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No-Clean-Reference Image Super-Resolution:
Application to Electron Microscopy

Mohammad Khateri , Student Member, IEEE, Morteza Ghahremani , Member, IEEE, Alejandra Sierra ,
and Jussi Tohka

Abstract—The inability to acquire clean high-resolution (HR)
electron microscopy (EM) images over a large brain tissue volume
hampers many neuroscience studies. To address this challenge,
we propose a deep-learning-based image super-resolution (SR)
approach to computationally reconstruct a clean HR 3D-EM image
with a large field of view (FoV) from noisy low-resolution (LR) ac-
quisition. Our contributions are I) investigation of training with no-
clean references; II) introduction of a novel network architecture,
named EMSR, for enhancing the resolution of LR EM images while
reducing inherent noise. The EMSR leverages distinctive features
in brain EM images–repetitive textural and geometrical patterns
amidst less informative backgrounds– via multiscale edge-attention
and self-attention mechanisms to emphasize edge features over the
background; and, III) comparison of different training strategies
including using acquired LR and HR image pairs, i.e., real pairs
with no-clean references contaminated with real corruptions, pairs
of synthetic LR and acquired HR, as well as acquired LR and de-
noised HR pairs. Experiments with nine brain datasets showed that
training with real pairs can produce high-quality super-resolved
results, demonstrating the feasibility of training with nonclean
references. Additionally, comparable results were observed, both
visually and numerically, when employing denoised and noisy
references for training. Moreover, utilizing the network trained
with synthetically generated LR images from HR counterparts
proved effective in yielding satisfactory SR results, even in certain
cases, outperforming training with real pairs. The proposed SR net-
work was compared quantitatively and qualitatively with several
established SR techniques, demonstrating either the superiority or
competitiveness of the proposed method in recovering fine details
while mitigating noise.
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I. INTRODUCTION

THREE-DIMENSIONAL electron microscopy (3D-EM) is
an essential technique for investigating brain tissue ultra-

structures because it allows for 3D visualization at nanometer
resolution [1], [2]. Studying brain tissue ultrastructures requires
high-resolution (HR) images over a large field of view (FoV) of
the brain tissue. However, since imaging at higher resolutions
demands denser sampling, it takes more time, proportionally
increasing the imaging cost and potential sample damage. More-
over, HR imaging over a large FoV is not feasible under realistic
imaging constraints, demanding a trade-off between imaging
resolution and FoV. The higher the resolution is, the smaller the
FoV [3]. Furthermore, the imperfect components of imaging
systems introduce noise into the images [4]. These limitations
collectively prevent the acquisition of clean HR EM images
over large FoVs of brain tissue, impeding subsequent brain
ultrastructure analysis and visualization.

A practical approach to mitigating such limitations in provid-
ing clean HR EM images over a large tissue volume includes the
following steps: I) low-resolution (LR) imaging of brain samples
over a large FoV of interest, II) HR imaging over a small but
representative portion of the same samples covered by the LR
FoV, and III) utilizing the image super-resolution (SR) technique
to computationally reconstruct high-quality HR 3D-EM images
from the LR 3D-EM images of brain tissue, which are typically
contaminated with noise, artifacts, and distortions.

SR is a low-level vision task that can serve as an integral
preprocessing step for many image analyses in neuroscience [5],
[6], [7]. It aims to recover the latent clean HR image x from a
degraded LR observation y:

y = Dδ(x), (1)

where Dδ(·) is the degradation function parameterized by δ,
which is noninvertible, making SR an ill-posed inverse problem.
Dδ(·) includes a convolution operator � with a blur kernel κ,
an s-fold undersampling operator ↓s, and noise n (δ = {κ, ↓s,
n}) [8]. In practice, δ is unknown and we only have the LR
observation.

SR methods can be categorized into two groups: model-
based and learning-based methods. Model-based SR methods
approximate the degradation function in (1) as a combination
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of several operations. Assuming that the blurring kernel and
undersampling operator are known and noise is additive:

Dδ(x) = (x� κ) ↓s +n (2)

An estimate x∗ of an HR image can then be obtained by the
maximum a posteriori (MAP) formulation as:

x∗ = argmin
x

{‖y − (x� κ) ↓s ‖qp + λR(x)} (3)

The first term is the likelihood computed as the �p-norm distance
between the observation y and the degraded latent image x,
where 0 < p, q ≤ 2 are determined by the noise distribution [9],
[10], [11], [12].R(·) is the regularization term, also known as the
prior term, which penalizes the unknown latent imagex upon our
prior knowledge of the data. The parameter λ defines the trade-
off between likelihood and prior terms. To reduce the ill-posed
nature of SR problems, many regularization terms have been
developed [8], [13], and each has specific pros and cons. Notably,
contributions from total variation [14], self-similarity [15], low
rank [12], and sparse representation [16] have played a signifi-
cant role in improving SR performance. Crafted priors enhance
SR but have limited performance compared to data-driven meth-
ods [8]. Effective SR models involve optimizing multiple priors,
which is time- and memory-consuming, and require tuning the
tradeoff parameters. Additionally, SR models are specific to cer-
tain degradation settings, necessitating separate models for each
degradation. Mismatched LR images with different degradations
may result in severe artifacts due to domain gaps [17].

Learning-based SR methods learn a mapping between LR
and HR image spaces, which is then used to restore the HR
image from the given LR input image. Early work, pioneered
by [18], restored HR images by capturing the co-occurrence
prior between LR and HR image patches. Numerous patch-based
methods relying on manifold learning [19], filter learning [20],
regression [21], and sparse representation [22] have been in-
troduced. Deep neural network (DNN)-based SR methods have
demonstrated remarkable performance [13]. DNNs with end-
to-end training avoid the need for explicit design of priors or
degradations. Instead, priors and degradations are encapsulated
in the training datasets. The commonly used DNN architec-
tures include convolutional neural networks (CNNs) [23], [24],
generative adversarial networks (GANs) [25], [26], [27], vi-
sion transformers (ViTs) [28], [29], and denoising diffusion
probabilistic models (DDPMs) [30], [31]. In this field, many
computer vision and biomedical imaging studies have defined
a specific degradation function to synthesize LR images from
HR counterparts to generate training data [8]. Several studies
have also been conducted to incorporate the interpretability
of model-based methods into end-to-end learning, e.g., deep
unfolding [32], [33], [34], plug-and-play (PnP) [35], [36], [37],
[38], and deep equilibrium learning [39], [40]. Although most
of these degradation-oriented SR approaches lead to satisfactory
results on benchmark datasets, they fail to restore high-quality
images in real-world applications [17], such as brain EM images
that are the focus of this study.

The computational approaches in super-resolution of EM
have been studied in health and material sciences [41], [42],
[43], [44]. As a pioneer, [42] proposed a material-specific PnP

approach to super-resolve LR EM. Their method was based on
the MAP formulation, where the likelihood term was based on a
linear degradation model and the prior term was a library-based
nonlocal means (LB-NLM) designed on HR EM images
acquired within small FoVs. The presence of HR edges and
textures corresponding to the LR input image in the designed
library yielded super-resolved results with fine details. To reduce
computational expenses and improve generalizability, [45]
replaced the LB-NLM denoiser with an off-the-shelf Gaussian
denoiser, leading to the version of PnP typically used in
biomedical applications. However, both methods [42], [45] are
essentially model-based, computationally cumbersome, and
limited to degradation models. Experiments in both studies were
conducted on EM datasets acquired from nanomaterial with
simple textural information, which sparsely recurred throughout
the image. By leveraging the unique characteristics of such im-
ages, authors in [46] devised a patch-based strategy on acquired
pairs of LR and HR EM images in the training of LB-NLM,
resulting in better performance than the original LB-NLM
method but inferior performance compared to DNN-based
methods. In [44], the authors introduced a DNN-based SR,
named point scanning super-resolution (PSSR), for EM brain
images. They proposed a degradation operator, i.e., crappifier,
to synthesize LR images from acquired HR counterparts, where
the crappifier included additive Gaussian noise followed by a
downsampling operator. Using synthetic pairs of LR and HR
EM images, they trained a UNet-based residual neural network.
The performance of the method was then compared only with
that of bilinear interpolation. Although synthetizing pairs of LR
and HR EM images can reduce imaging costs, it can increase the
domain gap between the input LR EM and the trained SR model.

The DNN-based SR method can implicitly learn EM degra-
dations if trained with acquired and matched pairs of LR and
HR images. However, many challenges impede the design of
DNN-based frameworks with such data. First, EM images in-
herently contain noise and artifacts derived from the microscope,
sample, and experimental settings. Hence, there is no clean EM
image to be used as the reference for training the network.
Furthermore, networks pretrained on natural images cannot
restore high-quality brain EM images due to the considerable
difference in the physics behind photography and EM as well
as content dissimilarity between natural and brain EM images.
Hence, deploying and designing SR methods for EM images
requires specific considerations. In this work, we illustrate and
address the mentioned challenges of the SR of EM images. Our
key contributions are as follows:
� Investigation of training using no-clean references for �2

and �1 loss functions.
� Proposal of a deep learning (DL)-based image SR frame-

work for EM, named EMSR, equipped with edge-attention
and self-attention mechanisms for enhanced edge recovery.
Sharing the network’s modules between the original noisy
LR EM image and its noisier version makes it robust to
noise.

� Comparison of various training strategies for EM images,
including training from pairs of physically acquired LR
and HR, synthetically generated LR and HR, as well as LR
and denoised HR EM images.
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Fig. 1. Schematic diagram of serial block-face scanning electron microscopy and imaging. (a) The electron gun generates streams of electrons that are focused
and raster scanned across the sample surface (solid yellow lines). The interaction of these focused electrons with the sample results in the ejection of electron
streams (dashed yellow lines), which are collected by detectors to form a 2D image of the k-th slice (labeled #k). Note that the region of interest from the sample
is imaged at LR with a large FoV (marked in orange), while at HR, the FoV is smaller (marked in red). After imaging a slice, a diamond knife is used to cut the
sample to a specific thickness to determine the resolution in the z direction and expose the subsequent block-face for imaging. Imperfections in the imaging device
components can introduce blurring and noise in the resultant images (solid green arrows). (b) A stack of 2D image slices constitutes the 3D-EM dataset. (c) LR
3D-EM image corresponding to (d) HR 3D-EM image from a small FoV. The zoomed-in areas in (c) and (d) demonstrate the superior quality of the HR image in
terms of contrast and resolution, see asterisks.

The remainder of this article is organized as follows: Section
II describes the proposed image super-resolution method, Sec-
tion III describes experimental results, and finally, Section IV
concludes the article.

II. PROPOSED METHOD

The supervised training of a network requires numerous pairs
of corrupted LR images and corresponding clean reference
images. However, brain EM images inevitably include different
types of noise, artifacts, and distortions, caused by the imaging
system, and experimental settings. Therefore, clean EM images
that serve as references are unavailable. Here, we investigate
training a neural network for EM SR using physically acquired
pairs of LR and HR EM images contaminated with real noise-
like corruptions.

A. Electron Microscopy Super-Resolution

In serial block-face scanning electron microscopy (SBEM),
a focused high-energy electron beam scans the sample surface,
resulting in the acquisition of a 2D image in the xy-plane. The
diamond knife subsequently removes the top layer of the sample
to a specific thickness in the z direction, revealing the next block-
face for imaging. The repetition of this process generates a series
of 2D images that are stacked to form a 3D volume image, as
illustrated in Fig. 1.

The observed block-face y ∈ R
m×m is affected by underlying

microscope degradation Dδ′(·) : RM×M → R
m×m parameter-

ized by δ′, y = Dδ′(x), where x ∈ R
M×M denotes the latent

image that we aim to restore, and M = τm, where τ is the
resolution ratio between the HR and LR images, i.e., under-
sampling ratio. Theoretically, the purpose of the SR process
is to recover unknown x via D−1

δ′ (y), which demands find-
ing degradation inversion D−1

δ′ (·) : Rm×m → R
M×M . If such

a mapping exists, we can obtain HR observations through LR
imaging, practically accelerating imaging by a factor τ2. The

microscope degradation parameters, δ′, can arise from various
sources [4], [47], [48]. These sources include electronic device
components such as wires and coils, which produce thermal
and electromagnetic interference that is modeled as Gaussian
noise. The detector’s electron-counting error introduces signal-
dependent noise in EM images, which is modeled as Poisson
noise. Line-by-line pixel scanning in the SBEM can lead to
correlated noise. Imperfect electromagnetic lenses and anodes
cause blurred observations due to suboptimal focusing of the
electron beam. A high-energy electron beam introduces elec-
tron charge and causes absorption-based heating. Cutting the
sample with a diamond knife can introduce specific artifacts
and distortions. Additionally, mechanical disturbances from the
environment and microscope can introduce mechanical noise,
further exacerbating image degradation.

Hence, Dδ′(·) cannot be well parameterized by simplified
assumptions such as block-averaging neighbor pixels for the
undersampling operator [45]. Implicit modeling of the degrada-
tion function can be realized through training a neural network
by acquired pairs of LR and HR EM images.

B. Training Without Clean Reference

Training without clean references has been studied in several
image restoration tasks, including denoising, magnetic reso-
nance image reconstruction, and text removal [49], [50], [51].
Here, our focus is on investigating such a training approach for
commonly used restoration loss functions, i.e., �2 and �1, and
determining the corruption levels at which this training remains
feasible for EM SR.

Supervised training of a network fθ(·) for SR requires nu-
merous pairs of degraded LR, y, and clean reference, x. The
network’s parameters θ are obtained by optimizing the following
empirical loss function:

θ̂ = argmin
θ

E(x,y)[L(fθ(y), x)] (4)
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Fig. 2. Overview of the proposed image super-resolution network for training with pairs of corrupted images. The network includes the feature extractor, edge
attention, and reconstruction modules, which are shared between the original noisy LR EM image y and its noisier version y′. The network is encouraged to
generate two outputs, fθ(y) and fθ(y

′), that are consistent with the noisy reference image x. The output from the original image fθ(y) serves as the reference for
the noisier-noisy input, establishing a noise-robust framework via a self-supervised approach.

By applying the conditional expectation rule for dependent
random variables y and x, we can reformulate (4) as follows:

θ̂ = argmin
θ

Ey

[
Ex|y[L(fθ(y), x)]︸ ︷︷ ︸

reference-dependent

]
(5)

The equation above implies that the network parameters can
be optimized separately with respect to y and x over the loss
function L(·, ·). Let x̂ = x+ n, where n is an i.i.d. additive
noise with mean μ and variance σ2

nI , where I ∈ R
d×d is an

identity matrix with d = M2.
When the loss function is �2, we can derive equality that links

the solutions of the reference-dependent component in (5) for x
and x̂ as follows (see Appendix I.A):

Ex̂|y[‖fθ(y)− x̂‖22]
= Ex|y[‖fθ(y)− x‖22]− 2μT

Ex|y[fθ(y)− x] + dσ2
n + ||μ||2

(6)

The equation above states that whenμ is close to zero (E[n] ≈ 0),
the second term on the right-hand side of the equation be-
comes negligible, i.e., 2μT

Ex|y[fθ(y)− x] → 0. Additionally,
the third term σ2

n, which is noise variance, and the fourth
term, which is noise mean, are independent of y and have
no effect on the total optimization problem. Therefore, if we
substitute the clean image x with a random variable x̂ that
satisfies E[x] ≈ E[x̂], the network’s parameters will remain
close to the optimal. This enables us to replace the clean ref-
erence x with its corrupted version x̂, provided their expecta-
tion values are sufficiently close, which can be accompanied
by the practical assumption that noise should not significantly
alter the overall variability and structure of the original image,
i.e., σ2

x̂ ≈ σ2
x.

In the case of �1 loss, we can establish the relationship between
the solutions of the reference-dependent part in (5) for both x

and x̂ as below (see Appendix I.B):∣∣∣Ex̂|y[‖(fθ(y)− x̂)‖1]− Ex|y[‖fθ(y)− x‖1]
∣∣∣

≤ | − 2μT
Ex|y[fθ(y)− x] + dσ2

n + ||μ||2|
g(y, x, x̂)

, (7)

where g(y, x, x̂) =
√

Ex̂|y [‖fθ(y)−x̂‖22]+
√

Ex|y [‖fθ(y)−x‖22]√
d

. The in-
equality above suggests that the difference between the
reference-dependent solutions for x̂ and x is bounded by a
function ofμ andσ2

n. Whenμ is small, it significantly reduces the
dependence on y and tightens the upper bound, which becomes
primarily dependent on y through σ2

n. This implies that weak
noise reduces the reliance on y and indicates that it will not
significantly alter the overall optimization problem (5). In other
words, the network’s parameters will remain near optimal even
if we replace the clean image x with its noisy version x̂, as long
as E[x] ≈ E[x̂], and the overall structure of the clean image is
not significantly altered by noise, σ2

x̂ ≈ σ2
x.

These observations indicates that the network can be trained
under real-world scenarios where the reference is contaminated
with weak noise-like corruptions. Here, we aim to determine
the rough acceptable level of these corruptions in brain EM
imaging–which was discussed in Section II.B, upon noise statis-
tics μ and σ2 that overshadow training without clean references.
Suppose we can decompose x̂ into clean x and noise-like cor-
ruption componentn, x̂ = xclean + n. We can then establish the
following relationships:

E[x̂] = E[xclean] + E[n], (8a)

σ2
x̂ = σ2

xclean
+ σ2

n (8b)

When the inequalities

E[xclean] � E[n], (9a)

σ2
xclean

� σ2
n (9b)
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Fig. 3. Modules embedded in the proposed network: Basic Block, Residual Block, Á-Trous Wavelet, Attention Block, and Vision Transformer Block.

hold, E[xclean] ≈ E[x̂] and σ2
xclean

≈ σ2
x̂, which are require-

ments for training using pairs of corrupted images with �1 and �2
loss functions, and guarantee that the content of the underlying
image is much stronger than corruptions.

The level of corruption in EM is mostly much lower than
that in image content information, satisfying (9), allowing for
training network fθ(·) from pairs of corrupted images. It is
worth mentioning that rare image slices may exhibit levels of
corruption inconsistent with constraints stated in (9). These
corruptions act as anomalies that the network is unable to
learn.

C. Network Architecture

The proposed SR network, which is designed for train-
ing using pairs of corrupted LR and HR EM images, is
depicted in Fig. 2. It consists of three key modules: fea-
ture extractor, edge attention, and reconstruction. These mod-
ules are shared between the given LR image and its noisier
version.

1) Feature Extractor: The feature extractor (HFE) is em-
ployed to extract shallow (XSF ) features from the given LR
image y ∈ R

W×H×C . It includes a projection, which is a 3× 3
convolutional filter. The extraction process is as follows:

XSF = HFE(y) (10)

2) Edge Attention: The edge attention module (HEA) takes
XSF and y as inputs, extracts deep features and combines them
with edge information using multiscale edge attention and self-
attention mechanisms, yielding the generation of edge-attention
features (XEA). The calculation of the edge-attention module is
summarized as:

XEA = HEA(y,XSF ) (11)

The module consists of k basic blocks, as shown in Fig. 3.
In each basic block, the input features pass through m resid-
ual blocks with well-studied benefits [52]; then, two parallel
paths are taken. In the upper path, the features are fed into
residual blocks to produce deep features that are then enhanced
using edge information. In the lower path, the features undergo

Fig. 4. Multiscale edges extracted from the EM dataset using ATW, where
h represents the filter’s kernel. The figure illustrates three edge components
obtained at different scales, demonstrating the sparsity of edges and underscoring
the importance of paying attention to edge details.

convolutional operations and rectified linear unit (ReLU) activa-
tion to reconstruct the image in the LR space. The reconstructed
image, along with the original LR image, is then fed to an
atrous wavelet (ATW) [53], a noise-robust feature extractor, to
extract multiscale edges, see Fig. 4. The resulting multiscale
edge features are then subjected to concatenation and filtering
before being input into the attention block. The attention block
generates multiscale attention maps specifically focused on the
deep feature edges. Finally, attention maps and deep features
are combined through elementwise multiplication. The resulting
attention features are then added to the features from the upper
path, leading to the generation of multi-scale edge-attention
features. Subsequently, these features are passed into a ViT
block, which employs a window-based multihead self-attention
mechanism to capture both local and global image dependencies
within the deep multiscale edge attention features, and finally
passes through convolution layers.

Vision Transformer (ViT): ViTs divide a feature map into
a sequence of small patches, forming local windows, and
utilize self-attention mechanisms to understand the relationships
among them. This capacity to comprehend diverse image de-
pendencies is crucial for representation learning performance
in low-level vision tasks such as SR techniques. To capture
both global and local image dependencies while maintaining
computational efficiency, we adopt the window-based multihead
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self-attention (W-MSA) method [29]. The attention maps gen-
erated by W-MSA are then processed through the feed-forward
network (FFN). These W-MSA and FFN components are in-
tegrated into a ViT block, as illustrated in Fig. 3, and their
computations are outlined as follows:

X ′ = W-MSA(LN(X)) +X,

X ′′ = FFN(LN(X ′)) +X ′, (12)

where, LN is the layer normalization and X is the input feature
map.

In the W-MSA, the input feature map of size C ×H ×W
is initially divided into N = HW/M2 nonoverlapping local
windows of size M ×M , resulting in local feature maps X ∈
R

M2×C . Each of these local feature maps then undergoes the
standard self-attention mechanism, with the following calcula-
tion:

Q = XPQ, K = XPK , V = XPV , (13)

where, PQ, PK , PV ∈ R
C×dk represent the query (Q), key (K),

and value (V ) projection matrices, respectively;dk is determined
as C/k, where k denotes the number of attention heads. The
attention matrix is computed using the self-attention mechanism
within the k-th head of the local window:

Attention(Q,K, V ) = SoftMax(QKT/
√

dk)V, (14)

The concatenation of all the attention heads results in the
window-based multihead self-attention (W-MSA) output.

An FFN is a multilayer perceptron (MLP) used to introduce
additional nonlinearity to the model through two fully connected
layers and ReLU activation.

3) Reconstruction: Shallow features predominantly consist
of low frequencies, capturing the overall structure, while the
deep features encompass high frequencies corresponding to lost
fine details. The long skip connection provides the reconstruc-
tion module with low frequencies and makes the training more
stable. Furthermore, it helps the edge-attention module focus on
learning fine details. The elementwise summation of shallow and
deep features in the LR space is less expensive computationally
than the alternative concatenation approach, as it maintains the
original feature map dimensions, avoiding the complexity and
resource demands of concatenation. This summation is fed to
the reconstruction module (HR) to generate a super-resolved
image x with enhanced resolution:

x = HR(XEA +XSF ) (15)

The reconstruction module includes an upsampling process that
enlarges the features by pixel shuffling [54]. This upsampling
step is followed by a mapper module that includes convolution
layers, which yields the super-resolved image.

4) Weight Sharing: The aforementioned modules are shared
between the given LR EM image and its noisier version, as
illustrated in Fig. 2. Weight sharing encourages the network to
produce consistent outputs for both the given LR image and
its noisier version, establishing a noise-robust framework for
training. This strategy mitigates the absence of a clean reference:
The prediction generated from the given LR EM image serves

as a reference for the noisier LR EM branch in a self-supervised
approach.

The modules used in the proposed network architecture are
summarized in Table I.

D. Loss Functions

We employ the �p-norm loss, p ∈ {1, 2}, as a pixelwise dis-
tance measure between the network’s prediction ẑ and ground
truth z: L�p(z, ẑ) = ‖z − ẑ‖pp [13], [55]. Our loss function
measures the mismatch between the two network outputs and
the reference, namely L�p(fθ(y), x) and L�p(fθ(y

′), x), as well
as the mismatch between two outputs, L�p(fθ(y), fθ(y

′)), see
Fig. 2. The total loss is then defined as:

LT = λ1L�p(fθ(y), x) + λ2L�p(fθ(y
′), x)

+ λ3L�p(fθ(y), fθ(y
′)) (16)

where λ1, λ2, and λ3 are hyperparameters that govern the
trade-off between components. In the loss (16), the first and
second loss components are supervised, utilizing the real HR
EM image x as reference. However, the third loss component is
self-supervised, as the output from the original LR EM image
serves as the reference for the output from the noisier LR EM
image.

It should be noted that the developed theory and method are
applicable to real EM datasets contaminated with real noises and
corruptions without any reliance on specific noise assumptions,
as we will validate through experiments using real EM datasets.

III. EXPERIMENTAL SETTINGS, RESULTS, AND DISCUSSION

A. Datasets

We conducted experiments using nine LR and HR 3D-EM
datasets acquired from the corpus callosum and cingulum re-
gions associated with the white matter of five rat brains [56].
These datasets were acquired both ipsi- and contra-laterally. For
four animals, both ipsi- and contra-lateral datasets were avail-
able, while for one animal, only ipsi-lateral data was available.
Both the LR and HR datasets were acquired simultaneously
using the SBEM technique. The LR datasets were obtained from
large tissue volumes of 200 × 100 × 65μm3, with a voxel size of
50 × 50 × 50 nm3. The HR datasets were acquired from smaller
tissue volumes of 15 × 15 × 15μm3, which were covered by the
LR FoV, with a voxel size of 15 ± 2.5 × 15 ± 2.5 × 50 nm3.
The LR and HR 3D-EM datasets totaled approximately two
hundred gigabytes in size. The pairs of LR and HR from small
FoVs were utilized in the experiments. In terms of dimensions,
the LR and HR 3D-EM pairs had size ranges within 330 ± 40 ×
330 ± 40 × 550 ± 150 and 1024 × 1024 × 550 ± 150 voxels,
respectively.

B. Settings

1) Training: The training datasets were augmented by
adding random zero-mean white Gaussian noise with a
standard deviation of σ ∈ [0, 5], applying random rotation of
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TABLE I
SUMMARY OF MODULES USED IN THE PROPOSED NETWORK ARCHITECTURE

θ ∈ {90◦, 180◦, 270◦}, and performing horizontal/vertical flip-
ping on the input data. As inequalities (6) and (7) with conditions
(9a) and (9b) suggest, noisier references can lead to inferior SR
performance. Therefore, noise was introduced solely to the LR
images. This strategy aimed to enhance the diversity of training
datasets, thereby improving adaptation to unseen noisier inputs.
In the noisier branch, the noisier version of the input image was
generated by adding random zero-mean Gaussian noise with a
standard deviation ofσ ∈ [0, 5], to align with the weak noise typ-
ically present in EM. It should be mentioned that weight-sharing
aims to encourage network invariance with respect to input
images and their slightly perturbed counterparts, promoting
learning capability. However, if noise is too strong, the network
will more learn consistency of very significant features, ignoring
learning fine details, which in turn will degrade SR performance.
It is important to highlight that we added zero-mean Gaussian
noise to the real LR images, which were already contaminated
with real noises and corruptions, including non-Gaussian
components. As a result, the final noisy images included real
noise components. The network was optimized using Adam [57]
for 200,000 steps. The initial learning rate was set to 10−4

and halved every 50,000 steps. The network was implemented
using the PyTorch framework. The hyperparameters were set
as follows: λ1 = 1, λ2 = 1, and λ3 = 1. In the attention block,
three scales of edges extracted by ATW were used. The edge
attention module was configured with three basic blocks (k = 3).
Each basic block had four residual blocks (m = 4), followed
by two parallel sets, each with one residual block (n = 1). The
ViT block was equipped with sixteen attention heads (k = 16),
a patch size of four (M = 4), and a multilayer perceptron
ratio of two. The network maintained a constant number of
64 channels (C = 64), and utilized a batch size of two during
training.

2) Comparisons: In our comparative analysis, we assessed
the performance of our method with the L�1/L�2 loss function
alongside several SR techniques, including standard bicubic,
DPIR [36], PSSR [44], and SwinIR [29], setting hyperparam-
eters as in the respective papers. As a preprocessing step, we
first utilized bicubic interpolation to resize both the LR and HR

images to achieve the closest integer resolution ratio between
them. Specifically, we resize the LR and HR images to dimen-
sions of 341× 341×K and 1023× 1023×K, leading to a
resolution ratio of τ = 3, where K is the number of slices. The
proposed network was trained using pairs of 2D slices from
3D-EM datasets, with the LR image size of 341 × 341 and the
HR image size of 1023 × 1023. Additionally, we investigated
three training strategies for the proposed method: training using
I) real LR and HR image pairs, II) synthetic LR and HR image
pairs, and III) LR and denoised HR image pairs. For synthetic
training, LR images are generated using two scenarios. First, by
bicubically downsampling real HR images–a common practice
in computer vision, we refer to it as Synthetic (I). Second, by
introducing random isotropic Gaussian kernel (κ ∈ [0, 3]) and
random zero-mean Gaussian noise (σ ∈ [20, 40]) to real HR
image, followed by bicubic down-sampling and the addition of
random zero-mean Gaussian noise (σ ∈ [5, 15]), we refer to it
as Synthetic (II).

C. Quality Evaluation Metrics

To quantitatively assess the effectiveness of the proposed
method and compare it with others, we have considered three im-
age quality metrics: the structural similarity index (SSIM) [58],
the peak signal-to-noise ratio (PSNR) as standard metrics, as
well as the Fourier ring correlation (FRC) [59], which is utilized
for evaluating EM SR [45].

1) SSIM: The SSIM quantifies the similarity between re-
stored x̂ and reference x images in terms of luminance, contrast,
and structure. It is calculated by:

SSIM(x, x̂) =
(2μxμx̂ + c1)(2σxx̂ + c2)

(μ2
x + μ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
, (17)

where μx and μx̂ are the average pixel intensities of x and x̂
(luminance). σx and σx̂ are the standard deviations of x and x̂
pixel intensities (contrasts), while σxx̂ represents the covariance
between x and x̂ (structural similarity). c1 and c2 are small
positive constants for division stability, typically set as 0.01 and
0.03 relative to the maximum pixel value, L.
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TABLE II
QUANTITATIVE EVALUATION OF SUPER-RESOLUTION METHODS

2) PSNR: The PSNR measures the ratio of the maximum
pixel value to the mean square error (MSE) between the recon-
structed image x̂ and the ground truth x as follows:

PSNR(x, x̂) = 10 log10

(
L2

MSE(x, x̂)

)
(18)

3) FRC: The FRC measures the correlation between recon-
structed image x̂ and reference x in the frequency domain when
spectra R is subdivided into N concentric rings ri, i.e., R =
{ri}Ni=1. The FRC is calculated using the following formula:

FRC(R) =

∑
ri∈R Fx(ri)Fx̂(ri)√(∑

ri∈R |Fx(ri)|2
) (∑

ri∈R |Fx̂(ri)|2
) , (19)

where Fx(ri) and Fx̂(ri) are Fourier transformations of x and x̂
over ring ri, respectively, and FRC(R) provides spectral corre-
lation as a function of spatial frequency. The average correlation
across the spectra is denoted by FRC.

In the numerical evaluations, the denoised HR 3D-EM im-
ages, obtained using the denoising method proposed in [60],
were utilized as the ground truth references.

D. Results

1) Method Comparisons: The comparative results were ob-
tained through a fivefold cross-validation process, where data
from one animal served as test sets, and data from other animals
were used as training sets. The quantitative results are sum-
marized in Table II. The reported average SSIM values reveal
inferior performance for the Bicubic method (0.665) compared
to DL-based methods–DPIR (0.724), PSSR (0.727), SwinIR
(0.736), EMSR[�1] (0.745), and EMSR[�2] (0.742). Our ap-
proach, EMSR, employing the �1 and �2 loss functions, yielded
the highest and second-highest scores, respectively. Similarly,
with those of the competitors, the average reported FRC values
demonstrate the superior performance of the EMSRs in terms
of the spectral correlation between the restored and ground
truth images. The EMSR achieved the highest FRC score of
0.314 with the �1 loss function and the second-highest score of
0.311 with the �2 loss function. The FRC scores for the other
methods were: Bicubic (0.226), DPIR (0.238), PSSR (0.286),
and SwinIR (0.311). In terms of the PSNR, DPIR achieved
the highest score of 23.8; although the PSSR matched this
score with an average PSNR of 23.8, it was ranked second
due to its higher standard deviation. The PSNR scores for the
other methods were: Bicubic (23.2), SwinIR (23.3), EMSR[�1]
(23.3), and EMSR[�2] (23.2). It is crucial to emphasize that
the effectiveness of the PSNR as an evaluation metric for SR
model performance is limited. This limitation arises from its
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Fig. 5. Visual comparisons of super-resolution methods for BRAIN5[IPSI] are presented, and magnified regions are provided to aid comparison. The dashed
circle highlights the superior edge recovery achieved by EMSR[�1] and EMSR[�2] compared to other methods, which tend to produce blurred results. The red
ellipse indicates the specific area where EMSR[�1] and EMSR[�2] successfully restored high-frequency edges that remained unresolved by other techniques. The
zoomed-in area marked in green illustrates that EMSR with the �1 loss exhibits slightly more noise suppression compared to EMSR with the �2 loss.

pure reliance on pixel values and its inability to capture a direct
structural correlation between super-resolved and ground truth
images.

To conserve space, we present a curated selection of repre-
sentative results in Figs. 5 and 7. These figures provide visual
insights into scenarios where our proposed method performed
the best and where it did not attain the highest quantitative
performance.

Fig. 5 shows the BRAIN5[IPSI] results. In this subdataset,
our proposed method demonstrated outstanding performance,
achieving the best and second-best quantitative results, based
on SSIM and FRC, when utilizing �1 and �2 loss functions,
respectively. Panel (a) shows the bicubically interpolated LR im-
age, which exhibits a lack of visual clarity and maintains noise.
Conversely, DL-based SR methods effectively reduce noise, as
shown in Fig. 5(d)–(h). Among these methods, DPIR, i.e., the
PnP method, produced overly smooth results, particularly when
fine details were restored, as shown within regions enclosed by
the ellipsoid and dashed circle. The SSIM and FRC scores, which
were 0.639 and 0.222, respectively, substantiate the limitation
of DPIR in capturing fine details compared to other DL-based
methods, such as SwinIR, which achieved an SSIM of 0.669
and an FRC of 0.311. The weakness in recovering details can be
attributed to mismatches between priors in the pretrained model
and EM images. In contrast, PSSR, SwinIR, and EMSR, which
were trained using EM images, exhibited the ability to restore
intricate details and nuances characteristic of EM brain images.
The PSSR sometimes failed to restore particular intricate edges,
as represented by the area confined by an ellipsoid. It also led to

smear-out edges, as indicated within the dashed circle. Similarly,
SwinIR faced challenges in recovering certain edges, akin to
PSSR, showed within the region confined by the ellipsoid. It also
introduced blurred output and fuzzy edges within an area marked
by the dashed circle. On the other hand, the EMSR with both �1
and �2 loss functions successfully super-resolved the LR images
by restoring intricate edges with higher contrast while avoiding
blurriness. This is quantitatively evident from its superior SSIM
and FRC values: EMSR[�1] had an SSIM of 0.687 and FRC of
0.323, whereas EMSR[�2] achieved an SSIM of 0.681 and FRC
of 0.320. These scores surpass those of PSSR (SSIM of 0.662,
FRC of 0.290) and SwinIR (SSIM of 0.669, FRC of 0.311). In
the comparison of the EMSR results using the �1 and �2 loss
functions, �1 exhibited slightly superior noise suppression(see
zoomed-in rectangle marked in green). These results align with
the theory that �1 loss, in contrast to �2, does not overpenalize
large errors, resulting in fewer noise artifacts. The condition
checking for training without a clean reference is depicted in
Fig. 6.

Fig. 7 shows the BRAIN2[CONTRA] results. In this subset,
SwinIR demonstrated superior performance with SSIM and FRC
scores of 0.695 and 0.314, respectively, indicating its enhanced
structural capabilities. EMSR[�1] and EMSR[�2] were the near-
est contenders, achieving SSIM scores of 0.688 and 0.695, and
FRC scores of 0.307 and 0.304, respectively. While SwinIR
did not achieve the highest PSNR, it maintained a satisfactory
level of pixel fidelity. Panels (c) and (d) show that bicubic and
DPIR generally produced oversmooth details, as denoted by the
yellow arrow. Panel (e) revealed that PSSR excelled in enhancing
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TABLE III
QUANTITATIVE EVALUATION OF EMSR[�1] USING DIFFERENT TRAINING STRATEGIES: PAIRS OF REAL LR AND HR, PAIRS OF SYNTHETIC LR AND HR, AND PAIRS

OF REAL LR AND DENOISED HR

Fig. 6. Conditions for network training using pairs of corrupted images.
The histograms of one slice from the BRAIN2[contra] dataset, its denoised
version, and noise are illustrated. The mean and variance presented on each
plot were examined to investigate the conditions in (9). I) E[xn] = 5.06×
10−1, E[xclean] = 5.05× 10−1, and E[n] = 9.51× 10−4, satisfying (9a)
that mentionsE[xclean] � E[n]. II)σ2

xn
= 4.14× 10−2,σ2

xclean
= 3.74×

10−2, and σ2
n = 2.69× 10−3, meeting the condition in (9b) that σ2

xclean
�

σ2
n. It should be noted that we considered the denoised reference, obtained from

the denoising method in [60], as a clean reference.

details and contrast but faced challenges in recovering fine edges,
as indicated by the yellow arrow. SwinIR and EMSR (f)–(h)
showed superior resolution enhancement and noise reduction. In
particular, SwinIR delivered slightly sharper SR results, high-
lighted by the yellow arrow, which is in agreement with the
compared SSIM and FRC scores. However, the proposed method
demonstrated a superior ability to super-resolve two closely
situated compartments compared to SwinIR, which struggled
to effectively separate them, as indicated by the green arrows;
this is likely due to its edge-attention mechanism of the proposed
method.

2) Training Strategies: The outcomes of training with dif-
ferent strategies–real pairs featuring corrupted references, real
pairs with a denoised reference, and synthetic LR and HR pairs
(both Synthetic (I) and (II))–are detailed in Table III. The average
quantitative results across all datasets revealed that training with
acquired HR images and their denoised versions as references
resulted in nearly identical SSIM and FRC scores of 0.745 and
0.314, respectively. However, training with denoised references
led to a marginally lower PSNR of 23.1, compared to 23.3
achieved with the original HR images. Additionally, it was
noted that training with Synthetic (I) did not attain favorable
SR results, with significantly lower scores: SSIM of 0.667,
FRC of 0.250, and PSNR of 23.1. In contrast, Synthetic (II)

exhibited promising outcomes: it achieved an average SSIM
of 0.726 and FRC of 0.310, which, although slightly lower
than those achieved with real pairs, resulted in a higher PSNR
of 23.8.

Representative results are depicted in Fig. 8, spanning from
inferior to superior performance. The results for BRAIN1[IPSI]
indicate that the trained network with both the Synthetic (I) and
(II) strategies failed to produce satisfactory SR results, as evident
from different artifacts. The quantitative results for Synthetic (I)
and (II) further demonstrated notably poor performance, with
SSIM scores of 0.519 and 0.598 and FRC scores of 0.193
and 0.214, respectively. In contrast, training with real data
yielded significantly better results. Training with the original
pairs achieved an SSIM of 0.720 and an FRC of 0.253, while
the use of denoised references resulted in an SSIM of 0.729 and
an FRC of 0.256. These outcomes confirm the shortcomings of
training with synthetic data in effectively producing high-quality
super-resolved images with fine details. The reason for these
shortcomings lies in the inability of the combination of bicubic
downsampling and a pool of random Gaussian noise and blur-
ring kernels to effectively match the degradation in the input
LR image. Furthermore, training using real pairs demonstrates
that training using real pairs with either corrupted or denoised
references yielded nearly similar outputs, with only subtle dif-
ferences, such as slightly more homogeneous areas in the case
of training with denoised reference (white arrows).

The results for BRAIN2[CONTRA] indicate encouraging
findings. The synthetic (I) training strategy yielded unsatisfac-
tory results as it struggled to match the degradations present in
the input LR image, see Fig. 9. However, the Synthetic (II) train-
ing strategy, which incorporates a diverse range of degradations,
produced superior results compared to training with real pairs.
This approach generated sharper edges and enhanced contrast, as
highlighted by the dashed green circle. The quantitative results
corroborate this improvement, with an SSIM of 0.704, FRC of
0.311, and PSNR of 23.8. These scores are better than those from
training with real data, which achieved an SSIM of 0.688, FRC
of 0.307, and PSNR of 22.3. The key factor behind these results
is the ability of synthetic training, under well-matched degrada-
tions, to learn deblurring and denoising while super-resolving
the input LR image. The low-level feature fidelity in the synthetic
pairs is well-preserved compared to training with acquired LR
and HR images, even in the case of Synthetic (I) with bicubic
downsampling, evident in black areas marked with asterisks.
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Fig. 7. Visual comparisons of super-resolution methods for BRAIN2[CONTRA] are presented, with magnified regions provided to facilitate comparison. Green
arrows indicate that EMSR[�1] and EMSR[�2] could successfully super-resolve two closed compartments compared to other methods. The yellow arrow indicates
the area where SwinIR outperforms the other methods by producing sharper edges.

This fidelity is reflected in the higher PSNR scores of 22.9 for
Synthetic (I) and 23.8 for Synthetic (II), which are higher than
that of real pairs with a PSNR of 22.3. From a denoising per-
spective, training with real pairs may offer better performance,
benefiting from the independence of noise-like corruptions in
independently acquired LR and HR images, preventing the
learning of noise-like patterns with random characteristics.
Notably, both noisy and denoised reference training produced
similar outputs.

BRAIN3[IPSI] shows additional promising outcomes with
the Synthetic (II) strategy, demonstrating superior SR perfor-
mance in recovering fine details and achieving sharp edges while
mitigating noise, as highlighted in areas marked by circles and
arrows. In line with the visual observations, the Synthetic (II)
training strategy outperformed training with real data across all
the metrics, achieving an SSIM of 0.724, FRC of 0.367, and
PSNR of 22.9, compared to the real data, which achieved an
SSIM of 0.715, FRC of 0.352, and PSNR of 22.7.

When comparing real and synthetic datasets, it is recom-
mended to use real image pairs because they have the potential to
enhance the overall quality. The foremost advantage is learning
real degradations, which are difficult to simulate; see Fig. 9.
Importantly, the separate acquisition of LR and HR images leads
to nearly independent noise-like corruption. This independence
is beneficial for the network because it prevents the learning of
noise-like patterns with random characteristics, learning to de-
noise while super-resolving LR images. Furthermore, the results
indicate that while pairs of acquired synthetic LR, derived from
downsampled HR, and HR images are not suitable as training
pairs, there is a potential for computationally generated pairs
to advance EM super-resolution. Notably, this approach can

address mismatches between acquired LR and HR pairs, i.e.,
coregistration and contrast, reduce imaging time, and lower
costs.

3) Super-Resolver as an Enhancer: Applying the trained SR
model to HR images with the same resolution enhances image
quality. In comparison to a denoiser, it enhances the resolution as
well as mitigating noise; see the first row in Fig. 10. However,
in situations where there are mismatches between the trained
model and the input image, changes in image contrasts may
occur, as depicted in the second row of Fig. 10. This obser-
vation highlights the potential of SR methods to function as
denoisers and enhancers, particularly emphasizing the practical
capabilities of a self-supervised SR approach that can address
mismatches.

4) Super-Resolution Can Help Distortion Avoidance: EM
imaging at HR may result in distortions at the image border
in the xy-plane, a phenomenon not observed in LR imaging, as
depicted in Fig. 11. However, employing SR techniques enables
the generation of an HR image from an LR image, effectively
overcoming these distortions.

5) Natural Image Pretrained Networks on Brain EM: Fig. 12
depicts the application of state-of-the-art pretrained networks
designed for natural images on brain EM. BSRGAN [25] and
Real ESRGAN [27] are two networks designed for the super-
resolution of natural images, and were trained on natural and
pure synthetic datasets, respectively. When applied to brain EM
images, while these methods could restore the overall structure
of large tissue compartments, they failed to recover the intricate
details and nuances unique to brain EM. In particular, they
tended to introduce unrealistic details and cartoonish textures,
as visible in the zoomed-in areas.



KHATERI et al.: NO-CLEAN-REFERENCE IMAGE SUPER-RESOLUTION: APPLICATION TO ELECTRON MICROSCOPY 1105

Fig. 8. Illustrative visual comparisons of EMSR[�1] with different training strategies. Panel (a) displays the acquired HR, while Panels (b) and (c) show Synthetic
(I) and Synthetic (II), respectively. Training with real pairs is depicted in both (d) for real noise-like corrupted reference and (e) for denoised reference. The first
row displays the results for BRAIN1[IPSI], where Synthetic (I) and (II) yielded unsatisfactory super-resolved images compared to training with real pairs, both
corrupted and denoised. The white arrows in this row indicate that training with denoised references led to more homogeneous areas than training with acquired
HR references. The second and third rows present the results for BRAIN2[CONTRA] and BRAIN3[IPSI]. While Synthetic (I) failed to produce high-quality
super-resolved images, Synthetic (II) delivered superb super-resolution performance. The dashed green circles highlight its ability to generate sharper edges and
better contrast than training with real pairs. Asterisks underscore the potential of Synthetic (I) and (II) in maintaining intensity fidelity compared to training with
real pairs, while white arrows emphasize their effectiveness in recovering sharp edges and mitigating blurring observed in results from training with real pairs.

Fig. 9. A comparison between a physically acquired LR EM image and a
synthetically generated LR image obtained by downsampling an HR EM image.
Notable differences in the fine details and intensity can be observed. The blue
rectangle highlights drift distortion at the border of the HR image, which is
not present in the LR counterpart. An arrow indicates a charging effect that is
only observed in the HR image. The zoomed-in area accentuates the distinct
differences in fine details (yellow asterisks), and intensity level (green asterisk).

TABLE IV
NETWORK PARAMETERS AND RUNNING TIME

E. Method Limitations

While the EMSR method can be used for SR across diverse
imaging modalities, it lacks specific adaptations for handling
LR and HR image misalignment. Any misregistration present
between LR and HR pairs can degrade performance as it propa-
gates through the network. The development of robust networks
or loss functions that are invariant to misregistration could offer
a solution.

F. Computational Efficiency

A comparison between the number of parameters and running
times is presented in Table IV. Bicubic, an interpolation method,
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Fig. 10. The trained super-resolution model was applied to HR images with the
same resolution as the HR images used for training. (a) Input HR, (b) enhanced
using a super-resolver, and (c) denoised HR, which was obtained through the
method in [60].

Fig. 11. Distortion in the border of 3D-EM data. The xz-perspective view of
(a) bicubically interpolated acquired LR, (b) acquired HR, and (c) super-resolved
LR images.

Fig. 12. Super-resolution of EM images using state-of-the-art pretrained net-
works designed for natural images. (a) LR, (b) HR, (c) BSRGAN, and (d) Real
ESRGAN.

Fig. 13. Robustness of the EMSR[�1] against noise: The performance of the
proposed super-resolution method when both the original noisy LR EM (σ = 0)
and its noisier version (σ > 0), generated by contaminating the original noisy LR
EM with zero-mean Gaussian noise of varying standard deviations, were input
to the trained model. Average results, obtained using a training strategy with
BRAIN3 datasets as test sets and BRAIN1, BRAIN2, BRAIN4, and BRAIN5
as training sets, are shown.

had no trainable parameters. Among DL-based methods, DPIR
and PSSR had 32.7 and 32 million parameters, respectively. For
DPIR, this refers to the parameters within the pretrained denoiser
in its PnP framework. SwinIR provided a lighter architecture
with 11.8 million parameters, while EMSR offered an even
lighter architecture with 3.2 million parameters. In terms of
computation time, Bicubic required 0.017 seconds to produce
a super-resolved image of size 1023× 1023. Among DL-based
methods, DPIR was notably more time-consuming. As a PnP
method that incorporates a Gaussian denoiser within the model-
based framework, DPIR required 7.9 seconds to generate a
super-resolved image of the same size. All other DL-based
methods, i.e., PSSR (0.412 seconds), SwinIR (0.309 seconds),
and EMSR (0.255 seconds), had substantially faster running
times. Among these methods, the EMSR method was the fastest.

G. Ablation Studies

Robustness to Noise: The SR performance was evaluated on
both the original noisy LR EM images and their noisier versions,
generated by adding zero-mean Gaussian noise with a standard
deviation of σ ∈ {1, 2, . . . , 12} to the original LR EM data.
The results are presented in Fig. 13. The overall pattern of
declining performance was observed. Here, σ = 0 represents
the original noisy LR EM image. As progressively its noisier
versions (σ > 0) were input into the trained SR model, the
stability of the performance metrics was noticeable when σ < 5.
While a decline in performance appeared thereafter, a degree of
stability can still be observed, particularly when σ < 8. This
observation confirms that the trained model can consistently
generate similar outputs even when inputting noisier LR EM
image versions.

Performance with Varying Noisy References: The perfor-
mance of EMSR[�1] was assessed when trained on both denoised
(σ = 0) and noisy references (σ > 0), generated by introduc-
ing zero-mean Gaussian noise at various standard deviations
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TABLE V
THE PERFORMANCE OF EMSR[�1] WITH DIFFERENT HYPERPARAMETERS: PATCH SIZES IN VISION TRANSFORMER, NUMBER OF CHANNELS, AND NUMBER OF

BASIC BLOCKS WITHIN EDGE-ATTENTION MODULE

Fig. 14. Training EMSR[�1] with varying noisy references: This figure illus-
trates the performance of the EMSR when trained using both denoised (σ = 0)
and noisy HR EM images as references. The noisy references were generated by
introducing zero-mean Gaussian noise at various standard deviations (σ > 0) to
denoised HR EM images. Average performance results, obtained using a training
strategy with BRAIN3 datasets as test sets and BRAIN1, BRAIN2, BRAIN4,
and BRAIN5 as training sets, are shown.

σ ∈ {15, 25, 35, 45, 75, 100} to denoised HR EM images. The
results revealed a pattern of performance decline, which was
exacerbated by higher noise standard deviations (see Fig. 14).
This observation aligns with inequality (7) and conditions (9a)
and (9b), indicating that stronger noise in the references can lead
to inferior outcomes. As the deviation from the clean reference
increases, the training moves further away from the optimum,
resulting in a notable decrease in SR performance. Notably,
when σ < 35, the performance remained remarkable. However,
a gradual decline was observed beyond this value, the acceptable
performance was still achievable forσ < 45. However, for larger
values, the performance significantly deteriorated.

Hyperparameter Analysis: The performance of the SR model
across three hyperparameters is reported in Table V. The SR
performance with varying patch sizes in the vision trans-
former, taken from the set {2× 2, 4× 4, 6× 6}, indicates that
patch sizes 4× 4 and 6× 6 outperformed 2× 2, with 4× 4
achieving a higher FRC than 6× 6. Furthermore, an exami-
nation of the number of channels within the network, span-
ning {16, 48, 64, 80}, illustrates that increasing the number of
channels led to improvements across all metrics. Similarly,
varying the number of basic blocks, with options ranging from
{1, 2, 3, 4}, demonstrates that a greater number of basic blocks
enhanced SR quality, as evidenced by detail-sensitive metrics
such as SSIM and FRC. Overall, a larger number of basic
blocks tended to improve all the metrics, although variability

TABLE VI
THE PERFORMANCE OF EMSR[�1] WITH DIFFERENT HYPERPARAMETERS IN

THE LOSS FUNCTION (16)

in the PSNR was observed. Table VI presents the results of
assigning specific values to hyperparameters in the loss function
(16). This highlights that considering all loss functions can lead
to superior performance. For instance, setting (λ1 = λ2 = 1,
λ3 = 0.01) resulted in enhanced performance in detail recovery
and intensity fidelity, as evidenced by the SSIM and PSNR,
respectively. Additionally, keeping λ1 = λ2 = 1 and increasing
the weight of the self-supervised loss to λ3 = 0.25 effectively
enhanced the intensity fidelity, as measured by PSNR, while
preserving a high level of detail.

H. Generative Models

While generative models are popular in image SR, their
performance can vary in the context of EM. For example,
the GAN-based method in [61] produces visually pleasing HR
natural images. However, in [45], this method performed poorly
on EM images, introducing significant artifacts even in EM
images with simple textures. Furthermore, GAN-based tech-
niques are generally prone to instability and mode collapse [62],
which can pose challenges for developing GAN-based SR
methods. Among other generative models, diffusion models
can produce more realistic SR results, with high perception
quality [30], making them popular in various computer vision
tasks. However, their application in scientific contexts is sen-
sitive, as the perception-distortion trade-off should not favor
perception. Additionally, the high resource demands of diffusion
models reduce their practicality, especially for large 3D-EM
datasets.

IV. CONCLUSION

We introduced a DL-based SR framework named EMSR to
address the challenge of acquiring clean HR 3D-EM images
across large tissue volumes. As corruptions are inherent in EM,
training neural networks without clean references for �2 and
�1 loss functions was explored. Following this, we crafted a
noise-robust network that integrated both edge-attention and
self-attention mechanisms, to focus on enhancing edge features
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over less informative backgrounds in brain EM images. Using
real LR and HR brain EM image pairs, the network underwent
training with LR and HR pairs, along with LR and denoised HR
pairs. The experimental results, in line with the discussed theory,
confirmed the feasibility of training without clean references
for both loss functions. While both losses demonstrated similar
SR performance, consistent with the literature, �1 slightly out-
performed �2. Furthermore, the EMSR method demonstrated
superior or competitive results, both quantitatively and quali-
tatively, compared to established SR methods. In addition to
training with real LR and HR pairs, we synthesized LR images
from HR images using wide-ranging isotropic Gaussian noise
and Gaussian kernels. Experiments with synthetic pairs showed
promising results, that were comparable to those of models
trained on real pairs. Notably, in some cases, the synthesis pro-
duced super-resolved images with sharper edges and improved
contrasts, addressing inherent mismatches in LR and HR pairs,
e.g., coregistration and contrast. This synthesis could also aid in
deblurring while denoising and super-resolving LR EM.

EMSR offers both improved resolution and reduced noise
simultaneously, enabling the computational generation of clean
HR EM images over large samples from cost-effective LR EM
imaging, allowing for use as a neuroimaging preprocessing tool
for visualization and analysis.

APPENDIX A
TRAINING WITH NO-CLEAN-REFERENCE

Let x̂ and x be random variables such that x̂ = x+ n, where
n represents i.i.d noise with a mean of μ and a variance of σ2

nI .
The reference-dependent solutions in (5), i.e.,Ex|y[L(fθ(y), x)]
andEx̂|y[L(fθ(y), x̂)], for both the �2 and �1 norms are discussed
in the following subsections.

A. Solution for the �2-Norm Loss Function

The proof of (6) is provided below:

Ex̂|y[‖fθ(y)− x̂‖22]
= Ex,x̂|y[‖(fθ(y)− x− n)‖22]
= Ex,x̂|y[(fθ(y)− x− n)T (fθ(y)− x− n)]

= Ex,x̂|y[‖fθ(y)− x‖22 − 2nT (fθ(y)− x) + ‖n‖22]
= Ex|y[‖fθ(y)−x‖22]−2Ex,x̂|y[nT (fθ(y)−x)]+Ex,x̂|y[‖n‖22]
= Ex|y[‖fθ(y)−x‖22]− 2Ex,x̂|y[nT (fθ(y)− x)]+dσ2

n+||μ||2
∗
= Ex|y[‖fθ(y)−x‖22]−2(Ex̂|y[x̂]−Ex|y[x])TEx|y[(fθ(y)−x)]

+ dσ2
n + ||μ||2

= Ex|y[‖fθ(y)− x‖22]− 2μT
Ex|y[fθ(y)− x] + dσ2

n + ||μ||2
(20)

* Under the assumption of i.i.d noise, we can establishEx̂|y[x̂]−
Ex|y[x] = Ex,x̂|y[n] = μ.

B. Bounds for the �1-Norm Loss Function

We derive two upper bounds for the �1 loss, including (7), by
using the following inequality that holds for vectors u and v in
the p-norm in C

n:

E[‖u‖p]− E[‖v‖p] ≤ E[‖u− v‖p] (21)

By setting fθ(y)− x̂ and fθ(y)− x as u and v, respectively, we
can rewrite the inequality as:

E(x̂,y)[‖fθ(y)− x̂‖p]− E(x,y)[‖fθ(y)− x‖p]︸ ︷︷ ︸
0≤

≤ E(x,x̂)[‖n‖p]

(22)

Without loss of generality, we assume that the training error with
a corrupted reference x̂ is greater than or equal to the training
error with a clean reference x, leading to the nonnegativity of
the left-hand side of (22).

Let u be a vector in C
n with 1 ≤ r < p. Upon a well-known

corollary of Hölder’s inequality,

‖u‖p ≤ ‖u‖r ≤ d(1/r−1/p)‖u‖p, (23)

where d is the dimension of u. By setting p = 2 and r = 1 in
(23), we can establish a connection between the �1 and �2 norms
as ‖u‖1 ≤ √

d‖u‖2, which can be transformed by taking the
square of each side and applying the expectation rule,

E[‖u‖21] ≤ dE[‖u‖22] (24)

Applying Jensen’s inequality, which states that f(E[x]) ≤
E[f(x)] for a convex function f : R → R, the inequality above
can be lower bounded as follows:

(E[‖u‖1])2 ≤ E[‖u‖21]
≤ dE[‖u‖22] (25)

Taking the square root of both sides of (25) yields:

E[‖u‖1] ≤
√
d
√

E[‖u‖22] (26)

Using the above inequality we can establish two upper bounds:
1. Upper-Bound (I): Considering (22) with p = 1 and (26),

0 ≤ Ex̂|y[‖(fθ(y)− x̂)‖1]− Ex|y[‖(fθ(y)− x)‖1]

≤
√
d
√

E[‖n‖22] =
√
d
√

dσ2
n + ||μ||2 (27)

2. Upper-Bound (II): First, apply inequality (26) to fθ(y)−
x̂ and fθ(y)− x,

Ex̂|y[‖fθ(y)− x̂‖1] ≤
√
d
√

Ex̂|y[‖fθ(y)− x̂‖22], (28a)

Ex|y[‖fθ(y)− x‖1] ≤
√
d
√

Ex|y[‖fθ(y)− x‖22] (28b)

Using (28a) and (28b),

0 ≤ Ex̂|y[‖(fθ(y)− x̂)‖1]− Ex|y[‖(fθ(y)− x)‖1]

≤
√
d

∣∣∣∣
√

Ex̂|y[‖(fθ(y)− x̂)‖22]−
√

Ex|y[‖(fθ(y)− x)‖22]
∣∣∣∣

(29)
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The inequality above can equivalently be formulated as follows:

0 ≤ Ex̂|y[‖fθ(y)− x̂‖1]− Ex|y[‖fθ(y)− x‖1]

≤
√
d

∣∣∣∣∣
Ex̂|y[‖fθ(y)− x̂‖22]− Ex|y[‖fθ(y)− x‖22]√
Ex̂|y[‖fθ(y)− x̂‖22] +

√
Ex|y[‖fθ(y)− x‖22]

∣∣∣∣∣
∗
=

√
d

∣∣∣∣∣
−2μT

Ex|y[fθ(y)− x] + dσ2
n + ||μ||2√

Ex̂|y[‖fθ(y)− x̂‖22] +
√

Ex|y[‖fθ(y)− x‖22]

∣∣∣∣∣
=

| − 2μT
Ex|y[fθ(y)− x] + dσ2

n + ||μ||2|
g(y, x, x̂)

,

(30)

where g(y, x, x̂) =

√
Ex̂|y [‖fθ(y)−x̂‖22]+

√
Ex|y[‖fθ(y)−x‖22]√

d
. * The

difference between solutions for x̂ and xwhen loss function is �2
norm, see (20). Unlike upper-bound (I), (II) shows dependence
on both y and noise statistics.
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