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Abstract— The transport sector has been moving towards 

electrification due to the significant advancement in E-mobility 

technology. This prioritizes reliable and safe battery energy 

storage system (BESS) operation. Therefore, accurate battery 

State-of-Charge (SoC) estimation is essential in effectively 

monitoring and controlling the BESS stability. Many studies have 

been conducted to estimate the BESS SoC and improve the 

estimation accuracy. Nevertheless, considering system complexity 

and computational efforts, the suggested SoC estimate techniques 

fall short of providing optimal filtering performance with high 

noise levels. In this regard, this paper introduces SoC estimation 

using the Triple Forgetting Factor Adaptive Extended Kalman 

Filter (TFF-AEKF) to provide better SoC estimation accuracy and 

faster convergence considering the high measurement noise levels 

and environmental circumstances encountered by the operation of 

EBs. The performance of the proposed TFF-AEKF is evaluated 

and compared to the conventional AEKF and the Dual Forgetting 

Factor AEKF (DFF-AEKF), considering low and high 

measurement noise levels. It has been validated that the proposed 

algorithm can provide faster convergence and better accuracy 

when considering a high measurement noise level. In addition, the 

three filters are evaluated using four performance indicators, 

namely, Maximum Absolute Error (MaxAE), Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and convergence 

time. It is concluded that the presented method offers faster 

convergence and lower error. Results have demonstrated that the 

proposed algorithm provides an RMSE of 𝟎. 𝟑%, an MAE of 

𝟎. 𝟎𝟏%, and a MaxAE of 𝟏. 𝟕% for SoC estimation. 

 
Index Terms— Electric Buses, Battery Energy Storage System, 

State of Charge, Triple Forgetting Factor Adaptive Extended 

Kalman Filter. 

1. INTRODUCTION 

ITH the expansion of E-mobility technology, the 

transport sector has been moving towards zero-emission 

transportation, where electrification is highly concerned. There 

is tremendous interest worldwide in replacing gasoline-

powered vehicles with low-carbon mobility or E-mobility 

technologies, specifically Electric Buses (EBs) [1]. Therefore, 

a completely safe operation is essential to ensure customer 

satisfaction. However, the EB batteries, such as Li-ion batteries, 

are the primary technical bottleneck that may affect the 

proliferation of the EBs. A Li-ion battery is favored for 

transport systems due to its high energy density, low self-

discharge rate, reduced charging time, reduced weight and size, 

and wide operating temperature range [2].  

It is essential to develop an efficient battery management 

system (BMS) that ensures batteries’ lifetime extension, cost 

reduction, energy management optimization, safeguarding, and 

safe application of batteries in EBs. However, EBs are 

influenced by the driving loads and operating conditions, 

making real-time accurate state estimation challenging. For 

example, among the essential functions of the BMS, the State-

of-Charge (SoC) serves as a critical indicator. It supports 

regulating charging and discharging limits, ensures safe and 

reliable battery operation, and helps alleviate driver range 

anxiety. Thus, a key task in promoting the widespread adoption 

of EBs is ensuring accurate SoC estimation. However, SoC 

cannot be directly measured/ assessed through sensor 

measurement or a particular instrument. Several variables, 

including current, voltage, and temperature, are measured to 

estimate the battery’s SoC. In addition, the SoC estimation 

process is influenced by several factors, including temperature, 

discharge rate, number of cycles, voltage, and noise, making 

real-time SOC estimation more challenging. Hence, a proper 

and accurate battery model should be established for SoC 

estimation to effectively reflect the relation between the 

battery’s model parameters and its internal state [3].  

EB applications are usually incorporated with multiple 

electric noise sources. These noise sources include the motor 

and the generated electromagnetic interference during inverter 

operations resulting from the switching operations, which affect 

the nearby battery sensors. Noise is also produced by other 

power electronic devices and their cooling fans. Moreover, 

battery monitoring can be influenced by regenerative braking 

systems due to the noise produced during the rapid switching of 

power. Furthermore, battery sensors may also be influenced by 

the noise produced by the auxiliary systems, such as HVAC 

systems, lighting, and onboard electronics [4], [5].  

Accurate SoC estimation guarantees a safe and reliable 

operation of the EB, improves and extends the battery’s 

lifetime, and reduces the EB life cycle costs. However, due to 

the nonlinearity of the battery model and measurements, the 

SoC estimation is a challenging task and is formulated as a non-

linear parameter estimation problem. In addition, considering 

the inconsistent characteristics of each cell makes the SoC 

estimation more challenging. Moreover, the temperature, aging, 
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and charging process highly influence the battery performance. 

 The established battery models can be classified into three 

main categories: electrochemical battery models, equivalent 

circuit models, and data-driven models [3]. Fig. 1 presents the 

battery model classification. The electrochemical model 

illustrates battery behavior through the electrochemical process, 

the electrolyte concentration, and the anode and cathode size, 

providing high accuracy. However, it adds complexity and 

additional computational efforts due to the complex partial 

differential equations and the significant number of parameters 

involved in the battery model.  

Data-driven battery models use extensive data to map the 

non-linearity between the input and the output. Such models are 

typically established by machine learning approaches. 

Extensive data are required to train the model and present the 

battery’s behavior, consuming more time and adding extra 

computational effort. The model's accuracy is highly dependent 

on the quantity and quality of the trained data. 

Among the available battery models, the equivalent circuit 

model (ECM) is a favored choice since it compromises model 

accuracy, computational complexity, and simple structure and 

configuration. The ECM can be established using the 𝑅𝑖𝑛𝑡 

model, partnership for a new generation of vehicles (PNGV) 

model, which stands for the partnership for a new generation of 

vehicles, 𝑛 −order 𝑅𝐶 model, and Thevenin model. In the 

electrical equivalent circuit model, the electric circuit 

component's interconnections and values corresponding to the 

electrochemical impedance spectroscopy (EIS) data are utilized 

to explain the battery’s aging mechanism. However, when 

employing other battery types, the model should re-consider the 

behavior of the new battery type. In addition, the SoC 

estimation accuracy is highly dependent on the model's 

accuracy. The equivalent circuit model presents the battery 

dynamics in a less complex way through fewer states and 

dynamics. Thus, such a model is more favorable for fast SoC 

estimation.  

The 𝑅𝑖𝑛𝑡 model is the simplest among the models and mainly 

involves a DC source and an internal resistance. However, it is 

considered an ideal model and does not consider the battery’s 

internal state, which makes this model impractical. In the 

PNGV model, the discharging process is considered, while the 

charging process circuit model is not considered. On the other 

hand, the 𝑛 −order 𝑅𝐶 model can present the relation between 

the battery’s internal parameters and the current or the 

temperature. Nevertheless, the model complexity increases as 

the order increases, adding extra burden on the microcontroller. 

Consequently, the second-order 𝑅𝐶 model is usually selected 

since it can provide less complexity and good accuracy through 

a concise structure and configuration. Therefore, in this work, 

the second-order 𝑅𝐶 model is considered a balanced approach 

to optimizing the system’s accuracy and complexity.  

Many studies have been conducted to estimate the BESS SoC 

and increase the estimation accuracy [2], [15]-[50]. Fig. 2 

presents a tree diagram for the SoC estimation methods. SoC 

 
Fig. 2. SoC estimation methods. 
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Fig. 1. Battery model classification [6]-[14]. 
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estimation methods can be categorized into direct, model-

based, and data-driven [17], [18]. Table 1 compares the three 

methods.   

Data-driven SoC estimation methods have gained much 

attention due to the progress witnessed in deep learning in terms 

of reduced cost, size, and power [19]. Deep learning methods 

utilize the historical data measured/ obtained from the battery 

based on experimental results and predict the aging patterns, 

estimating the SoC and SoH. In other words, the battery data 

sets are trained to generate a mathematical description 

approximating the behavior of the battery to estimate the SoC 

and predict the SoH [2]. Artificial neural networks (ANN) and 

support vector machines (SVM) are used as the main tools in 

deep learning methods [2]. Deep learning provides a valuable 

means for extracting the collected data over time for SoC 

estimation. It can solve the non-linearity and instability 

problems in the battery’s data collection. Nevertheless, training 

can be complex and requires time before employing the 

algorithm since this method is based on a large amount of 

experimental offline data. The current, voltage, and temperature 

characteristics are trained to provide the SoC mapping model 

[19], [22]. 

Several research studies have been introduced for Li-ion 

batteries SoC estimation using machine learning [19], [23]-

[33]. In [19], an SoC balancing method is presented considering 

the SoH of the battery cells. SoC estimator, which is ANN-

based, is developed to predict the battery cells' available 

capacity. The presented mechanism in [19] draws energy at a 

lower rate for low SoH battery cells and at a higher rate for high 

SoH battery cells such that all the battery cells reach the end of 

the discharge process simultaneously. In [29], a machine 

learning method is proposed for SoC estimation for Li-ion 

batteries. The proposed method utilizes dynamic nonlinear 

auto-regressive models with exogenous input neural network 

(NARX) with long short-term memories (LSTM) to improve 

the accuracy estimation. This hybrid combination enhanced the 

root mean square error by approximately 60% compared to the 

standard LSTM. In [30], a deep neural network (DNN) 

approach is presented for the SoC estimation of Li-ion batteries 

in EVs. The presented approach in [30] is developed by varying 

the number of hidden layers. It is found that increasing the 

number of hidden layers reaching four layers reduces the error 

rate and improves the SoC estimation. In [32]-[34], SoH 

estimation methods have been employed for Li-ion batteries 

using support vector regression (SVR), Gaussian process 

regression, and neural networks, respectively. Data-driven 

methods demonstrate SoC estimation with high accuracy but at 

the expense of massive data set requirements.  

The model-based method utilizes the electrochemical or 

electrical equivalent circuit models discussed earlier [21].  

Model-based SoC estimation approaches can be classified into 

stochastic estimation and non-linear observers, categorized as 

physical model methods. The stochastic estimation includes 

several Kalman filter (KF) techniques, including extended 

Kalman filter (EKF), iterated EKF, and sigma-point KF [2]. 

The KF method provides accurate estimation and system 

robustness. However, building an accurate battery model is 

challenging due to the variations in the internal resistance and 

capacitance. Stochastic estimation also includes the particle 

filtering (PF) technique, which handles severe non-linearities 

and non-Gaussian noise. Stochastic estimation, including KFs 

and PFs, is considered a favored choice in practice since it can 

be applied to almost every battery model to suppress the noise 

affecting the overall battery system. However, KFs and PFs are 

competitive since more computational resources are required, 

especially for low-dimensional battery models. The non-linear 

SoC observers have also gained attention in the past several 

years. It covers several techniques, including Luenberger 

observer, sliding mode observer, adaptive observer, robust 

observer, back-stepping observer, and output-injection 

observer. Although KFs require more computational resources, 

such algorithms are most favored by researchers due to their 

prominent features in suppressing noise [35].  

EKF is considered the most appropriate algorithm for SoC 

 

Table 1. Comparison between SoC estimation methods 

SoC Estimation Methods Advantages Disadvantages 

Direct Methods 

 Provide less complexity 

 Require low computational load 

 Simple and easy to implement 

× Difficult implementation in practical 

applications 

× Open-loop control 

× Sensitive to the measurements noise and 

initial SoC condition 

× Not applicable with battery cells that 

have flat OCV-SoC curves as well as 

dynamic estimation 

Model-based Methods 

 Provide good dynamic response and good 

accuracy 

 Meet the requirements of real-time 

applications and dynamic estimation 

 Closed-loop control 

× Diverges if the model is not precise as it 

is highly dependent on the employed 

model 

× High computational load 

Data-Driven Methods 

 Provides high accuracy 

 Handles the high non-linearity of the 

system with good mapping approximation 

 Aging model is not required for system 

analysis 

 Complex since extensive test data as 

well as massive training are required 

 Sensitive to measurement noise 
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estimation, in which the non-linear functions are linearized 

through partial derivative and Taylor series expansion. The 

accuracy of this algorithm depends on how accurately the 

battery model parameters are identified and the pre-knowledge 

of the noise variable. In which incorrect noise variable causes 

divergence. To avoid divergence and improve stability, this 

issue is solved through the AEKF by incorporating a moving 

window method with the EKF to update the covariance 

matrices. Nonetheless, the moving window adds an extra 

computational burden. This is solved using a forgetting factor-

based AEKF, which provides more variations throughout the 

estimation process considering the recent data samples. 

Nevertheless, the accuracy of the SoC estimation is not 

guaranteed due to the battery modeling offline indentation. The 

dual Kalman filter (DKF) solves this problem, simultaneously 

updating the battery model parameters [35]. 

In [35], a dual forgetting factor adaptive extended Kalman 

filter (DFF-AEKF) is proposed for SoC and SoE estimation. 

The presented method in [35] provides high accuracy and 

strong robustness. The estimation method in [22] presents less 

sensitivity to the initial error condition and converges to the 

actual values faster than the AEKF algorithm. In [36], an AEKF 

is combined with adaptive recursive least squares (RLS) for 

SoC estimation of Li-ion batteries. The presented method offers 

online tracking for the model parameters and system noise. In 

[37], an adaptive forgetting factor recursive least square 

algorithm is introduced for identifying the battery model 

parameters. In [38], an adaptive algorithm is added to the 

unscented Kalman filter (UKF) to realize adaptive noise 

updates. However, the robustness of the algorithm is not 

improved. In [39], a dual UKF is proposed to achieve fast 

convergence and stable performance despite a large initial 

estimation error. However, the filtering process does not realize 

adaptive noise updates. In [40], singular value decompositions 

are used along with the UKF to deal with the non-positive error 

covariance matrix. This is done to ensure stability and realize 

adaptive noise updates. However, the singular value 

decomposition cannot guarantee the accuracy of the covariance 

matrix. In [41], a fading factor-based UKF is introduced for Li-

ion battery SoC estimation. In [42], the partial adaptive 

forgetting factor least square method is presented for SoC 

estimation during deep discharging. To the author’s knowledge, 

the adaptive forgetting factor concept is either applied to the 

noise covariance matrices or the states covariance matrix. In 

this regard, this paper studies the effect of employing three 

forgetting factors in the AEKF algorithm to consider high 

measurement noise levels while maintaining a simple structure 

to consider the environmental and vibrational circumstances 

encountered by the operation of EBs.  

To improve SoC estimation accuracy, several studies have 

introduced hybrid solutions, combining different estimation 

methods [43]-[45]. The main aim of hybrid methods is to 

combine the advantages of the methods presented in Table 1.  

Although several research studies have been proposed in 

literature for SoC estimation methods [2], [6]-[50], these 

methods are insufficient in achieving the best filtering 

performance, considering the high measurement noise level and 

environmental circumstances encountered during the EB 

operation, especially considering the expected higher noise 

levels in EBs. Therefore, different and random noise levels 

should be considered to examine the applicability of the SoC 

estimation algorithms for EB applications. In addition, most of 

the introduced algorithms focus on employing a forgetting 

factor component for the noise covariance matrices without 

considering the effect of the states covariance matrix on the gain 

of the KF. To clarify, the Kalman gain is affected by the change 

in the states covariance matrix, which would affect the accuracy 

of the estimation technique. Moreover, battery parameters are 

influenced by several factors, including ambient temperature, 

SoC, charging current, and aging factors. Among these factors, 

the ambient temperature highly affects the battery parameters. 

Therefore, the effect of the ambient temperature on the battery 

parameters should be investigated. In this regard, the main 

contribution of this paper is to introduce the temperature-

dependent Triple Forgetting Factor Adaptive Extended Kalman 

Filter (TFF-AEKF) for SoC estimation to provide better SoC 

estimation accuracy and faster convergence with the existence 

of high measurement noise level considering system 

complexity and computational efforts. To further illustrate, 

three forgetting factors are employed in the Adaptive Extended 

Kalman Filter (AEKF) algorithm. The first forgetting factor 

(FF) is applied to the state's covariance matrix to neutralize the 

problem mentioned earlier, while the second and third FFs are 

applied to the process and measurement noise covariance 

matrices. The proposed TFF-AEKF is evaluated using Matlab/ 

Simulink software using the second-order 𝑅𝐶 equivalent 

model. In addition, the relationship between the battery’s 

internal resistance and the open circuit voltage with the ambient 

temperature is studied. Moreover, the proposed algorithm is 

compared to the conventional AEKF and the Dual FFAEKF 

(DFF-AEKF). Four performance indicators are used to validate 

the effectiveness of the TFF-AEKF, which are Maximum 

Absolute Error (MaxAE), Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and convergence time. It is 

concluded that the presented method offers lower MaxAE, 

lower MAPE, lower RMSE, and faster convergence to its true 

value at high measurement noise level. 

This paper is structured as follows: Section 2 reviews the 

SoC estimation methods introduced in the literature, Section 3 

presents the second-order battery model, Section 4 presents the 

TFF-AEKF algorithm, and Section 5 presents the Matlab/ 

 
Fig. 3. Temperature dependent second order RC model of a Li-ion battery [37], 
[46]-[48]. 
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Simulink results. Finally, Section 6 summarizes the key 

outcomes of this work. 

2. LI-ION BATTERY MODELING  

Since the equivalent circuit model of the Li-ion battery is less 

complex, it is usually utilized for the SoC estimation in model-

based methods [35]. The second-order 𝑅𝐶 model of the Li-ion 

battery shown in Fig. 3 involves a series of internal resistance 

 𝑅0 , a resistor and capacitor branches with a parallel 

connection  𝑅1𝐶1 & 𝑅2𝐶2 , and a voltage source equivalent to 

the battery cell open circuit voltage  𝑂𝐶𝑉 [37], [46]-[48]. In 

which, 𝑅1 and 𝑅2 represent the dynamic resistances, 𝐶1and 𝐶2 

represent the dynamic capacitances, and 𝑉𝑡 is the terminal 

voltage of the battery. 

The state-space equation of the battery can be obtained from 

Fig. 3 and can be expressed as follows: 

{
 
 

 
 �̇�1 = −

1

𝐶1 𝑆𝑜𝐶, 𝑇 
(

𝑉1

𝑅1 𝑆𝑜𝐶, 𝑇 
+ 𝐼)

�̇�2 = −
1

𝐶2 𝑆𝑜𝐶, 𝑇 
(

𝑉2

𝑅2 𝑆𝑜𝐶, 𝑇 
+ 𝐼)

𝑉𝑡 = 𝑂𝐶𝑉 𝑆𝑜𝐶, 𝑇 − 𝑉1 − 𝑉2 − 𝐼𝑅0 𝑆𝑜𝐶, 𝑇 

 (1) 

The SoC of the battery represents the remaining charges 

stored in the battery, and it can be expressed as follows: 

𝑆𝑜𝐶𝑘+1 = 𝑆𝑜𝐶𝑘 −
𝜂𝑐𝐼𝑘𝑇𝑠

𝐶𝐴

 (2) 

Where, 𝜂𝑐 is the charging and discharging efficiency, 𝐼𝑘is the 

current of the battery at 𝑘. In which, 𝑘 is the 𝑘𝑡ℎsample time, 

𝐶𝐴 is the actual capacity and 𝑇𝑠 is the sampling time. 

3. TRIPLE FORGETTING FACTOR ADAPTIVE EXTENDED 

KALMAN FILTER (TFF-AEKF)  

In this section, the proposed TFF-AEKF algorithm is 

presented.  A typical representation of a non-linear system 

using discrete-time state space equations is expressed as 

follows: 

 

Where, 𝑋𝑘 is the system’s state, 𝑌𝑘 is the system’s output vector,  

𝜔𝑘 and 𝜐𝑘 are the zero mean small white noise signals with the 

covariance matrices 𝑃𝜔,𝑘, and 𝑃𝑣,𝑘 , respectively and 𝑢𝑘 is the 

control variable matrix.  𝐴𝑘, 𝐵𝑘, 𝐶𝑘and 𝐷𝑘 are matrices that 

depend on the system dynamics, and 𝑘 denotes the system 

vector time step. 

To avoid divergence resulting from the AEKF estimation 

method employed in non-linear systems, the AEKF is modified 

to employ three forgetting factors. One forgetting factor is 

applied to the states' covariance matrix, and two forgetting 

factors are applied to update the process and measurement noise 

covariance matrices. 

The TFF-AEKF steps can be summarized as follows: 

 Initialization: the mean and the covariance are initialized at 

step 𝑘 = 0 

{
�̂�0

+ = 𝐸 𝑥0 

𝑃𝑥,0
+ = 𝐸[ 𝑥0 − �̂�0

+  𝑥0 − �̂�0
+ 𝑇]

 (4) 

Where, �̂�0
+ and 𝑃𝑥,0

+  represents the estimated initial state and 

covariance matrix error, respectively. The superscript denotes  

the posterior values  + , the estimated value is defined by the 

circumflex  ˄ , the predicted value is represented by the tilde 

 ~ , and the matrix transportation is indicated by  𝑇 . 

 Prediction: The prior state and its covariance matrix are 

obtained from the projection of step 𝑘 − 1 to step 𝑘. The 

predicted state estimation and priori covariance matrix can be 

expressed in (6) and (7), respectively: 

�̂�𝑘
− = �̂�𝑘−1 �̂�𝑘−1

+ + �̂�𝑘−1 𝑢𝑘−1 (5) 

𝑃𝑥,𝑘
− = �̂�𝑘−1𝑃𝑥,𝑘−1

+ �̂�𝑘−1
𝑇 + 𝑃𝜔,𝑘−1 (6) 

Where, �̂�𝑘 =
𝜕𝐹 𝑥𝑘,𝜃𝑘,𝐼𝑘 

𝜕𝑥𝑘
|
𝑥𝑘=𝑥𝑘

−
, �̂�𝑘−1 =

𝜕𝐹 𝑥𝑘,𝜃𝑘,𝐼𝑘 

𝜕𝜔𝑘
|
𝜔𝑘=�̂�𝑘

−
, 

and 𝑃𝜔,𝑘 is the covariance matrix of the process. 

 Correction: In this stage, the difference between the actual 

and predicted measurements is calculated from the prior 

estimation and utilized to obtain an enhanced posterior 

estimation. The Kalman gain matrix, posteriori state estimation, 

and posteriori covariance matrix can be expressed as in (7), (8), 

and (9), respectively: 

𝐿𝑘 = 𝑃𝑥,𝑘
− �̂�𝑘

𝑥𝑇[�̂�𝑘
𝑥𝑃𝑥,′𝑘

− �̂�𝑘
𝑥𝑇 + 𝐷𝑘

𝑥𝑃𝑣,𝑘
− 𝐷𝑘

𝑥𝑇 + 𝑎1,𝑘]
−1

 (7) 

�̂�𝑘
+ = �̂�𝑘

− + 𝐿𝑘[𝑦𝑘 − �̂�𝑘] (8) 

𝑃𝑥,𝑘
+ =

1

𝑎1,𝑘

[𝑃𝑥,𝑘
− − 𝐿𝑘𝑃𝑦,𝑘

− 𝐿𝑘
𝑇 ] (9) 

Where, �̂�𝑘
𝑥 =

𝜕𝐹 𝑥𝑘,𝜃𝑘,𝐼𝑘 

𝜕𝑥𝑘
|
𝑥𝑘=𝑥𝑘

+
, 𝐷𝑘

𝑥 =
𝜕𝐹 𝑥𝑘,𝜃𝑘,𝐼𝑘 

𝜕𝑣𝑘
|
𝑣𝑘=�̂�𝑘

−
, 𝑃𝑣,𝑘 

is the covariance of the noise 𝑣𝑘, and 𝑎1,𝑘 is a variable forgetting 

factor applied to the state covariance matrix in the correction 

stage and defined as follows: 

𝑎1,𝑘 = 𝑎1,𝑚𝑖𝑛 + (1 − 𝑎1,𝑚𝑖𝑛)ℎ
𝜀𝑘 (10) 

𝜀𝑘 = 𝑟𝑜𝑢𝑛𝑑 ((
𝑒𝑘

𝑒𝑏𝑎𝑠𝑒

)
2

) (11) 

Where, 𝑎1,𝑚𝑖𝑛  is the forgetting factor's lowest value, and 

according to [37], the range of the forgetting factor is between 

0.95 to 1, and the practical data are more accurate when the 

{
 
 

 
 
𝑋𝑘 = 𝐴𝑘−1𝑋𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 + 𝜔𝑘−1

𝑌𝑘 = 𝐶𝑘𝑋𝑘 + 𝐷𝑘𝑢𝑘 + 𝜐𝑘

𝜔𝑘 ≈ 𝑁(0, 𝑃𝜔,𝑘)

𝜐𝑘 ≈ 𝑁(0, 𝑃𝑣,𝑘)

 (3) 
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range is between 0.98 to 1. Consequently, in this work, 𝑎1,𝑚𝑖𝑛 

is selected to be 0.98. This forgetting factor is added to 

neutralize the effect of the state covariance matrix on the gain 

of the KF algorithm. ℎ is the sensitivity factor and is chosen as 

any value from 0 to 1. This factor indicates how sensitive is the 

forgetting factor to the errors: 

 When ℎ is near 1, a slow response is resulted since the 

forgetting factor moves slowly from 1 to 0.98. 

 When ℎ is near 0, a fast response is obtained since the 

forgetting factor moves quickly from 1 to 0.98. Choosing 

the sensitivity factor close to 0 is not recommended since 

this will lead to a swift response, reducing accuracy. 

As a result, ℎ is selected as 0.9 considering the tradeoff 

between the fast response and accuracy. 

The term 𝑒𝑘 in (11) represents the error at time 𝑘 and 𝑒𝑏𝑎𝑠𝑒 

is the reference error.  As seen from (11), the forgetting factor 

𝑎1,𝑘 decreases when 𝑒𝑘 is greater than 𝑒𝑏𝑎𝑠𝑒. When the 

estimated SoC error is less than 𝑒𝑏𝑎𝑠𝑒, the forgetting factor 𝑎1,𝑘 

converges to a larger value, and when the estimated SoC error 

is greater than 𝑒𝑏𝑎𝑠𝑒, the forgetting factor 𝑎1,𝑘 converges to a 

smaller value. It can be observed from (11) that as the error 

increases, the forgetting factor reduces, which varies according 

to the SoC estimation error. 

In the TFF-AEKF, the process noise covariance matrix and 

the measurement noise covariance matrix are updated as 

expressed in (12) and (13), respectively, by applying more 

weight on the current values through the forgetting factor 𝑎 

which can vary from 0 to 1. The concept of the forgetting factor 

is to put more weightage on the previous values in the update 

stage of the noise covariance matrices. This is done to provide 

less fluctuation and longer time delays to detect the changes. In 

this regard, the values of 𝑎2 and 𝑎3 are selected to be greater 

than 0.9. 

𝑃𝜔,𝑘 = 𝑎2𝑃𝜔,𝑘−1 +  1 − 𝑎2  𝐿𝑘𝑟𝑘𝑟𝑘
𝑇𝐿𝑘

𝑇   (12) 

𝑃𝑣,𝑘 = 𝑎3𝑃𝑣,𝑘−1 +  1 − 𝑎3 (𝑒𝑘𝑒𝑘
𝑇 + �̂�𝑘

𝑥𝑃𝑥,𝑘
− �̂�𝑘

𝑥𝑇) (13) 

Where,  𝑟𝑘 = 𝑦𝑘 − �̂�𝑘
𝑥𝑃𝑥,𝑘

− − 𝐷𝑘
𝑥𝑢𝑘 denoted as the innovation 

measurement and 𝑒𝑘 = 𝑦𝑘 − �̂�𝑘
𝑥𝑃𝑥,𝑘

+ − 𝐷𝑘
𝑥𝑢𝑘 denoted as the 

residual. 

In this work, the three covariance matrices, including the 

states, process noise, and observation noise covariance 

matrices, are updated to obtain better accuracy by adopting 

three forgetting factors to introduce adaptive estimation. The 

forgetting factor improves the estimation accuracy and 

increases the system convergence compared to the conventional 

AEKF and the DFF-AEKF. 

The TFF-AEKF algorithm is presented in Fig. 4. The 

presented technique is capable of updating the parameters of the 

battery model, SoC, and the unidentified noise covariance 

matrices. In which the SoC and the parameter estimation of the 

battery can be expressed as follows: 

{

𝑋𝑘 = [𝑆𝑜𝐶𝑘 𝑉1,𝑘 𝑉2,𝑘]𝑇

𝑥𝑘+1 = 𝐹 𝑥𝑘 , 𝜃𝑘, 𝐼𝑘 , 𝑇 + 𝜔𝑘
𝑥

𝑦𝑘 = 𝐺 𝑥𝑘 , 𝜃𝑘, 𝐼𝑘 , 𝑇 + 𝑣𝑘
𝑥

 (14) 

Where, 𝐹 .   and 𝐺 .   represent the nonlinear functions of 

the state vector 𝑥𝑘, the battery model parameter 𝜃𝑘, and the 

battery input current 𝐼𝑘, and the battery’s temperature 𝑇. 

 

𝐹 .  = �̂�𝑘 [

𝑆𝑜𝐶𝑘

𝑉1,𝑘

𝑉2,𝑘

] +

[
 
 
 
 

−𝜂𝑐𝑇𝑠

𝐶𝐴

𝑅1(1 − 𝑒−𝑇𝑠/𝑟1)

𝑅2(1 − 𝑒−𝑇𝑠/𝑟2)]
 
 
 
 

𝐵𝐼𝑘 (15) 

𝐺 .  = 𝑂𝐶𝑉 𝑆𝑜𝐶𝑘, 𝑇 − 𝑉1,𝑘 𝑆𝑜𝐶𝑘, 𝑇 

− 𝑉2,𝑘 𝑆𝑜𝐶𝑘 , 𝑇 − 𝐼𝑘𝑅0 𝑆𝑜𝐶𝑘, 𝑇  
(16) 

 Where, 𝑇𝑠 is the sampling time, and 𝐵 is a diagonal matrix 

expressed as :[
1 0 0
0 1 0
0 0 1

]. 

The battery state Jacobian matrix can be expressed as 

follows: 

Fig. 4. TFF-AEKF Algorithm. 
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+ + 𝑩 𝒌−𝟏 𝒖𝒌−𝟏 

𝑷𝒙,𝒌
− = 𝑨 𝒌−𝟏𝑷𝒙,𝒌−𝟏

+ 𝑨 𝒌−𝟏
𝑻 + 𝑷𝝎,𝒌−𝟏 

𝑳𝒌 = 𝑷𝒙,𝒌
− 𝑪 𝒌

𝒙𝑻[𝑪 𝒌
𝒙𝑷𝒙,𝒌

− 𝑪 𝒌
𝒙𝑻 + 𝑫𝒌

𝒙𝑷𝒗,𝒌
− 𝑫𝒌

𝒙𝑻 + 𝒂𝟏,𝒌]
−𝟏

 

�̂�𝒌
+ = �̂�𝒌

− + 𝑳𝒌[𝒚𝒌 − �̂�𝒌] 

𝑷𝒙,𝒌
+ =

𝟏

𝒂𝟏,𝒌
[𝑷𝒙,𝒌

− − 𝑳𝒌𝑷𝒚,𝒌
− 𝑳𝒌

𝑻] 

𝒓𝒌 = 𝒚𝒌 − 𝑪 𝒌
𝒙𝑷𝒙,𝒌

− − 𝑫𝒌
𝒙𝒖𝒌 

 𝒆𝒌 = 𝒚𝒌 − 𝑪 𝒌
𝒙𝑷𝒙,𝒌

+ − 𝑫𝒌
𝒙𝒖𝒌 

𝑷𝝎,𝒌 = 𝒂𝟐𝑷𝝎,𝒌−𝟏 +  𝟏 − 𝒂𝟐 (𝑳𝒌𝒓𝒌𝒓𝒌
𝑻𝑳𝒌

𝑻) 

𝑷𝒗,𝒌 = 𝒂𝟑𝑷𝒗,𝒌−𝟏 +  𝟏 − 𝒂𝟑 (𝒆𝒌𝒆𝒌
𝑻 + 𝑪 𝒌

𝒙𝑷𝒙,𝒌
− 𝑪 𝒌

𝒙𝑻) 

�̂�𝒌
+ 𝒁−𝟏 

�̂�𝒌
+ 

𝜽 𝒌
− = 𝜽 𝒌−𝟏

+  
𝑷𝜽,𝒌

− = 𝑷𝜽,𝒌−𝟏
+ + 𝑷𝝎,𝒌−𝟏 

𝑳𝒌 = 𝑷𝜽,𝒌
− 𝑪 𝒌

𝜽𝑻[𝑪 𝒌
𝜽𝑷𝜽,𝒌

− 𝑪 𝒌
𝜽𝑻 + 𝑫𝒌

𝜽𝑷𝒗,𝒌
− 𝑫𝒌

𝜽𝑻 + 𝒂𝟏,𝒌]
−𝟏

 

𝜽 𝒌
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𝟏
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𝜽𝑷𝜽,𝒌
− 𝑪 𝒌

𝜽𝑻) 𝜽 𝒌
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�̂�𝑘 =
𝜕𝐹 .  

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘

−

=

[
 
 
 
 
1 0 0

0
1

𝑒−𝑇𝑠/𝜏1
0

0 0
1

𝑒−𝑇𝑠/𝜏2]
 
 
 
 

 (17) 

�̂�𝑘
𝑥 =

𝜕𝐺 .  

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘

−

= [
𝜕𝑂𝐶𝑉

𝜕𝑆𝑜𝐶𝑘

− 1 − 1] (18) 

Where, 𝜏1 = 𝑅1𝐶1and 𝜏2 = 𝑅2𝐶2. 

4. PERFORMANCE ASSESSMENT 

This section defines the performance indicators used to 

evaluate the proposed technique. In addition, the 

Matlab/Simulink platform is used to evaluate the performance 

of the TFF-AEKF for SoC estimation. In this study, a Li-ion 

battery with a nominal capacity of 1.5 𝐴ℎ and a rated voltage 

of 4.1 𝑉 is utilized. 

Several types of performance evaluation are introduced to 

evaluate and assess the results obtained from the SoC 

estimation and battery modeling. In this work, the convergence 

time, the Maximum Absolute Error (MaxAE), the Mean 

Absolute Error (MAE), and the Root Mean Square Error 

(RMSE) are obtained to evaluate the performance of the 

proposed algorithm and verify its effectiveness. The MaxAE, 

MAE, and the RMSE can be expressed as follows: 

𝑀𝑎𝑥𝐴𝐸 = 𝑚𝑎𝑥[ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑘 −  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑘] (19) 

𝑀𝐴𝐸 =
1

𝑁
∑  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑘 −  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑘 

𝑁

𝑘=1

 (20) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑘 −  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑘 

2

𝑁

𝑘=1

 (21) 

Where 𝑁 is the number of sample points. In this work, the 

battery terminal voltage and the estimated SoC are evaluated 

using (19), (20), and (21). The evaluation matrices compare the 

conventional AEKF and the DFF-AEKF with the TFF-AEKF. 

The battery parameters are identified using the experimental 

data presented in [51] and[52]. The experimental data and curve 

 
Fig. 5. TFF-AEK Simulink Block Diagram. 
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Fig. 6. Dynamic Stress Test current profile. 
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fitting are applied to obtain the battery’s parameters using 

mathematical equations studied in [52]. 

According to the conducted experiments in [35], the 

relationship between the battery’s SoC and the OCV is 

represented as a polynomial fitted equation and can be 

expressed as follows: 

𝑂𝐶𝑉 𝑆𝑜𝐶𝑘 , 𝑇 = ∑𝑘𝑖𝑆𝑜𝐶
𝑖 ,

𝑛

𝑖=0

𝑖 = 1, 2, … , 𝑛 (24) 

Where 𝑘𝑖 is the 𝑛 order polynomial coefficients determined 

using the robust linear least square method.  

Fig. 5 presents the detailed block diagram implemented in 

Simulink to evaluate the performance of the TFFAEK for SoC 

estimation considering the three forgetting factors. A dynamic 

stress test (DST) is applied in Simulink for the SoC estimation, 

where the current profile is shown in Fig. 6. In Fig. 7, the OCV-

SoC curve is presented using the polynomial fitted equation in 

(24). 

As per the studies presented in [53]-[56], the normal 

operating temperature for Li-ion batteries ranges from 45℃ to 

65 ℃.  It is worth mentioning that there is a high possibility of 

going through a thermal runway when operating beyond normal 

operating conditions. Utilizing the battery at extremely high 

temperatures (starting from 100 ℃ and above) will cause 

battery destruction due to aging and thermal runaway. On the 

contrary, utilizing the battery at a low temperature (below 0℃) 

will cause the loss of power delivery. Operating at high 

temperatures leads to more power delivery since the internal 

resistance is minimal, which made the relationship between the 

internal resistance and the ambient temperature of high interest 

to be studied and discussed.  
In this regard, the proposed concept is tested under different 

operating temperatures, varying from 5 ℃ to 55 ℃. Fig. 8 

presents the effect of the temperature on the OCV, the internal 

resistance of the battery, and the end-of-life resistance. As can 

be observed from Fig. 8 (a), the OCV of the lithium-ion battery 

gradually decreases as the ambient temperature rises for the 

same SoC. Similarly, as shown in Fig. 8 (b) and (c), the internal 

resistance reduces significantly as the temperature increases. 

Therefore, it is preferable to utilize the employed battery at high 

temperatures such that it does not exceed 65 ℃ due to the low 

internal resistance properties. However, another problem that 

results from long-term use is fast battery degradation at high 

temperatures. In other words, utilizing the battery at a high 

temperature will allow for better performance to be extracted 

from the employed battery. Nonetheless, the battery will 

degrade faster and will not last for a long time, which will 

accordingly affect the State-of-Health (SoH) of the battery. 

Results presented in Fig. 9 are obtained from the DST 

applied.  The sampling time is set to 1 𝑠 solving for 12000 

steps/ seconds. As shown in Figs 9 (a) and  (d), the TFF-AEKF 

estimated SoC and terminal voltage track the reference value 

with an error of 0.01 for the estimated SoC and 0.1 𝑉 for the 

estimated terminal voltage. Figures 9 (b) and  (e) present the 

estimation error for the SoC and terminal voltage, respectively. 

As shown from Fig. 9 (c) and Fig. 9 (f), the TFF-AEKF 

converges to the actual value at 20 𝑠 for the SoC and converges 

at 15 𝑠 for the terminal voltage.   

To compare the proposed TFF-AEKF with the conventional 

AEKF and the DFF-AEKD, a change is introduced to the 

measurement noise level at 6000 𝑠. Fig. 10 presents the 

Gaussian noise introduced to the DST current profile. To 

 
Fig. 7. OCV and SoC actual and estimated curve using TFF-AEKF algorithm. 

 

 

 

 

 

   
(a) (b) (c) 

Fig.  8: Effect of the temperature on the OCV and the battery’s internal resistance; (a) Relation between the OCV and 

ambient temperature, (b) Relation between the internal resistance and ambient temperature, (c) Relation between End of 

Life resistance and ambient temperature. 
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illustrate, Fig. 10 (a) presents the noise before 𝑡 = 6000 𝑠, Fig. 

10 (b) presents the noise added after 𝑡 = 6000 𝑠, and Fig. 10 

(c) presents the overall noise for the whole simulation time. 

As seen from Fig. 11 (a), when high measurement noise is 

considered, the SoC estimation using the TFF-AEKF converges 

faster to the reference value when compared to the AEKF and 

the DFF-AEKF. In addition, the performance of the 

conventional AEKF presents high steady-state error when a 

high noise level is introduced. The DFF-AEKF converges to the 

reference SoC and terminal voltage after 4000 𝑠 while the 

proposed algorithm converges after 500 𝑠 from the change. 

Therefore, it can be said that the TFF-AEKF provides better 

accuracy and fast convergence speed. Similar behavior can also 

be observed from the terminal voltage results in Fig. 11 (b). 

Fig. 11 presents a zoomed-in illustration of all the results, 

Which shows the effectiveness of the TFF-AEKF in terms of 

accuracy and convergence compared to the conventional AEKF 

and the DFF-AEKF.  

It is worth mentioning that the other Kalman filter 

approaches, such as Unscented KF, Cubature KF, and Iterated 

KF, are not considered in the comparison since such approaches 

involve a heavy computational burden, which would add more 

complexity to the system [57]. Computational complexity is 

considered an important factor when it comes to hardware 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 9. Simulation Results under DST; (a) Actual SoC versus TFF-AEKF SoC estimation; (b) SoC Error; (c) Convergence time; (d) Measured terminal voltage versus TFF-AEKF 

terminal voltage; (e) Terminal voltage error; (f) Convergence time. 

 

 

 

 

 

 

 

   
(a) (b) (c) 

Fig. 10. White Gaussian noise introduced to the applied current profile; (a) before 𝑡 = 6000 𝑠, (b) after 𝑡 = 6000 𝑠, (c) Noise for the whole simulation time. 
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implementation. Therefore, the applied algorithm should be 

implementable on a microcontroller with less complexity. In 

this regard, KFs that are sigma-point based are not considered 

in the comparison since 2𝑁 + 1 points are used to calculate the 

prior mean in the time update, which increases the 

computational complexity, where 𝑁 is the dimension of the 

state On the other hand, AEKFs require only one calculation/ 

point regardless the dimension of the state [57].    

Table 2 presents the MaxAE, MAE, RMSE, and the 

convergence time obtained for the battery’s terminal voltage 

and SoC under the DST for the three filters. As can be seen from 

Table 2, the proposed TFF-AEKF provides the lowest MaxAE, 

MAE, and RMSE. The proposed TFF-AEKF provides an 

RMSE of 0.3%, an MAE of 0.01%, and a MaxAE of 1.7% for 

SoC estimation. For the terminal voltage, the TFF-AEKF 

provides an RMSE of 2.4 𝑚𝑉, an MAE of 0.04 𝑚𝑉, and a 

MaxAE of 157 𝑚𝑉. In addition, the TFF-AEKF provides faster 

convergence, and this can be noticed in Fig. 11. It can be 

noticed that the terminal voltage and the estimated SoC using 

the TFF-AEKF are tracking the reference with higher accuracy 

when compared to the results obtained using the conventional 

AEKF and the DFF-AEKF. However, due to the three 

forgetting factors required to adaptively update the state 

covariance matrix and update the process and measurement 

noise covariance matrices, the TFF-AEKF requires more 

computational load/ cost.  

5. CONCLUSION 

Reliable and safe operation for the BESS is highly required. 

Accurate battery SoC estimation is essential in monitoring and 

controlling the BESS stability. Many research efforts have 

been made to estimate the BESS SoC and improve the 

estimation accuracy. However, the proposed SoC estimation 

methods are insufficient in achieving the best filtering 

performance, considering the high measurement noise level 

and environmental circumstances encountered during the EB 

operation.  Therefore, this paper introduces the TFF-AEKF for 

SoC estimation to provide better SoC estimation accuracy and 

faster convergence with high measurement noise levels, 

considering system complexity and computational efforts. 

Three forgetting factors are adopted in the AEKF algorithm. 

The first FF is applied to the state's covariance matrix, while the 

second and third FFs are applied to the process and 

measurement noise covariance matrices, respectively. The 

performance of the proposed TFF-AEKF is evaluated and 

compared to the AEKF and the DFF-AEKF using the Matlab/ 

Simulink platform. It has been validated that the proposed 

algorithm can provide faster convergence at high measurement 

noise levels. In addition, results have demonstrated that the 

TFF-AEKF provides the lowest MaxAE, MAE, and RMSE and 

faster convergence to the true/ reference value. As per the 

results presented, the TFF-AEKF provides an RMSE of 0.3%, 

an MAE of 0.01%, and a MaxAE of 1.7% for SoC estimation. 

For the terminal voltage, the TFF-AEKF provides an RMSE of 

8 𝑚𝑉, an MAE of 0.3𝑚𝑉, and a MaxAE of 140 𝑚𝑉. Adopting 

three forgetting factors improves the estimation accuracy and 

increases the system convergence when compared to the 

conventional AEKF and the DFF-AEKF, yet additional 

computational load is required.  

  
(a) (b) 

Fig. 11. Simulation Results with high measurement noise considered at 6000 s; (a) SoC estimation using AEKF, DFF-AEKF, and TFF-AEKF, (b) Terminal 

voltage using AEKF, DFF-AEKF, and TFF-AEKF. 

 

 

 

 

 

 

 

Table 2. Performance indicators for the AEKF, DFF-AEKF, and 

TFF-AEKF under DST. 

Parameter AEKF DFF-AEKF TFF-AEKF 

𝑉𝑡 

𝑀𝑎𝑥𝐴𝐸 0.185 𝑉 0.161 𝑉 0.157 𝑉 

𝑀𝐴𝐸 0.0012 𝑉 0.0005  𝑉 0.00004 𝑉 

𝑅𝑀𝑆𝐸 0.0067 𝑉 0.0037 𝑉 0.0024 𝑉 

Convergence 

Time 
> 6000 𝑠 4000 𝑠 ≤ 5 𝑠 

𝑆𝑜𝐶 

𝑀𝑎𝑥𝐴𝐸 0.059 0.045 0.017 

𝑀𝐴𝐸 0.0185 0.0083 0.0001 

𝑅𝑀𝑆𝐸 0.028 0.015 0.0028 

Convergence 

Time 
> 6000 𝑠 4000 𝑠 500 𝑠 
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