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Sequencing Coverage Analysis for Combinatorial
DNA-Based Storage Systems

Inbal Preuss , Student Member, IEEE, Ben Galili , Zohar Yakhini , Member, IEEE, and Leon Anavy

Abstract—This study introduces a novel model for analyzing
and determining the required sequencing coverage in DNA-based
data storage, focusing on combinatorial DNA encoding. We seek
to characterize the distribution of the number of sequencing
reads required for message reconstruction. We use a variant
of the coupon collector distribution for this purpose. For any
given number of observed reads, R ∈ N, we use a Markov
Chain representation of the process to compute the probability of
error-free reconstruction. We develop theoretical bounds on the
decoding probability and use empirical simulations to validate
these bounds and assess tightness. This work contributes to
understanding sequencing coverage in DNA-based data storage,
offering insights into decoding complexity, error correction, and
sequence reconstruction. We provide a Python package, with its
input being the code design and other message parameters, all
of which are denoted as Θ, and a desired confidence level 1 − δ.
This package computes the required read coverage, guaranteeing
the message reconstruction R = R(δ,Θ).

Index Terms—DNA, DNA-based data storage, synthethic biol-
ogy, computational biology.

I. INTRODUCTION

THE GROWING volume of the world’s digital data and
the limitations of existing storage technologies motivate

the need for new and innovative storage solutions [1]. DNA-
based data storage (or DNA-based storage) emerges as a viable
solution for some applications, offering unmatched density
and durability. This novel approach involves the synthesis,
storage, and sequencing of DNA molecules to encode, store,
and retrieve information [2], [3]. However, challenges such as
short, error-prone strands and limitations of current synthesis
technologies still remain [4], [5], [6], [7], [8]. While DNA-
based storage stands as a promising technology and the cost
of DNA sequencing is decreasing, it remains significantly

Manuscript received 1 January 2024; revised 7 April 2024; accepted 20 May
2024. Date of publication 31 May 2024; date of current version 17 June 2024.
This work was supported by the European Union (DiDAX) under Grant
101115134. Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them. The associate
editor coordinating the review of this article and approving it for publication
was E. Yaakobi. (Corresponding author: Inbal Preuss.)

Inbal Preuss, Zohar Yakhini, and Leon Anavy are with the School of
Computer Science, Reichman University, Herzliya 4610101, Israel, and
also with the Faculty of Computer Science, Technion—Israel Institute
of Technology, Haifa 3200003, Israel (e-mail: inbalpreuss@gmail.com;
zohar.yakhini@runi.ac.il; leon.anavy@post.runi.ac.il).

Ben Galili is with the Faculty of Computer Science, Technion—Israel
Institute of Technology, Haifa 3200003, Israel, and also with the School of
Computer Science, Reichman University, Herzliya 4610101, Israel (e-mail:
benga@campus.technion.ac.il).

Digital Object Identifier 10.1109/TMBMC.2024.3408053

more expensive than reading from established archival storage
solutions [9], [10], [11], [12]. In the context of DNA sequenc-
ing costs and throughput, recent work [13] defined the DNA
coverage depth problem, which considers the expected sample
size, to guarantee the successful decoding of the information.
A related concept was suggested by Chandak et al. [14], who
explored the balance of writing and reading costs in DNA-
based data storage, studying the LDPC-based coding schemes.

In recent years, several studies suggested the use of com-
binatorial DNA encoding and synthesis as an approach for
increasing logical density while reducing overall cost in DNA-
based storage systems [15], [16], [17]. The combinatorial
encoding approach uses a set of clearly distinguishable DNA
shortmers to construct large combinatorial alphabets, where
each letter is encoded by a subset of shortmers. This scheme
is a novel approach for DNA-based data storage, offering an
increase in logical density over standard DNA-based storage
systems, reduced reconstruction error levels, and scalability.
See Section II for more details about combinatorial DNA
encoding. Combinatorial DNA encoding can be viewed as an
extension of the composite DNA coding schemes (sometimes
referred to as degenerate DNA encoding) [4], [18].

This work presents the first model for analyzing the
sequencing coverage depth problem under combinatorial DNA
encoding. The analysis is based on the general design scheme
for combinatorial DNA storage systems. In brief, we assume
a 2-dimensional (2D) MDS error correction scheme over a set
of short combinatorial DNA sequences. Each combinatorial
sequence is encoded using an inner code, to protect against
symbol errors, while an outer code adds redundancy to a
block of sequences, protecting against sequence-level errors
(e.g., sequence dropout). The inner and outer code approach is
common in DNA-based storage literature [4], [5], [19], [20].
Our analysis follows the reconstruction steps associated with
this approach.

We model the reconstruction of a single combinatorial letter
as a variant of the coupon collector’s problem [13], [21],
[22], [23], [24]. We use a Markov Chain (MC) representation
of the collection process to characterize this distribution.
Taking into account the error correction code parameters, we
continue by analyzing the read depth requirement for a single
combinatorial sequence and then for the entire message. We
provide bounds on the decoding probability given the number
of analyzed reads, and present an operational algorithm for
determining the required coverage of reads. We explore our
coverage depth model on various design parameters, and
compare the results to Monte Carlo simulation experiments
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of combinatorial DNA reading. Lastly, we provide computer
code implementing our coverage model that, given a sequence
and message design, outputs the read coverage required for
recovering the data with a user-defined confidence level. This
work combines theoretical progress represented by studying
the coverage depth problem for combinatorial DNA-based
storage, and also the practical aspect supporting the design
and implementation of such systems.

This paper is constructed as follows. Section II includes an
overview of combinatorial DNA encoding, providing impor-
tant notations while defining the overall system design and
the reconstruction flow. Section III defines the coverage
depth problem for combinatorial DNA storage, highlighting
the differences compared to the standard DNA coverage
depth problem. Section IV describes the analysis of required
read depth by breaking it down into three steps associated
with the reconstruction process. Section IV-A presents the
coupon collector’s model for a single combinatorial letter.
Sections IV-B and IV-C analyze the decoding of one com-
binatorial sequence and the complete message, respectively.
Section IV-D describes the tool for determining the required
coverage depth in combinatorial systems, and demonstrates
it using different design parameters. Finally, Section VI dis-
cusses the broader implications of our work on DNA-based
storage systems and related fields.

II. OVERVIEW OF COMBINATORIAL

DNA ENCODING SCHEME

Utilizing combinatorial approaches for DNA synthesis and
assembly was recently suggested by several studies as a
way to increase logical density and reduce overall costs in
DNA-based storage systems [15], [16], [17]. While different
studies suggest various molecular mechanisms for generating
combinatorial sets of DNA sequences, they all share several
important characteristics. This section describes these common
components, using notations from [15].

A. Definitions

Let Ω be a set of N DNA k-mers. The k-mers in Ω
are chosen such that mix-up errors between two k-mers are
negligible (e.g., by setting a minimal distance d between each
pair). A binomial combinatorial alphabet Σ is defined such that
every letter σ ∈ Σ represents a subset of size K of k-mers from
Ω. This subset is referred to as the member k-mers of σ. This
defines an alphabet of |Σ| ≤ (N

K

)
letters. Encoding a binary

message of length B bits using this extended combinatorial
alphabet is done by generating a sequence of M combinatorial
letters σ1 . . . σM where M = B

�log2(|Σ|)� . Fig. 1a presents a
schematic view of the combinatorial encoding approach.

Fig. 1b describes the physical properties of a combinatorial
DNA channel. First, the combinatorial sequences are written
by generating a set of DNA molecules (using combinatorial
synthesis or assembly). Each of the molecules includes a
sequence of positions where each position represents a single
combinatorial letter. In a given position, each sequence should
be one of the member k-mers of the combinatorial letter
encoded in that position. Next, a sample of the generated

molecules are processed and sequenced generating a set of
reads that are analyzed for the reconstruction of the combinato-
rial message. The reconstruction of the combinatorial sequence
includes three main steps, as detailed below:

1) Grouping: The reads obtained from the sequencing out-
put are grouped according to the combinatorial sequence
they represent. This is often done using a barcode
sequence at the beginning of every DNA molecule.

2) Sequence reconstruction: The combinatorial sequences
are reconstructed from the grouped DNA sequences.
• Often, each sequence is reconstructed separately

from the set of reads assigned to it.
• Each sequence is treated as a set of independent

combinatorial letters and therefore reconstructed
one position at a time.

• A combinatorial letter is reconstructed by identify-
ing K unique k-members that are observed in the
relevant position of the analyzed reads.

3) Message decoding: Error correction codes are used to
decode the original message.

B. Error Correction and Sequencing Coverage

Standard DNA-based data storage systems incorporate error
correction schemes to mitigate common errors in DNA synthe-
sis and sequencing. Symbol-level errors, such as single-base
substitutions, insertions, and deletions are the most common
errors. Most studies use error correction codes and constrained
coding over the DNA alphabet to overcome these errors.
Sequence-levels errors are another common type of error
in DNA-based storage systems. A common sequence-level
error is a sequence dropout, where certain sequences are not
observed in the output at all. Sequence dropout occurs mostly
due to the sampling step taken before sequencing, which may
result in some sequences not being chosen. The molecular
biology steps used for processing the DNA molecules may
also be biased in a manner not yet fully characterized, which
increases the chances of sequence dropouts. To overcome
sequence dropouts, a second layer of error correction is applied
on the sequence level. The combination of symbol level error
correction (inner code) and the sequence level error correction
(outer code) is sometimes referred to as a 2-dimensional (2D)
error correction scheme.

Another common approach for eliminating both symbol
and sequence-level error, is using the inherent multiplicity
in DNA synthesis and sequencing technologies. Increasing
the sampling rate yields higher sequence coverage, reduces
the chances of sequence dropouts, and helps correct symbol
level errors using various consensus-based methods. This
makes studying the optimal sampling rate (or sequence
coverage) a promising research direction for improving
DNA-based storage.

Combinatorial DNA-based data storage requires additional
considerations when examining errors and designing error
correction strategies. Mainly, in every position, the subset of
k-mers representing the combinatorial letter must be identified
correctly. To do so, at least one copy of each k-mer in the sub-
set must be observed. It is therefore important to understand
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Fig. 1. Schematic view of a combinatorial alphabet process. (a) The combinatorial letters are constructed from a set of N = 16 k-mers, Ω = {X1, . . . ,X16},
creating |Σ| = 4096 letters. Each letter represents a subset of K = 5 k-mers, as seen on the bottom left and depicted in the grayed-out cells. (b) The
combinatorial sequence of letters then undergoes a process of synthesis, sampling, and sequencing that represent the combinatorial DNA storage channel.

the effect of sequence coverage on composite DNA systems,
and to analyze the effect of different parameters. In order to
account for possible errors in identifying the observed k-mers,
a suggested approach involves observing each k-mer multiple
times before inferring the combinatorial letter based on the
subset of K k-mers observed most frequently. The required
multiplicity is a tunable parameter (t) in combinatorial DNA
systems. To demonstrate the difference between coverage
analysis of standard DNA and composite DNA, consider the
following simplified example.

Example 1: To recover x standard DNA sequences, we are
required to observe at least one copy of each sequence, and
at least x × 1 reads in total. To recover x combinatorial DNA
sequences with a combinatorial factor K, we need to observe
at least K copies of each sequence and at least x × K reads in
total. Adding the multiplicity parameter t to the combinatorial
reconstruction process, makes the minimal number of reads
to be analyzed x × K × t. Note that this is an unrealistic
example. In reality, channel noise (i.e., sampling and errors)
complicates the coverage requirements in both cases.

Analysis of the sequencing coverage of combinatorial DNA
systems was briefly explored in [15] mostly using simulations.

III. THE COMBINATORIAL SEQUENCING

COVERAGE PROBLEM

A. Problem Definition

In this study, we address the challenge of determining the
required sequencing coverage for DNA-based data storage
systems that utilize combinatorial sequences. We assume a 2D
MDS error correction scheme as presented in the top panel
of Fig. 2. Namely, the message is encoded using a vector
of l combinatorial sequences. Each sequence is of length m.
Given Rall analyzed reads, the decoding process includes the
grouping, reconstruction, and decoding process as described
in II and demonstrated in the bottom panel of Fig. 2. The error
correction scheme is characterized by two parameters, b and
a. Every combinatorial sequence is assumed to be correctly

recovered if at least b ≤ m letters/positions are correctly
reconstructed (inner code). The message is fully recovered if at
least a ≤ l sequences are successfully recovered (outer code).

Problem 1 (Reconstruction of a Single Combinatorial
Letter): For a given combinatorial alphabet represented by the
subset size K and a given number of analyzed reads R, what is
the probability of reconstructing a single combinatorial letter?

Problem 2 (Reconstruction of a Combinatorial Sequence):
For a given combinatorial alphabet represented by the subset
size K and given values for m and b, and a given number
of analyzed reads R, what is the probability of recovering a
combinatorial sequence?

Problem 3 (Reconstruction of a Complete Combinatorial
Message): For a given combinatorial alphabet represented by
the subset size K and given values for m, b, l, and a, and a
given number of analyzed reads Rall , what is the probability of
recovering the complete combinatorial message? Alternatively,
what is the required number of reads Rall that guarantees a
desired confidence level δ?

B. Comparison With Standard DNA Scheme

Sequencing coverage in standard DNA-based data storage
systems was nicely analyzed in [13], where the main focus
was on the outer code and the reconstruction of the com-
plete message. Specifically, recovering a single sequence was
considered to be a binary function of the number of copies
observed for the sequence, t. In this work, we break down this
problem, by:

1) Considering the inner code and modeling the probability
of a combinatorial sequence to be recovered.

2) Modeling the reconstruction of each combinatorial letter
(a position in the sequence) using the coupon collector’s
problem.

We also introduce a Markov Chain (MC) model-based cal-
culation for the exact characterization of the coupon collector’s
distribution. We complete the analysis by considering the
required coverage for achieving a desired decoding probability.
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Algorithm 1: Decoding a Single Combinatorial Letter
Input: A set R of R reads, a list of N k-mers from the

set Ω, a robustness threshold t
Output: A set of K inferred k-mers or FALSE if

decoding fails
1 define the binomial combinatorial alphabet
Σ = {σ1, ..., σ|Σ|} with |Σ| ≤ (N

K

)
;

2 initialize a counter for each k-mer in Ω;
3 while |R| > 0 do
4 extract next read r from R;
5 increment the counter for the k-mer observed in the

read;
6 if the counters for K k-mers are larger or equal to t

then
7 return these K k-mers as the inferred member

k-mers of σ′;
end

end
8 return FALSE;

Finally, we give a practical tool that can be used to design
combinatorial DNA systems.

IV. RESULTS

The decoding complexity is analyzed here by breaking the
process down into its basic components. First, the decoding
probability of a single combinatorial letter is analyzed, con-
sidering various design parameters and decoding approaches.
Next, this paper addresses the decoding of a single combina-
torial sequence, while considering the use of error correction
codes with varying redundancy levels. Finally, the decoding
of a complete combinatorial DNA message is analyzed, con-
sidering a general 2D error correction MDS code (i.e., a code
that protects against sequence dropouts as well as errors on
each sequence).

A. Reconstruction of a Single Combinatorial Letter

Let Ω be a set of N valid k-mers used for a combinatorial
DNA-based data storage system. Consider a binomial combi-
natorial alphabet Σ with |Σ| ≤ (N

K

)
letters where each letter

σ ∈ Σ consists of a subset of size K of k-mers from Ω. This
subset is referred to as the member k-mers of σ. Let R be the
number of analyzed reads of a given combinatorial letter. We
define a decoding algorithm in which we accumulate reads
until we observe at least t copies of K unique k-mers from
Ω. These K k-mers are referred to as the inferred member
k-mers, and are used to reconstruct a combinatorial letter σ′
(See Algorithm 1).

To analyze the probability of decoding a single combinato-
rial letter, we first assume that each read uniformly draws one
of the K member k-mers. We note that the size of the k-mer
set N does not play a role in this model. We also ignore invalid
k-mers as we assume that the k-mers in Ω are selected such
that mix-up errors are negligible (refer to Section II and [15]
for details). Nonetheless, we allow detectable errors in the
k-mer reading with some (low) probability ε, as described later

in this section. Let TK ,t be a random variable representing
the number of reads analyzed until the decoding algorithm
successfully stops. Let πK ,t (R) be the probability of stopping
with a successful inference after at most R reads.

πK ,t (R) = P
(
TK ,t ≤ R

)
(1)

For t = 1, the random variable TK ,t represents the classical
coupon collector’s model [25] and we get (See Appendix B):

πK ,t=1(R) =

K∑

i=0

(−1)i
(
K

i

)(
1− i

K

)R

(2)

E
(
TK ,1

)
= K · HK (3)

where HK =
∑K

i=1
1
i is the Kth harmonic number. We note

that this result for t = 1 is also presented in [15].
For t > 1, we can obtain [24]:

E
(
TK ,t

)
= K (ln(K ) + (t − 1) ln(ln(K )) +O(1)) (4)

To calculate πK ,t (R) for t > 1, we use a Markov Chain
(MC) formulation. Each state in the MC represents the status
of the member k-mers in σ, in terms of the number of times
each has been seen. Specifically, a state is represented by a
vector:

(v(0), . . . , v(t)); v(i) ∈ {0, . . . ,K} (5)

For 0 ≤ j < t, v(j) indicates the number of member k-
mers seen exactly j times, while v(t) indicates the number
of member k-mers seen t times or more. Clearly, this vector
satisfies:

t∑

i=0

v(i) = K (6)

t∑

i=0

i · v(i) ≤ R (7)

And, when v(t) = 0, the inequality in (7) holds as equality∑t
i=0 i · v(i) = R. We also note that since there are t + 1

values in the vector (v(0), v(1), . . . , v(t)), there are a total of
S =

(K+t
t

)
possible solutions to the equation, representing

the number of states.
Example 2: Considering K = 10 member k-mers

and a threshold t = 2, the following states can be
defined:

• (10, 0, 0): All 10 k-mers have not been observed yet.
This is the case prior to analyzing the reads.

• (8, 2, 0): After analyzing two reads, two unique k-mers
have been observed exactly once while the remaining
eight k-mers have not been observed yet.

• (7, 2, 1): After analyzing at least four reads, two unique
k-mers have been observed exactly once, one k-mer has
been observed two times or more, and the remaining
seven k-mers have not been observed yet.

The following transition matrix A is defined with dimen-
sions S × S, where each transition is defined by the observation
of one read.
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Fig. 2. Combinatorial DNA system design. (a) Error correction scheme design. (b) Message decoding and reconstruction. i. Grouping. ii. Letter reconstruction.
iii. Message decoding. (The pink square is the final message.).

A[(v(0), . . . , v(i), v(i + 1), . . . , v(t))]

[(v(0), . . . , v(i)− 1, v(i + 1) + 1, . . . , v(t))]

=
v(i)

K
(8)

This represents observing one of the v(i) k-mers that were
observed i < t times.

And:

A[(v(0), . . . , v(i), . . . , v(t))]

[(v(0), . . . , v(i), . . . , v(t))]

=
v(t)

K
(9)

This represents observing one of the v(t) k-mers that were
observed at least t times.

Example 3: Considering K = 10 member k-mers and a
threshold t = 2. In the first transition, the first unique k-mer
must be observed:

P(s0 = (10, 0, 0), s1 = (9, 1, 0)) = A[(10, 0, 0)][(9, 1, 0)] =

v(0)

K
= 1

For the second transition there are two options:
• When one out of the nine yet unseen k-mers is drawn:

P(s0 = (9, 1, 0), s1 = (8, 2, 0)) = A[(9, 1, 0)][(8, 2, 0)] =

v(0)

K
=

9

10

• When the same k-mer is drawn again:

P(s0 = (9, 1, 0), s1 = (9, 0, 1)) = A[(9, 1, 0)][(9, 0, 1)] =

v(1)

K
=

1

10

To get to state s2 = (8, 2, 0), this calculation takes place:

P(s0 = (10, 0, 0), s2 = (8, 2, 0)) =

A[(10, 0, 0)][(9, 1, 0)] ∗A[(9, 1, 0)][(8, 2, 0)] =
1 ∗ 9

10
=

9

10

To calculate πK ,t (R), we set the initial state to be:

s0 = (v(0) = K , v(1) = 0, . . . , v(t) = 0), (10)

where P0 = (P(s0) = 1, 0, . . . , 0) is the state distribution
vector. We derive the distribution vector over the states after
R steps:

PR = P0A
R (11)

Let sf = (v(0) = 0, v(1) = 0, . . . , v(t) = K ) be the desired
state in which all K k-mers have been observed at least t times.
Thus:

πK ,t (R) = PR

(
sf
)

(12)

Fig. 3 and Appendix A demonstrate the state distribution
vector for several values of R using K = 5 member k-mers
and a threshold of t = 1. Clearly, after analyzing the first read,
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Fig. 3. Evolution of probability in the coupon collector model. (a) The probability distribution across the six states (X-axis) after observing R = 1 reads.
(b-d) Similar to (a), with R = 5, 15, 30 respectively. Calculated for K = 5, t = 1, and no errors, ε = 0.

a single k-mer is observed once while the other four have not
been observed yet. With R = 5, the probability of having seen
all unique coupons reached:

π5,1(5) =

5∏

i=1

i

5
= 0.038

At R = 15, this probability significantly increased to:

π5,1(15) = 0.829

Finally, at R = 30, the probability of observing all coupons
was:

π5,1(30) = 0.994

This algorithm ignores possible synthesis and sequencing
errors as it assumes that all observed k-mers come from
the set of K valid k-mers. Introducing an error probability ε
of observing an invalid k-mer requires a modified transition
matrix B:

B [(v(0), . . . , v(i), v(i + 1), . . . , v(t))]

[(v(0), . . . , v(i)− 1, v(i + 1) + 1, . . . , v(t))]

= (1− ε)
v(i)

K
(13)

This represents observing one of the v(i) (valid) member k-
mers that were observed i < t times. And:

B [(v(0), . . . , v(i), . . . , v(t))][(v(0), . . . , v(i), . . . , v(t))]

=
v(t)

K
(1− ε) + ε (14)

This represents observing one of the v(t) k-mers that were
observed at least t times, or observing an invalid k-mer.

Example 4: In the first transition, taking into account ε,
there are two options:

• When one out of the ten yet unseen k-mers is drawn:

P(s0 = (10, 0, 0), s1 = (9, 1, 0)) =

A[(10, 0, 0)][(9, 1, 0)] = (1− ε)
v(0)

K
= 1− ε

• When an invalid k-mer is drawn:

P(s0 = (10, 0, 0), s1 = (10, 0, 0)) =

A[(10, 0, 0)][(10, 0, 0)] = (1− ε)
v(2)

K
+ ε = ε

For the second transition, there are three options:
• When one out of the 9 yet unseen k-mers is drawn:

P(s0 = (9, 1, 0), s1 = (8, 2, 0)) = A[(9, 1, 0)][(8, 2, 0)]

= (1− ε)
v(0)

K
= (1− ε) ∗ 9

10

• When the same k-mer is drawn again:

P(s0 = (9, 1, 0), s1 = (9, 0, 1)) = A[(9, 1, 0)][(9, 0, 1)]

= (1− ε)
v(1)

K
= (1− ε) ∗ 1

10

• When an invalid k-mer is drawn:

P(s0 = (9, 1, 0), s1 = (9, 1, 0)) = A[(9, 1, 0)][(9, 1, 0)]

= (1− ε) ∗ v(2)
K

+ ε = ε
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Fig. 4. Decoding probability for a varying number of analyzed reads (R) for different thresholds (t). Each subplot corresponds to a different threshold value
(t). The analyses were conducted for K = 7 and ε = 0.01. (a) Results for t = 1, the blue line corresponds to the calculated probability based on the MC
model, while the red line represents the median of 50 simulation runs, where each simulation calculates the success rate of a 100 uniform drawing of R reads
across K member k-mers. The simulation results are also presented as boxplots. (b-d) Like (a), with t = 2, 3 and 4 respectively.

Fig. 4 depicts the decoding probabilities for varying num-
bers of analyzed reads using different values for the threshold t
(See Appendix E for different K and ε values). The calculated
probabilities are compared to a simulation experiment. As
expected, as t increases, more reads are required to recon-
struct a combinatorial letter. Notably, when R reaches 100
or more, the probability effectively becomes 1, indicating
full data recovery. This represents the balance between the
threshold level required for achieving precise combinatorial
reconstruction and the read depth complexity.

Note that throughout this section, we ignored the possibility
of an error that results in k-mer mix-up (i.e., the output of the
decoding algorithm is different from the original combinatorial
letter, σ′ �= σ). This is due to the assumption that the design
parameters render this error type very unlikely (See Section II).
We further discuss this issue in Section VI.

B. Reconstruction of a Combinatorial Sequence

Let s = σ(1)σ(2) . . . σ(m) be a sequence of length m over
the same binomial alphabet defined in the previous section.
Assuming the use of an MDS error correction code, we say
that decoding only b ≤ m letters/positions is sufficient for
decoding the complete sequence. Let R be the number of
analyzed reads, fixing K and t, we denote πK ,t (R) as π(R).
Let W be a random variable representing the number of letters
in s that were decoded. Assuming independence between the
letters in s, we get:

W ∼ Binom(m, π(R)) (15)

We are interested in the probability of decoding the sequence
s, Psingle:

Psingle(R,m, b) = P(W ≥ b)

=

m∑

i=b

(
m

i

)
π(R)i (1− π(R))(m−i) (16)

Remark: Since there are different technological/molecular
approaches for generating combinatorial DNA sequences, no
specific assumption can be made regarding the dependence of
different positions in the sequence. Every technology aspires
to generate sequences with independent positions and we
therefore chose to assume independence. From a coding point
of view, assuming independence makes the solution general
as no constraints are forced on the sequence.

We note that in the case of b = m (i.e., no error correction
code), we get the result presented in [15].

We can approximate this probability using the normal
estimation (based on the Central Limit theorem):

W ∼̇ N (mπ(R),mπ(R)(1− π(R))) (17)

P(W ≥ b) = 1− P(W < b)

= 1− Φ

(
b −mπ(R)

√
mπ(R)(1− π(R))

)

(18)

where Φ is the CDF of the standard normal distribution.
Fig. 5 presents the decoding probabilities of a combinatorial

sequence with length m = 100, examining how the number of
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analyzed reads (R) affects the accuracy of sequence reconstruc-
tion across various redundancy levels (b = 100, 95, 90, 85)
keeping other parameters constant (K = 7, t = 4). We
observe that the probability of successful reconstruction varies
significantly with different redundancy levels. Notably, higher
redundancy levels (lower b values) enable accurate reconstruc-
tion using fewer reads. These results also align with the results
obtained from the normal approximation (not shown). The
results demonstrate the role of sequence-level redundancy in
affecting the likelihood of accurate reconstruction, making it
an important tunable parameter in the overall design.

C. Reconstruction of a Complete Combinatorial Message

Let M = {si}li=1 be a complete combinatorial message
encoded using a binomial alphabet like in the previous sec-
tions. The message is encoded using l combinatorial sequences
and, assuming an MDS error correction code, a ≤ l of which
are sufficient for the decoding of M.

Let Rall be the total number of analyzed reads over all
sequences. We are interested in the probability of decoding at
least a of l sequences using Rall reads, Pall(Rall, l , a).

Fig. 6 presents an overview of the decoding process and the
analysis steps for a complete combinatorial message.

First, the Rall reads are distributed between the l sequences,
using, for example, the barcodes. Then, the decoding probabil-
ity of each of the l sequences is determined using the derivation
from the previous section. The decoding probability of a single
letter is analyzed using the coupon collector’s model. We now
formally define each of these steps and analyze the decoding
probability Pall(Rall, l , a), or simply Pall.

Given a specific distribution of the R reads
(r1, . . . , rl ),

∑
ri = Rall , to successfully decode the message

at least a of the sequences must be decoded:

Pall(r1, . . . , rl ) = P

(
l∑

i=1

Ii ≥ a

)

(19)

where Ii is an indicator of decoding sequence si using ri
reads.

Assuming an unrealistic case of distributing the reads evenly
over the l sequences, each sequence is represented by exactly
rmean reads as follows:

rmean =
Rall

l
(20)

The probability to decode each sequence is:

P(Ii = 1) = Psingle(rmean,m, b), ∀i (21)

where πrmean are obtained by using rmean in the coupon
collector’s model. We can define a new binomial random
variable X that represents the number of decoded sequences:

X ∼ Binom
(
l ,Psingle(rmean,m, b)

)
(22)

And:

Pall(r1, . . . , rl ) ≥ P(X ≥ a) (23)

However, the Rall reads are not evenly distributed across the
l sequences and we therefore model this distribution using a
multinomial distribution:

(R1, . . . ,Rl ) ∼ Multinom

(
Rall,

(
1

l
, . . . ,

1

l

))
(24)

Remark: We note that in reality, biases in the combi-
natorial DNA channel may result in different distributions
of the reads across the sequences. Since these biases differ
between the technologies used for generating combinatorial
DNA molecules, we chose to use the uniform multinomial
distribution that does not require specific characterization of
the channel. We also note that this distribution was shown to
be optimal for some cases [13].

Using the law of total probability and setting P(R1 =
r1, . . . ,Rl = rl ) = P(r1, . . . , rl ):

Pall =
∑

(r1,...,rl )∑
ri=Rall

P(r1, . . . , rl )Pall(r1, . . . , rl ) (25)

Calculating Pall directly becomes infeasible even for small
values of Rall, l and a. We therefore bound this probability.
First, we note that for every sequence si we have:

P(Ii = 1) = Psingle(ri ,m, b) ≥ Psingle(rmin,m, b) (26)

where rmin = minj=1,...,l ri and πrmin are obtained by using
rmin in the coupon collector’s model. We therefore define X
to be:

X ∼ Binom
(
l ,Psingle(rmin,m, b)

)
(27)

And:

Pall(r1, . . . , rl ) ≥ P(X ≥ a) (28)

Yielding a lower bound on Pall(Rall, l , a):

Pall ≥
∑

(r1,...,rl )∑
ri=Rall

P(r1, . . . , rl )P(X ≥ a) (29)

In the multinomial distribution for (R1, . . . ,Rl ), many pos-
sible read distributions are very unlikely. We can further bound
Pall by setting a constant value ρ and only considering read
distributions for which minj=1,...,l (rj ) ≥ ρ. Let Xρ be a ran-
dom variable representing the number of sequences decoded
when the decoding probability of each sequence is calculated
using ρ reads. That is, Xρ ∼ Binom(l ,Psingle(ρ,m, b)).

We therefore have:

Pall ≥ P
(
Xρ ≥ a

) ∑

(r1,...,rl )∑
ri=Rall

minj rj≥ρ

P(r1, . . . , rl ) (30)

Given a small δ > 0, we check whether Rall reads are
sufficient to decode the message with 1− δ confidence level.

Pall ≥ 1− δ (31)

This can be achieved by choosing ρ such that:
1)

P
(
Xρ ≥ a

) ≥ √1− δ (32)
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Fig. 5. Decoding probability of a complete combinatorial sequence with varying redundancy levels. Results shown for a sequence of length m = 100, with
K = 7, and requiring t = 4. (a) Calculated decoding probability (blue line) as a function of the number of analyzed reads for redundancy level of b = 85.
Median results from 50 simulation runs are presented (red line) with boxplots representing the distribution of the simulation results. Each simulation run
represents 100 uniformly drawn sets of R reads, each comprising m letters drawn from K = 7 member k-mers. (b-d) Like (a), with b = 90, 95, and 100,
respectively. All analyses incorporate an error rate of ε = 0.01. (e-h) Like as (a-d), with t = 2.

And:
2)

∑

(r1,...,rl )∑
ri=Rall

minj rj≥ρ

P(r1, . . . , rl ) ≥
√
1− δ (33)

Since Xρ has a binomial distribution, we can find ρ for
which condition (32) holds. For condition (33), we use Sanov’s

theorem on the multinomial distribution as follows. For
more on Sanov’s theorem and the behavior of multinomials,
see [26].

Sanov’s theorem bounds the probability that the distribu-
tion of the reads into barcodes significantly deviates from
the expected uniform ((1l ) for each) distribution, particu-
larly where at least one sequence gets fewer than ρ reads.
Fig. 7 demonstrates this using a simulation of 100,000
instances, each drawn from the multinomial distribution with
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Fig. 6. Reconstructing a complete combinatorial message. (a) Rall reads are distributed between l sequences, and at least a sequences must be decoded.
(b) The decoding probability of each of the letters is analyzed using the coupon collector’s model (blue bins indicate the member k-mers). (c) Each sequence
requires b of the m combinatorial letters to be decoded.

p = ( 1
50 , . . . ,

1
50 ) and Rall = 4500 or Rall = 5000. The plots

show the distribution of the minimal values obtained. Clearly,
increasing Rall reduces the probability of the minimal value
being lower than a fixed threshold ρ. Decreasing the threshold
ρ yields a similar effect.

Let U = (1l , . . . ,
1
l ) be the expected uniform distribution

equivalent to the expected read distribution for (R1, . . . ,Rl ).
Let E (ρ) be the set of probability vectors equiva-

lent to read distributions (r1, . . . , rl ), for which
∑

rj =
Rall,minj=1,...,l (rj ) < ρ:

E (ρ) =

{
P = (p1, . . . , pl ) |

∑
pi = 1;min

i
(pi ) <

ρ

Rall

}

(34)

We define ζ(ρ) = minP∈E(ρ)D(P‖U ), where D(P‖U ) is
the Kullback-Leibler (KL) divergence:

D(P‖U ) =
l∑

i=1

pi log

(
pi
qi

)
(35)

Let P∗ = argminP∈E(ρ)D(P‖U ) the closest element to
U in E (ρ) in terms of the KL divergence. That is ζ(ρ) =
D(P∗‖U ).

Next, we show that P∗ is the distribution of reads in which
ρ − 1 reads are assigned to one sequence and the remaining
Rall−ρ+1 reads are uniformly distributed over the remaining
l − 1 sequences.

Lemma 1:

Let U =

(
1

l
, . . . ,

1

l

)
,Let α <

1

l
(36)

Let P∗ =

(
α,

1− α

l − 1
, . . . ,

1− α

l − 1

)
, then (37)

∀P = (p1, . . . , pl ), s.t. ∃i ; pi < α (38)

We have:

D(P‖U ) ≥ D(P∗‖U ) (39)

The proof for this lemma is found in Appendix C. For
intuition, this is simply the result of the symmetric nature of
the KL divergence function and of U.

Sanov’s theorem [26] provides a bound on the probability
of observing any distribution within E (ρ).

P(E (ρ)) ≤ (Rall + 1)l2−Rallζ(ρ) (40)

where:

ζ(ρ) = D(P∗‖U )

=

l∑

i=1

p∗i log
(
p∗i
qi

)

= α log(αl) + (l − 1)

(
1− α

l − 1

)
log

(
1−α
l−1
1
l

)

= α log(αl) + (1− α) log

(
l(1− α)

l − 1

)
(41)

This bound implies that the likelihood of observing a
significantly non-uniform distribution of reads decreases expo-
nentially as the total number of reads Rall increases. We recall
that:

∑

(r1,...,rl )∑
ri=Rall

minj rj≥ρ

P(r1, . . . , rl ) = 1− P(E (ρ)) (42)

And so we get:

Pall ≥ P
(
Xρ ≥ a

)
(1− P(E (ρ))) (43)

Pall ≥ P
(
Xρ ≥ a

)(
1− (Rall + 1)l2−Rallζ(ρ)

)
(44)

This gives us an operational algorithm for checking if
Rall reads are sufficient to ensure successful decoding with
confidence 1−δ, as specified in Algorithm 2.

Fig. 8(a) demonstrates the approach, by presenting the
probability of successful message decoding P(Xρ ≥ a) and
the probability of considering “enough” of the read distribution
(1 − P(E )) for a fixed number of overall reads Rall =
3000 as a function of the threshold ρ. Clearly, P(Xρ > a)
increases as ρ increases since each sequence si is decoded
using more reads. On the other hand, as is demonstrated in
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Fig. 7. The minimum value of a multinomial distribution Y = minj (Xj ) where (X1, . . . ,Xl ) ∼ Multinom(Rall, (
1
l , . . . ,

1
l )). (a) A histogram of

the values of Y attained in 100, 000 instances with l = 50 and Rall = 5000. The red line represents ρ = 65. The gray box shows the probability
P(E(ρ)) = P(Y < ρ). (b-d) Like (a), for (Rall, ρ) = (5000, 77), (4500, 65), (4500, 77).

Algorithm 2: Finding the Required Sequencing Depth
Rall for a Complete Message

Data: Design parameters.
Input: δ (Acceptable failure probability)
Output: A value for Rall ensuring decoding with

probability 1− δ
1 Initialize ρ to find threshold where
P(Xρ ≥ a) ≥ √1− δ;

2 for incrementing values of ρ do
3 if P(Xρ ≥ a) ≥ √1− δ then
4 Break loop and use found value of ρ;

end
end

5 Set Rall = ρ× l ;
6 for incrementing values of Rall do
7 Calculate probability P(E ) for current Rall;
8 if 1− P(E ) ≥ √1− δ then
9 Break loop and finalize value of Rall;

end
end

Fig. 5, increasing ρ decreases 1− P(E (ρ)), since fewer read
distributions with minj (rj ) ≥ ρ are expected.

We note that the bound achieved by using Sanov’s theorem
is not tight, and therefore presents an alternative approach for
finding ρ using empirical simulations. Fig. 8(b) presents the
probability (1 − P(E (ρ))), calculated as shown in Fig. 7 by
100,000 instances of simulating the multinomial distribution

with Rall = 1000. Clearly, this method yields a tighter bound
on the decoding probability while also requiring the analysis
of less reads overall. See Appendix D for details.

D. A Tool for Determining the Required Sequencing
Coverage

We have developed a tool designed to calculate the nec-
essary sequencing coverage for DNA-based data storage
systems.

1) Design Parameters, Input, and Output: The tool gets
as parameters the sequence design and coding schemes, and
computes the required sequencing coverage for a desired
confidence level. Specifically,

Design parameters:
• K – Total number of unique k-mers in each position.
• t – Required threshold on the number of observed

occurrences of each of the k-mers.
• m – Sequence length.
• b – Total number of letters required to be successfully

decoded in each sequence.
• l – Total number of sequences in the message.
• a – Total number of sequences required for successful

decoding.
• ε – Error probability of observing an invalid k-mer.
Input:
• δ – Acceptable failure rate.
Output:
• Rall – Required sequencing coverage.
2) Description of Tool Run: Fig. 9 presents a high-level

description of the tool workflow. Given the design parameters
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Fig. 8. Bounding the decoding probability. (a) Overall decoding probability P(Xρ ≥ a) (blue line) and the Sanov’s bound on the probability of obtaining
a read distribution across the sequences with minj (rj ) ≤ ρ, 1 − P(E(ρ)) (red line) as functions of the threshold T for a fixed number of analyzed reads
Rall = 3000. The threshold

√
1− δ on the probability is marked with dotted lines for δ = 0.1 (pink dotted lines) and δ = 0.2 (green dotted lines). Setting

ρ to any value between these lines ensures decoding with 1− δ confidence. All values are calculated for K = 7, t = 4, ε = 0.01, R = 110, m = 10, b = 8,
l = 10, a = 8. (b) Like (a), with P(E(ρ)) calculated using simulations instead of the Sanov’s bound and where the total number of reads Rall = 1000.

K , t , ε,m, b, l , and a, the tool finds a threshold ρ and a total
number of reads Rall for which conditions (a) and (b) hold
for the input confidence level 1− δ (See Section IV-C). First,
ρ is found such that the decoding of at least a sequences
is ensured, P(Xρ ≥ a) ≥ √1− δ (See Section IV-C).
This calculation requires the probability to decode a single
sequence, Psingle(ρ,m, b) (See Section IV-B), which uses
the reconstruction probability of a single combinatorial letter
πK ,t (ρ) (See Section IV-A).

Once ρ is determined, the algorithm searches for the
required number of overall reads Rall that ensures 1 −
P(E (ρ)) ≥ √1− δ. This can be achieved using either the
bound from Sanov’s theorem or the empirical estimation of
P(E (ρ)). When a value for Rall that satisfies the condition is
found, then the tool run exits, outputting Rall to the user.

3) Example Runs: To demonstrate the tool’s functionality,
we used it to determine the required sequencing coverage
for different sets of design parameters, similar to those used
in [15], and for various confidence levels. These results are
presented in Table I. Clearly, increasing the desired confidence
level (smaller values for δ) requires the increasing of the
sequencing coverage. Scaling up the system’s capacity by
taking l to be 10 times larger results in a proportional increase
in Rall. Increasing the redundancy level (lower value for a)
reduces the number of required reads to be analyzed. We
note that the different design parameters influence both the
threshold ρ and the sequencing coverage Rall. While Rall is
affected by all the design parameters, ρ is primarily affected by
m and b. These findings underscore the importance of carefully
selecting system parameters to optimize the efficiency and
reliability of DNA-based data storage systems. Future work
may explore the boundaries of these parameters to further
enhance system performance.

4) Runtime Analysis: In terms of runtime complexity of
evaluating Rall for any given set of parameters, we compared
our tool to using Monte Carlo simulations. Table II presents
the results for fixed values for Rall and ρ. Clearly an increase
in a or l leads to a drastic increase in the simulation runtime,

TABLE I
REQUIRED SEQUENCING COVERAGE FOR DIFFERENT SETS

OF DESIGN PARAMETERS AND CONFIDENCE LEVELS

indicating that our approach is significantly faster and scales
better to larger systems.

V. METHODS

A. Monte Carlo Simulations

1) Decoding Probability of a Single Combinatorial Letter:
The decoding probability of a single combinatorial letter was
calculated by simulating the distribution of R reads over K
elements with uniform probability. Where applicable, an error
probability ε was used to discard reads representing invalid
k-mers. Then, a successful decoding was considered if all K
k-mers where observed at least t times each. The process was
repeated Q times to calculate the success rate. The median and
boxplot of 50 repeats is presented. See Algorithm 3.
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Fig. 9. Complexity calculation tool workflow. (a) Overview of the tool’s run including internal dependencies, input parameters, and outputs for each
part. (b) Reconstruction probabilities of a single combinatorial position, πK ,t (ρ), calculated using the coupon collector’s model (inset, like in Fig. 3) as a
function of the threshold ρ. (c) Decoding probability for a full-length combinatorial sequence, Psingle(ρ,m, b), calculated using the binomial model with
the probabilities from (a) as input. Plotted as a function of the threshold ρ. (d) Finding ρ. Full message decoding probability, P(Xρ ≥ a), calculated using
the binomial model for Xρ obtained from (c). Plotted as a function of the threshold ρ. The target confidence level

√
1− δ is presented in the red dotted

line. (e) Finding Rall given the selected ρ. The probability of considering enough read distributions (across the l sequences), 1− P(E(ρ)), based on either
theoretical bound or the empirical calculation. Plotted as a function of Rall. The target confidence level

√
1− δ is presented in the red dotted line.

TABLE II
RUNTIME COMPARISON BETWEEN MONTE CARLO SIMULATIONS (WHERE Q=100) AND A DIRECT CALCULATION

WITH TWO DIFFERENT APPROACHES FOR CALCULATING P(E) (SEE APPENDIX D)

2) Decoding Probability of a Combinatorial Sequence:
The decoding probability of a combinatorial sequence of
length m was calculated by repeating the simulation for
a single letter m times. Then, a successful decoding was
considered if at least b of the m letters where successfully
decoded. The process was repeated Q times to calculate
the success rate. The median and boxplot of 50 repeats is
presented. See Algorithm 4.

3) Decoding Probability of a Complete Combinatorial
Message: The decoding probability of a complete combi-
natorial message with l sequences was calculated by first
simulating the distribution of Rall reads over the l sequences.
Then, the simulation for a single combinatorial sequence was
repeated for each sequence using the associated Ri reads. A
successful decoding of the complete message was considered
if at least a of the l sequences where successfully decoded.
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The process was repeated Q times to calculate the success
rate. The median and boxplot of 50 repeats is presented. See
Algorithm 5.

B. Runtime Analysis

The simulations and calculations were performed on a
personal computing system equipped with an Intel R© CoreTM

i5-8250U CPU, which has a base clock speed of 1.60 GHz
and can boost up to 1.80 GHz. The system was configured
with 8.00 GB of RAM (7.84 GB usable) to facilitate the com-
putational demands of the simulation processes. It operated
under a 64-bit Windows 11 Home edition, ensuring that the
software utilized for simulations could leverage the x64-based
processor architecture for optimal performance.

VI. CONCLUSION

Our study presents a novel model for analyzing coverage
depth in DNA-based data storage, particularly focusing on
combinatorial DNA encoding. We use the coupon collector’s
problem framework to model the reconstruction of combinato-
rial letters from sequencing data. We present a Markov Chain
(MC) formulation for calculating the decoding probability and
provide a tool for computing its probability. This solution is,
however, limited in its scale due to the size of the state space.
Further work can be done to allow this model to be scaled
up, either by developing more efficient computation or by
developing an approximation to the model.

One of the key aspects of the combinatorial approach is the
strategic selection of Ω that consists of easily distinguishable
k-mers. This, together with the use of a threshold t > 1
in the reconstruction algorithm (See Algorithm 1), effectively
mitigates k-mer mix-up errors, as was demonstrated in [15].
We therefore chose to ignore k-mer mix-up errors in the model
used for the reconstruction probability.

We also present a unified model for analyzing coverage
depth of a complete combinatorial storage system considering
an inner-outer error correction model. We present theoretical
bounds on the decoding probability using Sanov’s theorem
on the multinomial model for read distribution or using an
empirical estimation.

We also provide a Python tool for determining the sequenc-
ing depth required to achieve a desired confidence level for a
system, given design and encoding scheme. We demonstrate
the tool’s results on a selection of design parameter sets.

Future exploration in DNA-based data storage will
significantly benefit from further understanding and opti-
mizing coverage depth and from further improving efficient
combinatorial coding. These elements are key to enhanc-
ing data storage capacity and reliability, promising exciting
advancements in the field.

APPENDIX A
EVOLUTION OF PROBABILITY IN THE COUPON

COLLECTOR’S PROBLEM VIDEO

The coupon collector’s parameters that are shown in the
video, are: K = 5, t = 2, R = 30. See file A. Evolution of
Probability in the Coupon Collector Problem Video K=5, t=2,
R=30.gif.

Algorithm 3: Simulation: Reconstruction of a Single
Combinatorial Letter

Data: K , t ,R,Q Number of unique items K , threshold
t , number of reads R, number of simulations Q .

Result: Success rate of achieving at least t occurrences
of each item in R rounds over Q simulations.

1 Initialize success_count ← 0
2 for q ← 1 to Q do
3 Let reads be a sequence generated by R independent,

uniformly distributed random selections from the set
{1, 2, . . . ,K} with replacement

4 if for every item i ∈ {1, 2, . . . ,K}, i appears at least
t times in reads then

5 success_count ← success_count + 1
end

end
6 Compute the success rate as
success_rate ← success_count

Q
7 return success_rate

Algorithm 4: Median Simulated Probability:
Reconstruction of a Combinatorial Sequence

Data: K , t ,m, k , b,R,Q . Number of k-mers K, threshold
t, sequence length m, number of selections n,
required successful decodings b, number of reads
per position R, number of simulations Q.

Result: Success rate of reconstructing at least b positions
from m in the sequence over Q simulations.

1 Initialize parameters K , t ,m,n, b,R,Q
2 Initialize success_count ← 0
3 for _← 1 to Q do
4 decoded_count ← Sum of successes from

Algorithm 3 (Calling Algorithm 3 with Q = 1), for
m positions

5 if decoded_count ≥ b then
6 success_count ← success_count + 1

end
end

7 success_rate ← success_count
Q

8 return success_rate

APPENDIX B
CLASSICAL COUPON COLLECTOR’S PROBLEM

πK ,1(R) =
K∑

i=0

(−1)i
(
K

i

)(
1− i

K

)R

(45)

πK ,t (R) is the probability of collecting all n unique coupons
within R trials. We will show that,

πK ,1(R) = P
(
TK ,1 ≤ R

)
=

K∑

i=0

(−1)i
(
K

i

)(
1− k

K

)R

(46)

The coupon collector’s problem can be approached using the
principle of inclusion-exclusion. The formula calculates the
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Algorithm 5: Median Simulated Probability: Complete
Message Decoding Simulation

Data: K , t ,m,n, b, l , a,Rall,Q . Number of unique
k-mers K, threshold t, sequence length m,
selections per sequence n, required successful
decodings b, total number of sequences l, required
sequences decoded a, total reads Rall, number of
simulations Q.

Result: Success rate of decoding at least a sequences out
of l in Q simulations.

1 Initialize parameters K , t ,m,n, b, l , a,Rall,Q
2 Initialize success_count ← 0
3 for _← 1 to Q do
4 reads_distribution ← multinomial(Rall, [

1
l ]× l)

5 Initialize decoded_sequences ← 0
6 for Rj in reads_distribution do
7 if Algorithm 4 output (with Q = 1)> 0 then
8 decoded_sequences ← decoded_sequences+1

end
end

9 if decoded_sequences ≥ a then
10 success_count ← success_count + 1

end
end

11 success_rate ← success_count
Q

12 return success_rate

probability of collecting all n unique coupons within R trials.
Let Ai be the event that the i-th coupon is not collected in R
trials.

P(Ai ) =

(
1− 1

K

)R

(47)

Let
⋃K

i=1Ai be the probability of not collecting at least one
coupon in R trials. Note that we are interested in:

πK ,1(R) = 1− P

(
K⋃

i=1

Ai

)

(48)

P(
⋃K

i=1Ai ) is calculated using the principle of inclusion-
exclusion.

P

(
K⋃

i=1

Ai

)

=
K∑

j=1

(−1)j−1
(
K

j

)(
1− j

K

)R

(49)

And finally,

πK ,1(R) = 1− P

(
K⋃

i=1

Ai

)

= 1−
K∑

j=1

(−1)j−1
(
K

j

)(
1− j

K

)R

=

K∑

j=0

(−1)j
(
K

j

)(
1− j

K

)R

(50)

Algorithm 6: Calculated probability: Reconstruction of a
Single Combinatorial Letter

Data: K , t , ε,R. Number of unique k-mers K, t count of
each k-mer, error probability ε, and number of
reads R.

Result: Probability distribution over states after R reads.
1 Initialize state space S ← (K+t

t

)
all combinations.

2 Initialize transition matrix A← 0(|S |×|S |)
3 for each state si in S do
4 for each j in 0, . . . , t do
5 if v(j ) > 0 then
6 v(j )− = 1, v(j + 1)+ = 1
7 Find index of new state sj in S
8 Compute probability for transitioning to a

new state, A[si , sj ]← P(si , sj ), where

P(si , sj ) = (1− ε)× v(j )
K

end
end

9 Compute probability for staying in the same state
(without transitioning to a new state),
A[si , si ]← P(si , si ), where
P(si , si ) = (1− ε)× v(t)

K + ε
end

10 Initialize initial vector v0 ← [1, 0, . . . , 0]T , corresponding
to the size of all combinations

(K+t
t

)

11 Compute result vR ← v0A
R

12 Calculate πK ,t (R), the total probability for target states,
by summing probabilities of target states

13 return πK ,t (R)

This follows from:
(

K⋃

i=1

Ai

)

=

K∑

j=1

(−1)j−1
∑

I⊆{1,...,K},|I |=j

P(AI ) (51)

where AI =
⋂

i∈I Ai . For j = 1:

P(AI ) = P(Ai ) =

(
1− 1

K

)R

(52)

For j = 2:

P(AI ) = P(Am ∩Al ) =

(
1− 2

K

)R

(53)

And generally:

P(AI ) =

(
1− j

K

)R

(54)

And clearly:

|{I ; I ⊆ {1, . . . ,K}, |I | = j}| =
(
K

j

)
(55)

APPENDIX C
PROOF OF LEMMA 1

Lemma 1:

Let U =

(
1

l
, . . . ,

1

l

)
,Let α <

1

l
(56)
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Algorithm 7: Calculated probability: Reconstruction of a
Combinatorial Sequence

Data: K , t , ε,R,m, b,method . Number of unique k-mers
K, threshold t, error probability ε, number of reads
R, total number of letters m, number of letters
required b, calculation method method.

Result: Probability of successfully reconstructing at least
b letters from the combinatorial sequence.

1 Initialize parameters K , t , ε,R,m, b,method
2 Calculate probability of single letter reconstruction
πK ,t (R) using Algorithm 6

3 if method = ‘binomial’ then
4 Use binomial distribution to calculate probability of

success
5 prob ← binom.sf(b − 1,m, πK ,t (R))
6 else if method = ‘normal’ then
7 Use normal approximation to calculate probability of

success
8 mean ← m · πK ,t (R)
9 std_dev ←√

m · πK ,t (R) · (1− πK ,t (R))
10 Psingle ← 1− norm.cdf(b − 1,mean, std_dev)
11 return Psingle , πK ,t (R)

Let P∗ =

(
α,

1− α

l − 1
, . . . ,

1− α

l − 1

)
, then (57)

∀P = (p1, . . . , pl ), s .t . ∃i ; pi < α (58)

We have:

D(P‖U ) ≥ D(P∗‖U ) (59)

Proof:

D(P‖U ) =

l∑

i=1

pi log(lpi ) (60)

D(P∗‖U ) = α log(αl) + (1− α) log

(
l
1− α

l − 1

)
(61)

We solve:

minD(P) =
l∑

i=1

pi log(lpi ) (62)

Subject to:
1)

l∑

i=1

pi = 1 (63)

2)

p1 ≤ α (WLOG) (64)

Therefore, the Lagrangian is:

L(p1, p2, . . . , pl , λ, μ) =

l∑

i=1

pi log(lpi )

− λ

(
l∑

i=1

pi − 1

)

Algorithm 8: Calculated probability: Reconstructing a
Complete Combinatorial Message

Data: K , t ,m, b, l , a, ε,method, δ,P(E (ρ))method . Total
number of unique k-mers K, threshold t, sequence
length m, number of letters required b, number of
sequences l, number of sequences required to be
decoded a, error probability ε, calculation method,
acceptable error threshold δ.

Result: Required sequencing depth Rall ensuring
decoding with probability 1− δ.

1 Initialize parameters
K , t ,m, b, l , a, ε, δ,method,P(E (ρ))method

2 ρ← find_ρ()
3 Rall ← calc_R_all(ρ)
4 Function find_ρ:

5 ρ← 1
6 c const
7 while True do
8 Psingle ← Using Algorithm 7 to calculate

probability of decoding a combinatorial sequence.
Using Psingle we calculate:9 P(Xρ)← Success
probability of decoding at least a out of l
sequences using.

10 if P(Xρ) ≥
√
1− δ then return ρ11 ρ← ρ+ c

end
12 End Function

13 Function calc_R_all(T):
14 Rall ← ρ× l

15 while True do
16 Calculate the overall error probability P(E ) with

Rall and ρ

17 if 1− P(E ) ≥ √1− δ then break
18 Rall ← �Rall × 1.05�

end
19 End Function

20 return Rall

− μ(p1 − α) (65)

The KKT conditions are:
• Stationarity ∂L

∂pi
= 0:

for i > 1,
∂L

∂pi
= 0→ pi = e(λ−1)/l (66)

for i = 1,
∂L

∂p1
= 0→ p1 = e(λ−1+μ)/l (67)

• Primal feasibility:

l∑

i=1

pi = 1 (68)

p1 − α < 0 (69)

• Dual feasibility:

μ, λ ≥ 0 (70)

• Complementary slackness:

μ(p1 − α) = 0 (71)
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Fig. 10. Decoding probability for a varying number of analyzed reads (R) for different thresholds (t). Each subplot corresponds to a different threshold value
(t). The analysis was conducted for K = 5 and ε = 0.01. (a) Results for t = 1, the blue line corresponds to the calculated probability based on the MC
model while the red line represents the median of 50 simulation runs, where each simulation calculates the success rate of 100 uniform drawing of R reads
across K member k-mers. The simulation results are also presented as boxplots. (b-d) Like (a), with t = 2, 3 and 4, respectively.

Fig. 11. Decoding probability for a varying number of analyzed reads (R) for different thresholds (t). Each subplot corresponds to a different threshold value
(t). The analysis was conducted for K = 10 and ε = 0.01. (a) Results for t = 1, the blue line corresponds to the calculated probability based on the MC
model while the red line represents the median of 50 simulation runs, where each simulation calculates the success rate of 100 uniform drawing of R reads
across K member k-mers. The simulation results are also presented as boxplots. (b-d) Like (a), with t = 2, 3 and 4, respectively.

Expressing λ using the primal feasibility (68):

p1 + (1− l)pi = 1 (72)

Substituting pi and p1 from (66) and (67):

λ = log

(
l

eμ + l − 1

)
+ 1 (73)
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Fig. 12. Decoding probability for a varying number of analyzed reads (R) for different thresholds (t). Each subplot corresponds to a different threshold value
(t). The analysis was conducted for K = 7 and ε = 0.1. (a) Results for t = 1, the blue line corresponds to the calculated probability based on the MC model
while the red line represents the median of 50 simulation runs, where each simulation calculates the success rate of 100 uniform drawing of R reads across
K member k-mers. The simulation results are also presented as boxplots. (b-d) Like (a), with t = 2, 3 and 4, respectively.

Expressing p1 with λ from (73):

p1 =
eμ

l + eμ − 1
(74)

Expressing μ:
• If p1 �= α, then μ = 0.
• If p1 = α, then μ can be non-zero.

If p1 = α, we substitute α for p1 in (74):

α =
eμ

l + eμ − 1
→ μ = log

(
α(l − 1)

1− α

)
(75)

Using the original expressions for pi from (66), and substitut-
ing μ we expressed in (75), we get:

for i > 1, pi =
1

l +
α(l−1)
1−α − 1

=
1− α

l − 1
(76)

and recall that p1 = α.
If p1 �= α, we substitute μ = 0 for p1 in (67):

p1 =
1

l
(77)

Using the original expressions for pi from (66), and substitut-
ing μ = 0, we get:

for i > 1, pi =
eλ−1

l
=

e log(l/(e
µ+l−1))

l

=
l

eμ + l − 1
/l =

1

l
(78)

And we get the trivial solution P∗ = U , which does not satisfy
the condition p1 < α.

Therefore, we proved that D(P‖U ) ≥ D(P∗‖U ).

APPENDIX D
TOOL IMPLEMENTATION

We provide a Python code for calculating the required
sequencing depth given the system design parameter. Figure 9
presents an overview of the tool run. The implementation
details of the different steps are outlined below.

A. Reconstruction Probability of a Single Combinatorial
Letter

For the calculation of the reconstruction probability of
a single combinatorial letter, the Markov Chain (MC) rep-
resentation of the coupon collector’s process is used. See
Algorithm 6.

B. Reconstruction Probability of a Combinatorial Sequence

For the calculation of the reconstruction probability of
a combinatorial sequence, first the reconstruction probabil-
ity for a single letter, πK ,t (R), was calculated. Then, the
reconstruction probability of the sequence is calculated using
the binomial distribution or the normal approximation. See
Algorithm 7.

C. Reconstruction Probability of a Complete Combinatorial
Message

The calculation of the bound for the reconstruction proba-
bility of a complete combinatorial message is performed by
splitting the calculation in two. First, a threshold ρ is found
such that P(Xρ ≥ a) ≥ √1− δ. This is done by an
iterative search that uses the decoding probability calculation
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Fig. 13. Decoding probability for a varying number of analyzed reads (R) for different thresholds (t). Each subplot corresponds to a different threshold value
(t). The analysis was conducted for K = 7 and ε = 0. (a) Results for t = 1, the blue line corresponds to the calculated probability based on the MC model
while the red line represents the median of 50 simulation runs, where each simulation calculates the success rate of 100 uniform drawing of R reads across
K member k-mers. The simulation results are also presented as boxplots. (b-d) Like (a), with t = 2, 3 and 4, respectively.

for a single sequence and the binomial model. Next, the
required number of total reads Rall that ensures that 1 −
P(E (ρ)) ≥ √1− δ is found either by using Sanov’s bound
or by a numerical simulation of the uniform distribution. See
Algorithm 8.

APPENDIX E
EXAMPLES FOR RECONSTRUCTION OF A SINGLE

COMBINATORIAL LETTER

More examples for decoding probability for varying number
of analyzed reads (R) for different thresholds (t), with varying
number of K and ε.

A. Decoding Probability for Varying Number of Analyzed
Reads (R) for Different Thresholds (t), and Varying Numbers
of K

See Fig. 10, and Fig. 11.

B. Decoding Probability for Varying Number of Analyzed
Reads (R) for Different Thresholds (t), and Varying Numbers
of ε

See Fig. 12, and Fig 13.
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