) requires
sufficiently high penalty costs. Several major sources of rele-
vant model errors are shape inaccuracies, disregarding the ego
shape, the fact that the constraints are formulated only at the
sample instants (and not in between), as well as model errors
in input-output dynamics of the ego vehicle (such as uncer-
tain braking reaction / dead times, or unmodeled drivetrain
dynamics affecting the realization of demanded accelera-
tions/decelerations). These require the choice of reasonable
spatial safety buffers, realized by enlarging the modeled obsta-
cles at all sides. These distances are adjusted via simulation
studies.

(II) The case that obstacles do not move according to their
available predictions, but rather perform unforeseen actions
such as sudden braking requires specific safety distances to
attain collision safety in this uncertain context. This could
be realized by larger (virtual) obstacle shapes at the far
end of the prediction horizon to depict the higher uncer-
tainties associated to longer predictions, potentially informed
by stochastic metrics derived from corresponding estimations.
However, this extension is out of scope of this work. In this
work, we assume to have access to deterministic (possibly
pre-processed) obstacle predictions compare also Sec. IV-F5.

E. Limitations of the Frenet Frame Transformation

While the formulation in Frenet coordinates facilitates a
convenient controller design procedure, some limitations of the
coordinate transformation need to be considered, especially in
the case of tightly curved reference paths.

1) Transformation Stability: F is unique if |l| < |1/κref|

holds [17], [43]. While this is usually the case for four-legged
intersections (compare Fig. 9), for tightly curved roads, a trans-
formation curve that does not exhibit singularities in the
feasible driving region is proposed in [44]. Further, F−1 shows
a singularity for ṡ = 0, which can be dealt with by applying
the methodology described in [35].

2) Transformation Continuity: It is known that a
curvature-continuous trajectory in the Frenet frame may
become curvature-discontinuous after being converted back
into the global Cartesian frame if the used reference path
is curvature-discontinuous [17]. Herein, this can lead to

GRATZER et al.: TWO-LAYER MPC ARCHITECTURE FOR EFFICIENT MIXED-INTEGER-INFORMED OBSTACLE AVOIDANCE 13777

abrupt changes in the steering angle solely caused by the
transformation from the virtual inputs V∗k to the physical
control inputs U∗k . This issue is solved by providing an
alternative transformation curve with a minimized change of
curvature similar to [20].

3) Transformation Distortion: As already discussed in
Sec. III-B3 the obstacle shapes appear distorted in the Frenet
frame for curved reference paths, compare Fig. 4. As illus-
trated therein, transforming additional points on the boundary
of the obstacles allow to reduce the effect of these distortions.
Very long obstacles, e.g., buses, can be split into two obstacle
shapes to reduce distortions caused by tightly curved reference
paths even further at the cost of additional computation effort
(not shown in this work).

F. Further Limitations

Further limitations of the TL-OA-MPC architecture in its
current form are summarized and discussed as follows.

1) Vehicle Model: The kinematic single-track model (and
its flatness-based treatment) utilized here is valid in the
low-acceleration driving regime, but it does not capture wheel
slip, side slip, or drifting. In highly dynamic driving situations,
such as fast cornering, however, a significant model error
arises. The MPC feedback action compensates for this error
partially, but tracking accuracy is reduced in high-acceleration
situations. As a possible extension to our OA-MPC concept,
the so-called kinodynamic vehicle model [45], which also
admits a flat representation, could be incorporated instead.
This would only increase complexity moderately (more states)
but allows describing wheel slip in an over-actuated vehicle
setting, thus extending the applicability of the concept to
accurate high-performance, high-dynamic maneuvers. This,
however, is out of the scope of this work, and model error
tolerance is showcased in the co-simulation example (C) in
Sec. V-D.

2) Deterministic MPC: The proposed concept, even though
being a deterministic design, is formulated to address uncer-
tainties at several levels: (i) soft (slack) formulations of the
obstacle-avoidance constraints serve as a basic and effective
robustification against marginal model and obstacle prediction
uncertainties. (ii) The design weightings are chosen to balance
nominal control performance vs. robustness through weight
adjustments and by cross-validating with co-simulations.

3) Environmental Disturbances: The proposed control
architecture does not consider uncertainties such as road
inclination, aerodynamic drag, wind, slippery roads, different
loads, and drivetrain parameter variations explicitly. These
environmental disturbances are essentially offloaded to the
subordinate controllers at a drivetrain level, which is aided by
the interpretability of the flat parametrization (out of the scope
of this work). However, besides robust and stochastic MPC
methods, sophisticated and efficient approaches that directly
address vehicle and environmental uncertainties are proposed
in [46], [47], [48], and [49] for longitudinal platooning and
off-road vehicle control while [50] combines stochastic MPC
with Taguchi’s robustness strategy to ensure both robustness
and reliability.

4) Communication: Communication faults are not consid-
ered in this work since the high degree of robustness of
MPC with respect to temporary communication drops has
already been investigated by the authors in [6]. Also, the
control architecture can utilize simplified proxy models for
obstacle motion prediction (computed at the ego vehicle, thus
independent of V2V communication).

5) Obstacle Predictions: The deterministic position predic-
tions, received either via V2X communication or obtained
by a prediction module, can be interpreted as the mean
values of stochastic occupation probabilities and the obstacle
shapes can be inflated in correlation to the variance. Uncertain
predictions can be taken into account by, e.g., increasing
the safety margins to the surrounding traffic participants and
lane boundaries over the prediction horizon in relation to the
confidence level of the assumed prediction modules [33] (out
of scope of this work).
Further, the re-planning nature of receding horizon MPC
allows changes in the perceived environment to be accounted
for at each time instance, which makes the TL-OA-MPC
architecture robust to prediction errors and uncertainty [33].
This is verified in Sec. V where the control concept is tested
under several model errors.

G. Alternative Problem Formulation in Cartesian
Coordinates

This work shows the generic MPC problem formulation in
flat Frenet coordinates. However, an alternative formulation
in flat Cartesian coordinates, as described in [20], is possi-
ble as well by choosing the flat outputs as y =

[
X, Y

]T

which yields the flat state and virtual input vector z =[
X, vx cosψ, Y, vx sinψ

]T and ν =
[
Ẍ , Ÿ

]T, respectively.
The main advantages of this formulation are (i) the existing
analytical transformation with simple handling of vx = 0 as
described in [20], (ii) the exact mapping of obstacle shapes,
and (iii) its applicability to unstructured environments (no
reference paths needed). On the other hand, the formulation
and individual weighting of decoupled lateral and longitudinal
control goals, as shown in Sec. III-A1, is not possible and the
implementation of lane boundary constraints proves cumber-
some.

V. CO-SIMULATION BASED VALIDATION

The proposed control concept is validated by realis-
tic co-simulation of typical highly dynamical intersection
and highway scenarios utilizing the traffic simulator for
autonomous driving research CARLA [32].

A. Co-Simulation Architecture

The vehicle dynamics, approximated for the control design
by (5), are computed in CARLA with higher fidelity, which
includes the simulation of (i) longitudinal tire slip, (ii) lateral
tire slip, and (iii) drive train dynamics. The robustness of the
proposed control architecture with respect to these modeling
errors is shown by utilizing the co-simulation architecture
depicted in Fig. 8.

13778 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

Fig. 8. Co-simulation architecture with the TL-OA-MPC architecture
as described in Fig. 5 and a look-up table that maps u∗k to normalized
brake, throttle, and steering inputs. The intersection model [51] provides the
information necessary for the optimization problems.

CARLA (Car Learning to Act) is an open-source hyper-
realistic (traffic) simulator that enables the design and
validation of autonomous driving systems [32], [52], [53],
[54]. It uses Unreal Engine 4 to run the simulation and Open-
DRIVE standard 1.4 to define roads and urban settings [55].
CARLA is designed as a server-client system and control
over the simulation is granted through a Python API that is
constantly developed by the CARLA research team. Vehicles
are represented by the standard Unreal Engine 4 vehicle model
(PhysXVehicles) with adjusted kinematic parameters for
realism. Detailed vehicle dynamics are simulated by coupling
the components engine, clutch, gears, differential, wheels,
tires, suspensions, and chassis. In CARLA vehicles are con-
trolled by the commands of steering, accelerating, and braking.
An inbuilt basic controller that governs vehicle behavior,
namely lane following, respecting traffic lights, speed limits,
and decision-making at intersections, can be activated. Vehi-
cles and pedestrians can detect and avoid each other. In this
work, CARLA version 0.9.14 is used.

Interfacing between CARLA and MATLAB is established
by a self-developed MATLAB2CARLA (M2C) bridge that
utilizes the provided client API in combination with Python™

3.8.10 to communicate with the CARLA server.
Communication: We assume perfect communication in the

scope of this work.
Intersection Model: The multi-agent model architecture

developed in [51] serves as a digital intersection twin by rep-
resenting the traffic participants and their position predictions
in the MATLAB environment and providing the necessary
information for the optimization problems.

Optimization software: The OA-MPC optimization prob-
lems (6) are formulated and solved by MIP resp. QP utilizing
the untuned commercial solver Gurobi® Optimizer version
10.0.0. The transformation and computation of the MPC con-
trol actions are carried out in MATLAB® R2023b. Although
parameter tuning could significantly reduce calculation time,
especially for MIP, as stated in [30], we use the untuned solver
with default settings to allow for easy benchmarking.

Vehicle control interface: The control inputs u∗k are mapped
to normalized brake, throttle, and steering inputs via identified
look-up tables as an alternative to a low-level PI controller. All
vehicles are represented by electric cars to avoid model errors
due to switching operations. The Tesla Model 3 vehicle model
from the CARLA standard vehicle library is used with adjusted
braking torque and engine/drivetrain damping with the clutch
engaged, as listed in Table II, Appendix B.

The two-layer obstacle avoidance control architecture is
tested in three traffic situations: Scenario (A) represents a
left-turn maneuver in dense traffic, scenario (B) demonstrates
the collision safety capability in an emergency braking maneu-
ver due to a suddenly appearing obstacle, and the complex
highway scenario (C) stress-tests the proposed control concept
beyond its intended use case. Table II, Appendix B summarizes
the simulation parameters applied. The co-simulated environ-
ment is sampled with 100 Hz while the vehicle controllers use
a sampling time of Ts = 0.05 s. We omit Jterm in the fol-
lowing. The presented co-simulation scenarios are specifically
designed to highlight the main features of the proposed control
concept, namely (i) precise and efficient obstacle avoidance,
(ii) in complex and critical traffic scenarios (iii) under severe
model errors. This includes the configuration of vehicle spawn
positions, maneuvers, reference velocities and paths, traffic
light phase plans, and an aggressive TL-OA-MPC controller
tuning.

B. Left Turn in Dense Traffic (A)

The TL-OA-MPC architecture is assessed with respect to
several model errors in an unprotected left-turn maneuver at
an urban intersection with dense traffic.

Fig. 9 depicts four selected time instances of the
co-simulated scenario. All traffic participants spawn with
vref, track their pre-assigned reference paths, and communi-
cate their position predictions obtained under the kinematic
single-track model assumption via V2V communication. The
ego vehicle 1⃝ implements the TL-OA-MPC architecture while
all other traffic participants track pre-assigned reference paths
utilizing the Intelligent Driver Model [56] (a simple car-
following model) for longitudinal control and the Stanley
controller [57] (a geometrical path-tracking controller) for
lateral control, comp [51]. The perspective of the ego vehicle,
which enters the intersection from the South, is highlighted
in Fig. 9 while Fig. 10 shows the corresponding time-series
data. It tracks the reference path (shown in the first snapshot)
while avoiding potential obstacles that are detected inside its
detection cone. The ego vehicle evades the cars 2⃝ and 3⃝
that perform sudden emergency braking maneuvers with amin
at t = 1.25 s and t = 3 s, respectively. Finally, the ego vehicle
exploits the gap between vehicle 4⃝ and vehicles 5⃝ and 6⃝
to perform a left turn without hindering vehicles 5⃝ and 6⃝
maneuvers.

The proposed TL-OA-MPC architecture enables a
collision-free and efficient maneuver in real time under
several model errors, namely (i) the mismatch between
the modeled and co-simulated vehicle kinematics, (ii) the
non-modeled drive train dynamics, and (iii) inaccurate obstacle
predictions that are based on the kinematic single-track model
assumption. These discrepancies between the modeled and
actual environment manifest in increased calculation times as
observed in simulation studies (not shown here).

The calculation times of the MIQP- and QP-MPC problems
are shown in Fig. 11. While the MIQP problem shows solver
times up to 0.408 s, the majority of MIQP solutions are
obtained in less than real-time. The QP-MPC always evaluates

GRATZER et al.: TWO-LAYER MPC ARCHITECTURE FOR EFFICIENT MIXED-INTEGER-INFORMED OBSTACLE AVOIDANCE 13779

Fig. 9. Scenario A: The reference path and road boundary constraints of the ego vehicle 1⃝ are highlighted in the first snapshot while the predictions
of detected traffic participants ∈ O inside the dashed blue detection range of the ego vehicle are visualized with red circles. The inflated shapes of traffic
participants that need to be actively avoided are highlighted in red. The position prediction and history of the ego vehicle are visualized with green circles
and green dots, respectively. Traffic lights are also detected and, depending on their phase plan predictions, considered as (static) obstacles.

Fig. 10. Scenario A: TL-OA-MPC control signals (δ, ax) and control
inputs actually realized in CARLA (δCARLA, ax,CARLA), longitudinal vehicle
velocity vx , QP-MPC solver calls (orange), active obstacles (gray), and
computation times of the MIQP (gray) and QP (cumulated, orange) problems
of the ego vehicle 1⃝ incl. snapshot times of Fig. 9.

in real-time with mean and max. calculation times of 0.010 s
and 0.041 s, respectively. The application of the conservative
fail-safe QP solution is not needed here.

Finally, we observe, that the kinematic single-track
model (1) in combination with the reference shaping (10) is

Fig. 11. Scenario A: Solver times of MIQP- and QP-MPC without overhead.

well-suited as a prediction model for model-based obstacle
avoidance applications in low-speed urban intersection traffic
scenarios.

Remark: The TL-OA-MPC architecture considers traffic
lights (like 9⃝ in Fig. 9) as immobile infrastructure agents that
are assigned to specific routes and only affect approaching
vehicles traveling on these reference paths. A relevant red
traffic light is considered in the OCP formulation (6) via
spatially fixed half-space constraints (16a). Instead of position
predictions a so-called Time to Activate (TTA) encodes the
signal phase plan and indicates when the traffic light next
turns red and thus locks the respective half-space [51]. The
TTA state, which is received via V2X communication, can
accordingly be interpreted to optimally decide whether to plan
a stopping maneuver or still pass the intersection.

Remark: While the traffic scenario shown appears rather
simple, it is important to mention that the used multi-agent
model architecture [51] is capable of handling arbitrary inter-
section topologies, obstacle shapes, and traffic participant
types. Additionally, the co-simulation framework allows to
include the simulation of V2X communication (out of scope
here). We on purpose only displayed the relevant agents for
clarity, Sec. V-D presents a more cluttered scenario consisting

13780 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

Fig. 12. Scenario B: TL-OA-MPC control signal (ax) and control input
actually realized in CARLA (ax,CARLA), longitudinal vehicle velocity vx ,
QP-MPC solver calls (orange), active obstacles (gray), and cumulated com-
putation times of the QP-MPC problem of the ego vehicle incl. longitudinal
distance to nearest obstacle 1s.

of a multitude of agents in a 5-lane highway setting. Only
active obstacles contribute to increased MIQP calculation
times. The scalability of the TL-OA-MPC architecture is
discussed in Sec. V-D which presents a more dense traffic
scenario consisting of a multitude of agents driving in a
5-lane highway setting.

C. Emergency Braking Due to Sudden Obstacle Detection (B)

The collision safety and real-time capability of the
QP-MPC heuristic without any MIQP updates, are assessed
for an emergency braking scenario due to a sudden,
unforeseeable obstacle appearance in front of the ego
vehicle.

The same controller parameters as in scenario (A) are used,
with the difference, that MIQP-updates are deactivated. The
corresponding time series incl. the longitudinal distance to the
closest obstacle 1s are plotted in Fig. 12. The ego vehicle
drives along a straight road with vref. At t = 0.8 s an obstacle
suddenly appears 10 m in front of the ego vehicle and forces
it into an emergency braking maneuver with a maximum
deceleration of 7.7 m/s2. The ego vehicle comes to a standstill
at t = 2.45 s with 1s = 0.4 m. The obstacle disappears at
t = 3 s and the ego vehicle continues to track vref.

The sudden appearance of an obstacle just in front of the
ego vehicle is unlikely in reality (perception module, compare
assumption A6) but is intended to demonstrate the robustness
of the heuristic QP formulation which avoids any collisions
and evaluates with a maximum solver time of 47.0 ms and
a mean solver time of 17.8 ms, compare Fig. 13. Slightly

Fig. 13. Scenario B: Solver times of QP-MPC without overhead.

increased calculation times at standstill are related to the
provisional handling of the singularity of the inverse Frenet
transformation F−1 at ṡ = 0, compare Sec. IV-E1. Since the
QP-MPC evaluates in less than real-time, the application of
the conservative fail-safe QP solution is also not required in
this maneuver.

D. Dense Highway Traffic Scenario (C)

The final co-simulation case studies the TL-OA-MPC archi-
tecture’s capabilities and limitations in an overly dynamic
“stress-test” maneuver: a complex high-speed 5-lane highway
scenario with multiple interacting vehicles, high accelera-
tions, as well as difficult obstacle avoidance decisions. The
algorithm’s tolerance to excessive model errors, its scalability,
and its ability to recover global optimality are tested in a
situation when the slip-free assumptions of the kinematic
single-track vehicle model are significantly violated.

Different from Table II and due to the high reference
velocity of the ego vehicle, the detection radius is increased
to rdet = 120 m while the weight of the lateral position
errors is decreased to ql = 0.3 to facilitate maneuvers over
all five available lanes. Eight scenario time instances are
depicted in Fig. 14 while the corresponding time-series data is
shown in Fig. 15. The ego vehicle 1⃝ tracks the middle lane
(lane 3 of 5) with vref = 100 km/h which is dynamically
adapted in the curved segments via (10) to limit lateral accel-
erations. The stationary vehicle convoy 3⃝ and vehicles 4⃝
and 5⃝ in lanes 1 and 2 form an L-shaped dead-end. The
ego vehicle plans to evade the stationary vehicle convoy 3⃝
on the left side and recovers from the trap (local optimum)
as soon as a MIQP-MPC update is available at t = 1.70 s.
At t = 3.25 s vehicle 2⃝ is added to the active obstacles and
the ego vehicle adapts its speed slightly. When vehicles 2⃝
and 6⃝ suddenly reduce their speed to 30 km/h and 12 km/h,
respectively, the ego vehicle plans to pass them on the left two
lanes. Due to severe model errors due to tire slip on the curved
road, the vehicle shortly violates its soft-constrained amin with
a maximal deceleration of 9.45 m/s2. A similar phenomenon
is observed around t = 9.30 s. From t = 9.80 s on the ego
vehicle increases its speed to reach vref and successfully avoids
stationary and slower driving surrounding cars.

This scenario highlights the main advantage of the proposed
TL-OA-MPC architecture: MIQP updates that recover global
optimal maneuvering whenever possible. To emphasize this

GRATZER et al.: TWO-LAYER MPC ARCHITECTURE FOR EFFICIENT MIXED-INTEGER-INFORMED OBSTACLE AVOIDANCE 13781

Fig. 14. Scenario C: The ego vehicle 1⃝ successfully recovers from the local optimum discovered at t = 1.50 s via an MIQP-MPC update at t = 1.50 s.
Without such an update the QP-MPC gets trapped in the local optimum and has to stop, position trajectory shown in red in snapshot 4 for t = 5.00 s.

Fig. 15. Scenario C: TL-OA-MPC control signals (δ, ax) and control
inputs actually realized in CARLA (δCARLA, ax,CARLA), longitudinal vehicle
velocity vx , QP-MPC solver calls (orange), active obstacles (gray), and
computation times of the MIQP (gray) and QP (cumulated, orange) problems
of the ego vehicle 1⃝ incl. snapshot times of Fig. 14.

aspect, the position trajectory for the case that the QP-MPC
does not receive any MIQP update after t = 1.50 s is shown

Fig. 16. Scenario C: Solver times of MIQP- and QP-MPC without overhead.

in red in snapshot 4 of Fig. 14. The QP-MPC is trapped and
has to stop behind vehicles 4⃝ and 5⃝, which could have been
averted with a single MIQP-MPC update.

The TL-OA-MPC architecture is able to safely and effi-
ciently handle the complex high-speed traffic scenario with
a curved layout and 16 dynamic and stationary obstacles
under severe model errors. Up to three active obstacles are
considered in the OCP formulations at the same time, the
maximal peak MIQP-MPC solve time is 0.44 s, and the
QP-MPC evaluates in real-time with a maximal solve time
of 0.049 s, compare Fig. 16. Again, the application of the
conservative fail-safe QP solution is not needed here. The
control concept considers all detected traffic participants,
but only active obstacles need to be actively avoided and
therefore considered in the MIQP and QP OCP formulations.
The maximal possible number of active obstacles can be

13782 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

estimated for each road layout and speed/prediction horizon
configuration. To favor real-time computation in extremely
complex scenarios, an upper bound on the number of active
obstacles could be defined similarly to [27], trading maneuver
fidelity against real-time computation guarantees.

Using the kinematic single-track model, the proposed con-
trol concept is not intended for high-acceleration driving
maneuvers, which lead to significant model errors, but this
limitation could be overcome by utilizing the kinodynamic
vehicle model [45] as discussed in Sec. IV-F.

VI. CONCLUSION

The main motivation of this work is to make the advan-
tage of a MIP-based obstacle avoidance MPC formulation
accessible to real-time applications. Therefore we developed
a two-layer obstacle avoidance MPC architecture that enables
collision-free and efficient automated driving in complex traf-
fic situations in real-time. Asynchronously updating/informing
a QP-MPC problem with globally optimal MIQP-based MPC
solutions allows to retain global optimality while guaranteeing
efficient maneuvers and collision safety in real time. Both
controllers are based on a generic LTI-MPC formulation
in flat Frenet coordinates, exploit V2X communication, and
differ only in the implementation of the respective obstacle-
avoidance constraints. A concluding validation with realistic
vehicle dynamics co-simulations showed excellent perfor-
mance of the proposed control architecture and its successful
realization under severe model imperfections.

The two-layer obstacle avoidance MPC architecture is
well-suited for parallel computing and parallel processor appli-
cations, which will be investigated in our future research.
Additionally, we will focus on the incorporation of tactical
decisions, e.g., lane changing and overtaking, in the MPC
problem formulation. Another relevant research direction is the
consideration of uncertain position predictions of the surround-
ing traffic participants and therefore dropping assumption A5.

APPENDIX A
TERMINAL COST TERM

The terminal cost term Jterm, compare (6a), is derived by
solving the discrete-time algebraic Riccati equation (DARE)
for the following general quadratic terminal cost formulation

JNp(zNp) =
(

zNp − z∗Np

)T
P

(
zNp − z∗Np

)
(20)

+

(
νNp − ν∗Np

)T
R

(
νNp − ν∗Np

)
. (21)

which simplifies with νNp − ν∗Np
= νNp (desired virtual input

ν∗Np
= 0, no consideration of air drag and other resistances)

and

ez,Np = zNp − z∗Np
=

es

ṡ − ṡ∗

el
l̇ − l̇∗

Np

=

es

ṡ − vref
el
l̇

Np

(22)

to

JNp(zNp) = eT
z,Np

P ez,Np + νT
Np

R νNp . (23)

The desired terminal states are chosen to ṡ∗ = vref and
l̇∗ = 0. The terminal cost weighting matrix P is obtained
by solving the DARE

P = AT P A−
(

AT P B
) (

R + BT P B
)−1 (

BT P A
)
+ Q

(24)

online at each time step, whereby P , Q, and R are symmetric
positive definite matrices [58]. Finally, the terminal cost term
reads

Jterm =

∞∑
Np+1

eT
k Qek = eT

z,Np
P ez,Np .

(25)

Note that Jterm was not used in the co-simulation scenarios
shown in Sec. V and that in this formulation, we assume a
free reference path without any additional interference with
obstacles outside the detection radius/cone of the ego vehicle.
Further assumptions are vref,k+Np = vref = const. for k ≥ 0.

APPENDIX B
CO-SIMULATION PARAMETERS

The co-simulation and control parameters used in this work
are listed in Table II. The control parameters have been
selected manually here.

TABLE II
CONTROL AND SIMULATION PARAMETERS

REFERENCES

[1] J. Guo, U. Kurup, and M. Shah, “Is it safe to drive? An overview of
factors, metrics, and datasets for driveability assessment in autonomous
driving,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 8, pp. 3135–3151,
Aug. 2020.

[2] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 1826–1848, May 2020.

GRATZER et al.: TWO-LAYER MPC ARCHITECTURE FOR EFFICIENT MIXED-INTEGER-INFORMED OBSTACLE AVOIDANCE 13783

[3] D. Shen, Y. Chen, and L. Li, “State-feedback switching linear parameter
varying control for vehicle path following under uncertainty and external
disturbances,” in Proc. IEEE 25th Int. Conf. Intell. Transp. Syst. (ITSC),
Oct. 2022, pp. 3125–3132.

[4] Z. Han et al., “An efficient spatial–temporal trajectory planner for
autonomous vehicles in unstructured environments,” IEEE Trans. Intell.
Transp. Syst., vol. 25, no. 2, pp. 1797–1814, Feb. 2024.

[5] B. Li et al., “Fast trajectory planning for AGV in the presence of moving
obstacles: A combination of 3-dim A* search and QCQP,” in Proc. 33rd
Chin. Control Decis. Conf. (CCDC), May 2021, pp. 7549–7554.

[6] A. L. Gratzer, S. Thormann, A. Schirrer, and S. Jakubek, “String stable
and collision-safe model predictive platoon control,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 10, pp. 19358–19373, Oct. 2022.

[7] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive
active steering control for autonomous vehicle systems,” IEEE Trans.
Control Syst. Technol., vol. 15, no. 3, pp. 566–580, May 2007.

[8] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: Introductory theory and examples,” Int. J. Control,
vol. 61, no. 6, pp. 1327–1361, Jun. 1995.

[9] Z. Wang, J. Zha, and J. Wang, “Flatness-based model predictive control
for autonomous vehicle trajectory tracking,” in Proc. IEEE Intell. Transp.
Syst. Conf. (ITSC), Oct. 2019, pp. 4146–4151.

[10] S. Fuchshumer, K. Schlacher, and T. Rittenschober, “Nonlinear vehicle
dynamics control—A flatness based approach,” in Proc. 44th IEEE Conf.
Decis. Control, Dec. 2005, pp. 6492–6497.

[11] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning:
Steering using sinusoids,” IEEE Trans. Autom. Control, vol. 38, no. 5,
pp. 700–716, May 1993.

[12] M. Wang, Z. Wang, J. Talbot, J. Christian Gerdes, and M. Schwager,
“Game theoretic planning for self-driving cars in competitive scenarios,”
in Robotics: Science and Systems, vol. 37, no. 4. San Francisco,
CA, USA: Robotics: Science and Systems Foundation, Jun. 2021,
pp. 1313–1325.

[13] J.-H. Pauls, M. Boxheimer, and C. Stiller, “Real-time cooperative motion
planning using efficient model predictive contouring control,” in Proc.
IEEE Intell. Vehicles Symp. (IV), Jun. 2022, pp. 1495–1503.

[14] D. Kloeser, T. Schoels, T. Sartor, A. Zanelli, G. Prison, and
M. Diehl, “NMPC for racing using a singularity-free path-parametric
model with obstacle avoidance,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 14324–14329, 2020.

[15] P. Dini and S. Saponara, “Processor-in-the-loop validation of a gradient
descent-based model predictive control for assisted driving and obstacles
avoidance applications,” IEEE Access, vol. 10, pp. 67958–67975, 2022.

[16] C. Sun, Q. Li, B. Li, and L. Li, “A successive linearization in feasible
set algorithm for vehicle motion planning in unstructured and low-
speed scenarios,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 4,
pp. 3724–3736, Apr. 2022.

[17] B. Li, Y. Ouyang, L. Li, and Y. Zhang, “Autonomous driving on curvy
roads without reliance on frenet frame: A Cartesian-based trajectory
planning method,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9,
pp. 15729–15741, Sep. 2022.

[18] P. Polack, F. Altché, B. d’Andréa-Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?” in Proc. IEEE Intell. Vehicles
Symp. (IV), Jun. 2017, pp. 812–818.

[19] F. Janeček, M. Klaučo, M. Kalúz, and M. Kvasnica, “OPTIPLAN: A
MATLAB toolbox for model predictive control with obstacle avoidance,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 531–536, Jul. 2017.

[20] A. L. Gratzer, M. M. Broger, A. Schirrer, and S. Jakubek, “Flatness-
based mixed-integer obstacle avoidance MPC for collision-safe auto-
mated urban driving,” in Proc. 9th Int. Conf. Control, Decis. Inf. Technol.
(CoDIT), Jul. 2023, pp. 1844–1849.

[21] D. Ioan, I. Prodan, S. Olaru, F. Stoican, and S.-I. Niculescu, “Mixed-
integer programming in motion planning,” Annu. Rev. Control, vol. 51,
pp. 65–87, Oct. 2021.

[22] T. Weiskircher, Q. Wang, and B. Ayalew, “Predictive guidance and
control framework for (semi-)autonomous vehicles in public traffic,”
IEEE Trans. Control Syst. Technol., vol. 25, no. 6, pp. 2034–2046,
Nov. 2017.

[23] J. V. Frasch et al., “An auto-generated nonlinear MPC algorithm for
real-time obstacle avoidance of ground vehicles,” in Proc. Eur. Control
Conf. (ECC), Jul. 2013, pp. 4136–4141.

[24] M. Brown and J. C. Gerdes, “Coordinating tire forces to avoid obstacles
using nonlinear model predictive control,” IEEE Trans. Intell. Vehicles,
vol. 5, no. 1, pp. 21–31, Mar. 2020.

[25] Z. Wang, G. Li, H. Jiang, Q. Chen, and H. Zhang, “Collision-free naviga-
tion of autonomous vehicles using convex quadratic programming-based
model predictive control,” IEEE/ASME Trans. Mechatronics, vol. 23,
no. 3, pp. 1103–1113, Jun. 2018.

[26] F. Gao, Y. Han, S. Eben Li, S. Xu, and D. Dang, “Accurate pseu-
dospectral optimization of nonlinear model predictive control for
high-performance motion planning,” IEEE Trans. Intell. Vehicles, vol. 8,
no. 2, pp. 1034–1045, Feb. 2023.

[27] R. Quirynen, S. Safaoui, and S. Di Cairano, “Real-time mixed-integer
quadratic programming for vehicle decision making and motion plan-
ning,” 2023, arXiv:2308.10069.

[28] B. Li and Y. Zhang, “Fast trajectory planning in Cartesian rather
than frenet frame: A precise solution for autonomous driving
in complex urban scenarios,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 17065–17070, 2020.

[29] D. Bertsimas and B. Stellato, “Online Mixed-Integer optimization in
milliseconds,” INFORMS J. Comput., vol. 34, no. 4, pp. 2229–2248,
Jul. 2022.

[30] Gurobi Optimizer Reference Manual, Gurobi Optimization LLC, Beaver-
ton, OR, USA, 2021.

[31] R. Quirynen and S. Di Cairano, “Tailored presolve techniques in
branch-and-bound method for fast mixed-integer optimal control appli-
cations,” Optim. Control Appl. Methods, vol. 44, no. 6, pp. 3139–3167,
Nov. 2023.

[32] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. 1st Annu. Conf.
Robot Learn., Nov. 2017, pp. 1–16.

[33] J. Nilsson, M. Brännström, E. Coelingh, and J. Fredriksson, “Lane
change maneuvers for automated vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 18, no. 5, pp. 1087–1096, May 2017.

[34] J. Nilsson, M. Brännström, J. Fredriksson, and E. Coelingh, “Lon-
gitudinal and lateral control for automated yielding maneuvers,”
IEEE Trans. Intell. Transp. Syst., vol. 17, no. 5, pp. 1404–1414,
May 2016.

[35] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenet frame,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2010, pp. 987–993.

[36] S. Joos, R. Bruder, T. Specker, M. Bitzer, and K. Graichen, “Kinematic
real-time trajectory planning with state and input constraints for the
example of highly automated driving,” in Proc. 23rd Int. Conf. Syst.
Theory, Control Comput. (ICSTCC), Oct. 2019, pp. 779–784.

[37] R. Reiter, A. Nurkanović, J. Frey, and M. Diehl, “Frenet-Cartesian
model representations for automotive obstacle avoidance within non-
linear MPC,” Eur. J. Control, vol. 74, Nov. 2023, Art. no. 100847.

[38] L. A. Wolsey, Integer Programming, 2nd ed. Hoboken, NJ, USA:
Hoboken, NJ, USA: Wiley, 2020.

[39] B. Alrifaee, “Networked model predictive control for vehicle collision
avoidance,” Ph.D. dissertation, RTWH Aachen, Faculty Mech. Eng., Inst.
Autom. Control, Aachen, Germany, 2017.

[40] B. Li et al., “Embodied footprints: A safety-guaranteed collision-
avoidance model for numerical optimization-based trajectory planning,”
IEEE Trans. Intell. Transp. Syst., vol. 25, no. 2, pp. 2046–2060,
Feb. 2024.

[41] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, Jun. 2000.

[42] D. Shen, L. Li, Y. Chen, and F.-Y. Wang, “Cascade LPV control for
automated vehicle trajectory tracking considering parametric uncertainty
and varying velocity,” in Proc. Austral. New Zealand Control Conf.
(ANZCC), Nov. 2022, pp. 176–181.

[43] H. Wang, J. Kearney, and K. Atkinson, “Robust and efficient compu-
tation of the closest point on a spline curve,” in Proc. 5th Int. Conf.
Curves Surf., 2002, pp. 397–405.

[44] R. Reiter and M. Diehl, “Parameterization approach of the Frenet
transformation for model predictive control of autonomous vehicles,”
in Proc. Eur. Control Conf. (ECC), Jun. 2021, pp. 2414–2419.

[45] Z. Wang, J. Zha, and J. Wang, “Autonomous vehicle trajectory following:
A flatness model predictive control approach with hardware-in-the-
loop verification,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 9,
pp. 5613–5623, Sep. 2021.

[46] D. Shen, J. Yin, X. Du, and L. Li, “Distributed nonlinear model
predictive control for heterogeneous vehicle platoons under uncertainty,”
in Proc. IEEE Int. Intell. Transp. Syst. Conf. (ITSC), Sep. 2021,
pp. 3596–3603.

13784 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 10, OCTOBER 2024

[47] Z. Ju, H. Zhang, and Y. Tan, “Distributed stochastic model predictive
control for heterogeneous vehicle platoons subject to modeling uncer-
tainties,” IEEE Intell. Transp. Syst. Mag., vol. 14, no. 2, pp. 25–40,
Mar. 2022.

[48] J. Yin, Z. Hu, Z. P. Mourelatos, D. Gorsich, A. Singh, and S. Tau,
“Efficient reliability-based path planning of off-road autonomous ground
vehicles through the coupling of surrogate modeling and RRT,” IEEE
Trans. Intell. Transp. Syst., vol. 24, no. 12, pp. 15035–15050, Dec. 2023.

[49] S. Baldi, D. Liu, V. Jain, and W. Yu, “Establishing platoons of bidirec-
tional cooperative vehicles with engine limits and uncertain dynamics,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 5, pp. 2679–2691,
May 2021.

[50] J. Yin, D. Shen, X. Du, and L. Li, “Distributed stochastic model
predictive control with Taguchi’s robustness for vehicle platooning,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 15967–15979,
Sep. 2022.

[51] A. L. Gratzer, A. Schirrer, and S. Jakubek, “Agile multi-agent
model architecture for intelligent intersection traffic simulation,” IFAC-
PapersOnLine, vol. 55, no. 27, pp. 89–95, 2022.

[52] R. Gutierrez, J. F. Arango, C. Gomez-Huelamo, L. M. Bergasa, R. Barea,
and J. Araluce, “Validation method of a self-driving architecture for
unexpected pedestrian scenario in CARLA simulator,” in Proc. IEEE
Intell. Vehicles Symp. (IV), Jul. 2021, pp. 1144–1149.

[53] D. R. Morais and A. P. Aguiar, “Model predictive control for self
driving cars: A case study using the simulator CARLA within a ROS
framework,” in Proc. IEEE Int. Conf. Auto. Robot Syst. Competitions
(ICARSC), Apr. 2022, pp. 124–129.

[54] Z. Zhou, C. Rother, and J. Chen, “Event-Triggered model predictive
control for autonomous vehicle path tracking: Validation using CARLA
simulator,” IEEE Trans. Intell. Vehicles, vol. 8, no. 6, pp. 3547–3555,
Jun. 2023.

[55] P. Kaur, S. Taghavi, Z. Tian, and W. Shi, “A survey on simulators for
testing self-driving cars,” in Proc. 4th Int. Conf. Connected Auto. Driving
(MetroCAD), Apr. 2021, pp. 62–70.

[56] M. Treiber and A. Kesting, Traffic Flow Dynamics Data, Models and
Simulation. Cham, Switzerland: Springer, 2013.

[57] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun,
“Autonomous automobile trajectory tracking for off-road driving: Con-
troller design, experimental validation and racing,” in Proc. Amer.
Control Conf., Jul. 2007, pp. 2296–2301.

[58] P. Lancaster and L. Rodman, Algebraic Riccati Equations. Oxford, U.K.:
Clarendon Press, 1995.

Alexander L. Gratzer received the M.Sc. degree
in mechanical engineering from TU Wien, Vienna,
Austria, in 2019, where he is currently pursuing the
Ph.D. degree. Since 2019, he has been a member of
the Project Team, Institute of Mechanics and Mecha-
tronics, TU Wien. His research interests include
modeling, control, and optimization of complex sys-
tems, with a recent focus on automated driving and
intelligent transportation systems (ITS).

Maximilian M. Broger received the M.Sc. degree
in mechanical engineering from TU Wien, Vienna,
Austria, in 2023. He has been a member of the
Project Team, Institute of Mechanics and Mecha-
tronics, TU Wien, for one year, where he is currently
working in the field of automation technology.

Alexander Schirrer received the M.S., Ph.D.,
and Habilitation degrees in mechanical engineer-
ing from TU Wien, Vienna, Austria, in 2007,
2011, and 2018, respectively. Since 2011, he has
been a Post-Doctoral Researcher and a Teacher of
graduate-level lectures with the Institute of Mechan-
ics and Mechatronics, TU Wien. His research
interests include modeling, simulation, optimization,
and control of complex and distributed-parameter
systems.

Stefan Jakubek received the M.S., Ph.D., and
Habilitation degrees in mechanical engineering from
TU Wien, Vienna, Austria, in 1997, 2000, and 2007,
respectively. From 2007 to 2009, he was the Head
of Development for Hybrid Powertrain Calibration
and Battery Testing Technology, AVL List GmbH,
Graz, Austria. He is currently a Professor with the
Institute of Mechanics and Mechatronics, TU Wien.
His research interests include fault diagnosis and
system identification.

