

Enigmas, etc.

Off-Nadir Angle

Takashi Ohira¹⁰

ontinuing from the last two quizzes concerning straight line segments on an impedance plane [1], [2], we now move on to a curvedsegment case. Consider an origin-centered circular arc standing at 50Ω upon the horizon, as shown in Figure 1. We can measure this arc in the Poincaré metric and express the length in terms of the off-nadir angle ϕ . Which of the following is equal to the arc length?

- (a) $ln \phi$
- (b) $ln \sin \phi$
- (c) $ln \cos \phi$
- (d) $ln \tan \phi$

Note that *ln* stands for natural logarithm.

One clue is that ϕ ranges from 45° to 90° when the arc stretches upward along the quarter circle. The correct answer will be revealed next month along with a simple *LCR* circuit scheme of the impedance locus specified by this arc. The solution also demonstrates

Takashi Ohira (ohira@tut.jp) is with Toyohashi University of Technology, Aichi 441-8580, Japan. He is a Life Fellow of IEEE.

> Digital Object Identifier 10.1109/MMM.2024.3412491 Date of current version: 9 August 2024

Figure 1. How long is the circular arc in the Poincaré metric?

what the Poincaré length physically signifies from the wave engineer's perspective.

References

 T. Ohira, "Horizontal line segment [Enigmas, etc.]," IEEE Microw. Mag., vol. 25, no. 5, p. 177, May 2024, doi: 10.1109/MMM.2024.3365063.

[2] T. Ohira, "Vertical poles [Enigmas, etc.]," IEEE Microw. Mag., vol. 25, no. 7, p. 102, Jul. 2024, doi: 10.1109/MMM.2024.3387188.

N.