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Enhancing Conformer-Based Sound Event Detection
Using Frequency Dynamic Convolutions and BEAT's
Audio Embeddings

Sara Barahona”, Diego de Benito-Gorrén

Abstract—Over the last few years, most of the tasks employing
Deep Learning techniques for audio processing have achieved state-
of-the-art results employing Conformer-based systems. However,
when it comes to sound event detection (SED), it was scarcely used
after it won the DCASE Challenge 2020 Task 4. In previous re-
search, we found that Conformer-based systems achieved a higher
performance in terms of sound events classification compared to
other architectures frequently employed, such as Convolutional
Recurrent Neural Networks (CRNNSs). Given that the second sce-
nario proposed for the Polyphonic Sound Detection Score (PSDS2)
is focused on avoiding confusion between classes, in this paper we
propose to optimize a Conformer-based system to maximize the
performance on this scenario. For this purpose, we performed a
hyperparameter tuning and incorporated recently proposed Fre-
quency Dynamic Convolutions (FDY) to enhance its classification
properties. Additionally, we employed our previously proposed
multi-resolution approach not only to enhance the performance but
also to gain a deeper understanding of the Conformer architecture
for SED, analyzing its advantages and disadvantages, and finding
possible solutions to them. Additionally, we explored the integration
of embeddings from the pre-trained model BEATS, an iterative
framework to learn Bidirectional Encoder representation from
Audio Transformers. By concatenating these embeddings into the
input of the Conformer blocks, results were further improved,
achieving a PSDS2 value of 0.813 and considerably outperforming
SED systems based on CRNNSs.

Index Terms—Sound event detection, conformer, DCASE
challenge, PSDS, multi-resolution, BEATS.

I. INTRODUCTION

OUND event detection (SED) is an active research topic that
focuses on localizing and classifying relevant sound events
within an audio clip. In recent years, there has been a growing
interest in this field due to its diverse range of applications
in various domains, including bioacoustics [1], [2], medical
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support [3], [4], urban sound monitoring [5] or industrial moni-
toring [6]. The progress in SED techniques has been significantly
facilitated by notable contributions, such as the publication of
Google AudioSet [7] and the yearly challenges and workshops
organized by the DCASE community [8]. Among the diverse
tasks that constitute the DCASE Challenge, it is of special in-
terest Task 4A titled “Sound Event Detection with Weak Labels
and Synthetic Soundscapes”. This task involves evaluating SED
systems by employing both real and synthetic recordings which
contain 10 sound event classes that can be found in a domestic
environment. Besides, it also addresses the challenge of working
with unlabeled data as well as two different types of annotations:
strong labels that provide temporal information (timestamps)
along with the sound event category, and weak labels that solely
indicate the category.

Originally, SED systems were evaluated by employing the
event-based and the segment-based F1-score [9]. However, these
metrics have limitations due to their reliance on a single operat-
ing point and susceptibility to human subjectivity when labeling
sound events in time, which can significantly impact a model’s
performance since collar-based metrics rely on the onset and
offset of sound events. To address these issues and achieve a
more robust evaluation, the Polyphonic Sound Detection Score
(PSDS) [10] was introduced, by measuring the intersection be-
tween detected and annotated sound events. Additionally, PSDS
employs different decision thresholds to evaluate SED systems,
obtaining a fairer metric as it is calculated as the area under the
Polyphonic Sound Detection Receiver Operating Characteristic
(PSD-ROC) curve. An additional advantage of this metric is that
its parameters can be adjusted to evaluate different properties
of a SED system. As a result, the DCASE Challenge Task
4A proposes two evaluation scenarios. Whereas the first one
(PSDS1) emphasizes a fast reaction upon a sound event requiring
ahighly accurate localization, the second scenario (PSDS2) aims
to minimize confusion between classes and is less strict about
timing errors.

The  Convolutional-Augmented  Transformer  (Con-
former) [11] has achieved state-of-the-art (SOTA) results in
several audio-related tasks including automatic speech recogni-
tion (ASR) [12] and automatic speaker verification (ASV) [13].
In the field of SED, it achieved promising results by winning the
DCASE Challenge Task 4 in 2020 [14], obtaining the highest
F1-score. Although this architecture was further explored with
the 2020 DCASE Challenge setup [15], subsequent editions
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revealed performance inconsistencies, particularly when
non-target events were incorporated into synthetic data and
the Polyphonic Sound Detection Score (PSDS) was introduced
as the primary evaluation metric. Consequently, current SED
systems most often employ Convolutional Recurrent Neural
Networks (CRNNSs) as architecture backbone [16] with the
addition of the recently proposed Frequency Dynamic Con-
volutions (FDY) [17]. A simple and straightforward technique
for enhancing PSDS2 is to perform weak predictions over the
entire sequence [18], by using the full duration of the audio as
timestamps. However, this approach significantly reduces per-
formance in the first PSDS scenario, obtaining values of PSDS1
close to 0, indicating that the localization of the sound events is
completely missed. Furthermore, there is a growing popularity
in employing embeddings from pre-trained models in AudioSet
to improve performance. By this means, for the DCASE
Challenge 2023 Task 4A, a baseline that exploits embeddings
from the pre-trained model BEATSs [19] was introduced.

This work explores in depth the advantages and disadvantages
of the Conformer model for SED compared to the reference ar-
chitecture in SED, the CRNN. Acknowledging the Conformer’s
difficulties in providing accurate timestamps (i.e. optimizing the
PSDS1) [20], we decided to optimize the Conformer architecture
only for PSDS2. In this paper, we present the different steps
that we have followed to optimize this network, as well as a
comprehensive analysis over the two scenarios proposed for
PSDS, to get insights into the benefits and disadvantages of
the Conformer over the most common architectures. This op-
timization has enhanced our understanding of the Conformer’s
capabilities and limitations. However, we found that by com-
bining the Conformer architecture with our previously proposed
multi-resolution approach [21], [22] we could gain a better un-
derstanding of the reasons behind the limited time resolution of
the outputs of the Conformer model, as well as possible ways to
compensate for it. Additionally, employing our multi-resolution
approach along with the attention matrices at different depths
of the Conformer allowed us to check if the temporal resolution
is progressively being lost across the network, and have tried
combining the outputs of the different layers to reduce this effect.
All these experiments, along with the use of Frequency Dynamic
Convolutions and the integration of BEATs embeddings, have al-
lowed us not only to better understand the Conformer in the task
of SED, but also to obtain a final PSDS2 comparable to the best
non-ensemble systems in the DCASE Challenge 2023 Task 4A.

The structure of this paper is as follows. In Section II, we
introduce an overview of the Conformer block and the main
techniques employed for enhancing its classification proper-
ties and analyzing its insights. Our proposed optimization and
the analysis over different resolution points are described in
Section III, as well as the experimental setup followed. In
Section IV, we present the ablation study of our optimization,
analyzing and discussing the results using our multi-resolution
approach. Additionally, we conduct a comparative analysis of
the advantages and disadvantages of our optimized Conformer
and CRNNs within the context of the DCASE Challenge Task
4A, highlighting the benefits of using BEATs embeddings.
Lastly, conclusions are presented in Section V.
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II. RELATED WORK

A. Conformer Block

Sound events own diverse temporal and spectral character-
istics. Therefore, exploiting both local and temporal features is
crucial for accurately detecting and classifying every class event.
Convolutional Neural Networks (CNN5s) [23] excel in extracting
local patterns but lack at exploring global representations. In
contrast, Transformer [24] networks are proficient in modeling
long-term dependencies thanks to the utilization of self-attention
but lack sensitivity to local details. For this purpose, CNNs and
Transformers are combined into a single architecture named
Conformer (Convolutional-Augmented Transformer), to cap-
ture both local and global features.

The attention function employed in the Transformer and
Conformer is defined by three vectors (queries, keys and values),
usually of the same dimension (dy,), obtained by linearly project-
ing the input. Whereas the query vector represents the position
from the sequence for which we seek information, the key vector
indicates the relevance of each position in the input sequence to
a specific query. By computing the dot product between queries
and keys, we can obtain the similarity score of this interaction,
known as the attention score. This score is scaled by the key
dimension dj and transformed into a probability distribution
using softmax, as shown in (1). These attention scores are used
to weight the value vectors, which represent the actual values
of the input sequence. Higher attention scores imply greater
importance of the corresponding values. By employing this
mechanism, the model can consider the entire input sequence
while focusing on the relevant parts determined by the attention

scores.
Attention(Q, K, V) = softmaz (QKT) Vv (1)
n Vi,

Equation (1) describes the attention mechanism used in both
the Transformer and Conformer. In many cases queries, keys and
values are all just the input vectors. In these cases the attention
mechanism is called self-attention. This attention mechanism
is rarely employed alone. It is more common to apply (1) to
different linear projections, giving rise to the Multi-Head Self
Attention (MHSA) mechanism [24] which allows to simultane-
ously learn various attention functions by employing multiple
heads. By this means, each head can attend to different patterns
in the input sequence, allowing the model to capture complex
relationships between different keys and queries. Additionally,
instead of employing absolute positional encoding as in the
original Transformer [24], the Conformer integrates a relative
positional encoding into the MHSA module, as proposed in
the Transformer-XL [25]. This encoding strategy injects the
temporal information in the attention score of each function,
by calculating the relative distances between each key and
query, from which also absolute positions can be recovered.
This method improves the generalization of MHSA across sound
event sequences of varying lengths, making the model more
robust to different utterance durations.

The convolution module is constructed using a combination of
point-wise and 1D depth-wise convolution blocks, which helps
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Structure of Conformer block. The sandwiched structure is created by dividing the feed-forward module into two blocks with half-step residual connections,

encapsulating both multi-head self-attention and convolution modules. A layer normalization is added at the end of the block.

decrease the computational cost while achieving the same effects
of traditional convolution operation. The feed-forward module
of the Transformer is divided into two half-step modules as in
a Macaron-Net [26]. By this means, both the MHSA and the
convolution modules are sandwiched by the two feed-forward
blocks as represented in Fig. 1. The last feed-forward module
is followed by a layer normalization and every module employs
residual connections.

B. Frequency Dynamic Convolution

Convolutional Neural Networks are widely employed for
extracting local features in many audio-related tasks, including
sound event detection. The raw waveform of an audio recording
represents low-level characteristics of this signal. Consequently,
a common procedure in SED is extracting features employing
the mel scale. By this means, a mel-spectrogram representing
the frequency distribution of energy over time can be obtained.

Originally, 2D convolutions were designed for the image do-
main [23], in which it is crucial for visual data that the extracted
patterns are shift-invariant in both axes. When moving to the
audio domain and specifically to SED and mel-spectrograms,
this property is not desirable. The identification of a specific
sound event relies on its spectral and temporal characteristics.
If the pattern of a sound event is shifted along the time axis, we
will still be able to recognize it. Conversely, if the same pattern is
shifted along the frequency dimension, it would yield to a signif-
icantly different sound, as the frequency components that define
a particular sound event class would change. Consequently, 2D
convolutions that impose translation equivariance on both axes
of a mel-spectrogram are unsuitable for the task in question.

To address this issue, Frequency Dynamic Convolutions
(FDY) [17] were introduced as a method to enhance the per-
formance of SED systems. The key objective is to maintain
translation equivariance along the temporal dimension while
removing it along the frequency axis. This is achieved by ex-
tracting frequency-adaptive attention weights and combining
them through a weighted sum with basis kernels. By this means,
frequency-adaptive kernels are obtained and employed as the
kernels of a vanilla 2D convolution.

C. Multi-Resolution Approach

Sound events can be identified by their particular temporal
and spectral characteristics, exhibiting substantial dissimilarities
across different categories. The extraction of mel-spectrogram
audio features requires defining a unique time-frequency reso-
lution point, which may not adapt to the whole variability of
sound events. Therefore, in previous research [20], [21], [22]
we have analyzed the benefits of employing a multi-resolution

approach to enhance the results through the utilization of various
time-frequency resolution points.

Our multi-resolution technique involves the modification of
the parameters that define the time-frequency resolution points.
Considering the trade-off between time and frequency resolution
of the Short Time Fourier Transform (STFT), we can enhance the
resolution in the time axis by decreasing the number of samples
employed in the STFT (IV), the window length (L) and its hop
length (R). These changes involve a decrease in time resolution
and therefore, a reduced number of mel filters (7,,,¢;) is required.
Conversely, by increasing these four parameters we can obtain
the opposite effect, enhancing the resolution in the spectrum
at the expense of a reduction in time resolution. By varying
these parameters during feature extraction, we create different
single-resolution models.

Comparing the performance of these single-resolution models
allows us to further analyze the behavior of our system at
different resolution points, offering valuable insights into its
strengths and limitations. Moreover, we have observed that each
proposed PSDS scenario for this task benefits from specific time-
frequency resolution points [22]. While increasing the resolution
in time, in general, helps with obtaining a better localization of
sound events, enhancing the resolution in frequency generally
improves the recognition of sound events, avoiding confusion
between classes.

Additionally, multi-resolution systems can be obtained by
averaging frame-wise the output score for class c at time ¢ (s ¢)
of N different single-resolution models, as follows:

N
(comb) 1 (n)
c,t - N Sc,t

n=1

2

Since modifying the hop size leads to different sequence
lengths, we linearly interpolate single-resolution scores to the
maximum length, enabling their frame-wise combination.

D. BEATs

Self-supervised learning (SSL) techniques have witnessed
a huge success in the audio domain, obtaining robust repre-
sentations for both speech and non-speech signals, all accom-
plished with the utilization of unlabeled data. SSL models of
speech [27], language [28], and vision [29] commonly adopt
discrete label prediction as pre-training objective, mimicking
the audio understanding skills of humans by extracting and clus-
tering high-level semantics. However, audio SSL models still
employ an acoustic feature reconstruction loss as pre-training
task [30], [31], which seems to give priority to the accuracy
of low-level time-frequency attributes but fails to consider the
higher-level abstraction of audio semantics. In the pursuit of



BARAHONA et al.: ENHANCING CONFORMER-BASED SOUND EVENT DETECTION USING FREQUENCY DYNAMIC CONVOLUTIONS

achieving an audio SSL model based on discrete label prediction,
Bidirectional Encoder representations from Audio Transformers
(BEATSs) [19] were proposed as an iterative audio pre-training
framework, in which an acoustic tokenizer and an audio SSL
model are optimized by iterations.

Initially, a random-projection tokenizer [32] is used to gen-
erate discrete labels which are then employed to train the audio
SSL model using a mask and discrete label prediction. When
the audio SSL model has converged, it is used as teacher to
train a new acoustic tokenizer with knowledge distillation. This
iterative learning process is repeated until convergence, allowing
the model to learn relevant semantic information from iterations.
The Vision Transformer [33] is used as the backbone network
of the SSL model and Masked Audio Modeling (MAM) is
proposed as pre-training task, in which the model learns to
predict the patch-level discrete labels generated by the acoustic
tokenizer. BEAT's has notably achieved state-of-the-art results
in audio classification tasks such as in the AudioSet-2M [7] and
ESC-50 [34] benchmarks, outperforming previous SOTA audio
SSL models such as MAE-AST [31].

E. Polyphonic Sound Detection Score

The evaluation of polyphonic sound event detection systems
considers the difference in the location between the detections
and the ground-truths for each sound event category. Times-
tamps can be highly influenced by the perception of the an-
notator, especially for brief, continuous sound events that can
be interpreted either as distinct individual occurrences or as a
singular unified event.

However, traditional evaluation collar-based metrics based
on the proximity between onset and offset timestamps do not
adequately address this inherent problem of subjective inter-
pretation. Additionally, these metrics rely on a fixed operating
point for making binary decisions with the output probabilities,
giving a limited vision of a system’s performance as it fails
to consider the full range of potential operating conditions and
decision trade-offs.

In order to build a more robust framework for the evaluation of
SED systems, Bilen et al. [10] proposed the Polyphonic Sound
Detection Score, which relies on the intersection between sound
event detections and ground truths, without strict collar-based
requirements. A detection is considered a true positive (TP) if it
fulfills two criteria:

e The Detection Tolerance Criterion (DTC) discards de-
tections from being counted as TP if the intersection with
the ground truth over the length of the detected event is less
than PDTC-

¢ The Ground-truth Tolerance Criterion (GTC) measures
the intersection between the ground truth and the set of
detections that have accomplished the DTC. If this inter-
section normalized by the length of the ground-truth event
is at least pg e, the detection will be counted as TP.

The detections that do not accomplish both criteria are con-
sidered false positive (FP) detections. In addition, the set of
FP detections that intersect with ground-truth events from a
different category are considered Cross Triggers (CT). For this
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TABLE I
PARAMETER CONFIGURATION FOR THE TWO PSDS SCENARIOS PROPOSED

PSDS pPDTC PGTC PCTTC QCT QST ©max
Scenario 1 0.7 0.7 0.0 - 1.0 100
Scenario 2 0.1 0.1 0.3 0.5 1.0 100

purpose, the Cross-Trigger Tolerance Criterion (CTTC) is
defined to account for CTs given a pcrrc. Their penalty cost on
user experience is regulated by the weighting parameter acr.
Despite cross-triggers being more identifiable than false posi-
tives, they can lead to a more negative user experience than FPs.

The overall PSD-ROC curve is calculated by averaging the
different class-dependent ROC curves, considering a cost of
instability across classes denoted as agp. Finally, the PSDS
score is obtained by integrating the PSDS-ROC curve from 0
to a specified parameter e, .x, Which is measured in events per
hour and defines the maximum false positive rate at which the
operating points remain relevant.

By modifying the different parameters that define this metric,
diverse characteristics of a SED system can be evaluated. Thus,
in the DCASE Challenge Task 4A, two scenarios are proposed.
The first one (PSDS1) focuses on a fast reaction upon sound
events which translates into a highly accurate detection of times-
tamps. As shown in Table I, for achieving a high percentage of
intersection both ppr¢ and pgre are defined with large values.
Whereas the cost of cross triggers is not considered for this
scenario, it is crucial for the second one (PSDS2), which focuses
on avoiding confusion between classes. For this purpose, the
accurate localization of timestamps is not of high importance,
but the evidence of cross-triggers penalizes the final score. For
both scenarios, it is considered the highest cost for the instability
across classes and an e, value of 100 events/hour.

III. METHOD DESCRIPTION
A. Proposed Conformer-Based System

Our Conformer model is based on the winning system of the
DCASE 2020 Task 4 [14]. The system is composed of a first stage
where a 7-layer CNN is utilized to extract high-level features
from a mel-spectrogram, while also reducing dimensionality.
Subsequently, 3 Conformer blocks are stacked. The MHSA
module of each block is defined with 4 attention heads and
an encoder dimension of 144. A linear layer is then employed
to obtain the final posteriors by performing a position-wise
classification. Additionally, it introduces a tagging token similar
to the classification token used in the successful BERT language
model [28] for summarizing the weak label predictions through
the attention layers. By this means, this token is attached to
the first frame of the feature sequence and consequently, weak
predictions will be obtained from this first frame.

To enhance the performance over the second scenario of the
PSDS, we incorporate Frequency Dynamic Convolutions [17]
into the CNN-based feature extractor, to which we will refer as
FDY-CNN. By this means, we were able to asses whether the
improvements observed in the classification of non-stationary
sound events in CRNN systems were also obtained with



3900

Conformer-based ones. For the FDY-CNN we employ context
gating as the activation function and define a time resolution
reduction of 8, which was the value set in the original configu-
ration. Additionally, we conduct a hyperparameter tuning using
the value of PSDS2 as the objective score. For this purpose,
we investigate the impact of varying the number of conformer
blocks, attention heads and the pooling factor.

Data augmentation techniques are crucial for leveraging the
robustness of a system. To improve regularization while en-
hancing the PSDS2 value, we investigate the combination of
three different techniques. Due to the scarcity of labeled data,
Mixup [35] is widely employed for obtaining new samples and
their corresponding labels from the vicinity distribution of the
original training data. Additionally, for improving robustness
in the localization of sound events, frame-shift is applied over
the sequence. Lastly, we experiment as well with the recently
proposed FilterAugment [36]. This method adds robustness by
modeling different acoustic environments, which is achieved
through a random amplification of the energy at some frequency
bands of the mel-spectrogram while reducing it in other bands.
All these data augmentation methods were applied to the training
data with a probability of 50%.

Finally, we exploit embeddings extracted from pre-trained
model BEATS [19] to analyze its benefits along with the Con-
former system. Following the same procedure proposed for the
DCASE 2023 Challenge Task 4A baseline, one-dimensional
embeddings of length 718 are extracted from our input audio
and concatenated at frame-level to the output of the FDY-CNN
feature extractor as shown in Fig. 2, requiring both sequences
to have the same temporal dimension. To ensure this alignment
and, following the baseline proposal again, we employ adaptive
average pooling to adjust the length of the BEATs embeddings
to match the one obtained at the output of our FDY-CNN.

B. Multi-Resolution Analysis

In previous studies [20] we observed that CRNNs outper-
formed considerably the performance of the Conformer in terms
of PSDS1. This suggests that the Conformer model may suffer
from a deficiency in temporal precision, which complicates the
accurate localization of onsets and offsets within a sequence.
This particular limitation appears to be the primary weakness of
the Conformer model.

To address this limitation, we propose to analyze our op-
timized Conformer employing the multi-resolution approach
introduced in Section III-B. By performing this, we can examine
whether an enhancement in time resolution of the employed
features could potentially solve its inherent issues. Additionally,
this method allows us to gain a deeper understanding of this
architecture’s behavior across different resolution points.

In Table II we introduce the five time-frequency resolution
points we have defined for evaluating the performance of the
Conformer across different feature representations. We have
set the feature extraction configuration utilized in the baseline
of the DCASE 2023 Task 4A (referred to as B.S) as starting
point. From this one, we define four additional resolution points.
Among these, two are designed to double the resolution in
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Fig. 2. Proposed Conformer-based system for Sound Event Detection. Fre-
quency Dynamic Convolutional Neural Network is employed for subsampling
and extracting features from mel-spectrograms. When incorporating pre-trained
model BEATS, adaptive average pooling is applied to concatenate at frame-level
the extracted embedding with FDY-CNN features, which is then fed as input to
the Conformer blocks.

TABLE II
PARAMETER CONFIGURATION OF THE FIVE RESOLUTION POINTS EMPLOYED
FOR THE FEATURE EXTRACTION, USING AS SAMPLE RATE fs = 16000 Hz

Resolution 77, Ty BS Fy Fyy

N 1024 2048 2048 4096 4096

L(ms) 64.0 96.0 128.0 1920 256.0

R(ms) 8.0 12.0 16.0 24.0 320

Nonel 64 96 128 192 256
The window length (L) and the hop size (R) are reported in Millise-
conds (ms).

frequency (Fy ;) and in time (77 ), whereas the remaining two
are halfway points between BS and F; (Fly)or T o (T7).
Additionally, we evaluated the benefits of using multi-
resolution systems by fusing the output of different single-
resolution models. We examined combinations involving 3, 4,
and all resolutions presented in Table II, which we will refer to as
3res, 4res and Sres in Section IV. All these combinations include
the B.S configuration, and depending on whether the remaining
resolution points prioritize time or frequency enhancement,
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we denote them with a T or a F, respectively. For instance,
the multi-resolution system designated as 3res-T comprises the
BS resolution and the two resolutions enhanced in time (7
and T ;).

C. Experimental Setup

We conducted the different experiments employing the
DESED (Domestic Environment Sound Event Detection)
dataset [37], as it is the one employed for the DCASE Challenge
Task 4A. The training set is composed of 10,000 synthetic audio
clips with strong labels, 1,578 real recordings with weak labels
and 14,412 real unlabeled recordings. While the real data is
taken from AudioSet [7], the synthetic one is generated using
the Scaper soundscape synthesis and augmentation library [38].
The new synthetic audios are obtained by mixing foreground
events with background sounds. Foregrounds events have been
extracted from FSD50K (Freesound Dataset 50k) [39] verifying
that the sound event class belongs to the DESED dataset and
is dominant in the audio clip. Background sounds that contain
non-target classes are taken from the SINS dataset [40], MUSAN
dataset [41] or Youtube. For selecting the best model during
the training procedure, the synthetic validation set (2,500 clips)
together with 10% of the weakly-labeled set is employed. For
testing, we employ the validation set, which was constructed
to match the clip-per-class distribution of the weakly labeled
training set. It is composed of 1,168 real audio clips annotated
with strong labels. Therefore, the different results provided in the
following section are given over this real validation set and em-
ploying the recently proposed threshold-independent PSDS [42]
as our evaluation metric.

As aforementioned, to optimize the Conformer architecture,
we initially adopted the network configuration that won the
DCASE 2020 Task 4 [14]. Therefore, for a consistent ablation
study comparison, we employ the same configuration for feature
extraction as the original system. This involved extracting mel-
spectrograms with 64 frequency bins using a Hamming window
with a size of 1024 samples (64.0ms) and a hop length of 323
samples (20.2ms). However, for our multi-resolution analysis,
we utilize the parameter setting presented in Table II, where
the B)S resolution aligns with the one employed in the DCASE
Challenge 2023 Task 4A baseline system, based on CRNNS.
This approach allowed us to analyze both architectures using
the same time-frequency resolution points to determine whether
they can be complementary or if one can enhance both PSDS
scenarios.

For dealing with both labeled and unlabeled data, we adopt
semi-supervised learning. The Mean-Teacher method [43] is
a prevalent technique in the SED field, utilizing two identical
models: a student and a teacher, with the teacher’s weights
being an exponential moving average of the student’s weights.
By minimizing a consistency cost between the predictions of
the student and teacher, the model learns to generate targets
from unlabeled data. We employed Mean Squared Error as
the loss function for minimizing this consistency cost, whereas
Binary Cross Entropy is employed for the classification cost.
Additionally, we have included in each batch the three types
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TABLE III
EFFECTS OF EMPLOYING FDY-CNN ALONG WITH CONFORMER BLOCKS OVER
THE DESED VALIDATION SET

Model Architecture PSDS1  PSDS2

Conformer 0.221 0.554

FDY-Conformer 0.268 0.618
TABLE IV

EFFECTS OF INCREASING THE NUMBER OF CONFORMER BLOCKS OVER THE
DESED VALIDATION SET

Conformer blocks PSDS1  PSDS2
3 0.268 0.618
5 0.269 0.646
7 0.254 0.648
9 0.243 0.602

of annotations: strong, weak and unlabeled data with a ratio of
1:1:2. Models are trained employing the Adam optimizer with an
exponential warm-up, setting a total of 200 epochs. Generally,
the teacher model achieves a more consistent learning trajectory
across epochs leading to a superior performance during testing.
Thus, the model selection is performed over the teacher network.

IV. EXPERIMENTS AND RESULTS
A. Optimization of Conformer System

As a first step, we explored the integration of Frequency
Dynamic Convolutions within the CNN-based feature extractor
module preceding the Conformer blocks. As shown in Table III,
removing the translation equivalence in the frequency axis when
extracting high-level features from mel-spectrograms consider-
ably enhances the performance across both specified scenarios.

To investigate the impact of the number of Conformer blocks
used in conjunction with the FDY-CNN feature extractor, we
systematically varied the number of blocks from 3 to 9. The
results presented in Table IV indicate that PSDS2 values benefit
from a higher number of stacked blocks. The peak PSDS2
performance was achieved with the use of 7 blocks (0.648),
surpassing the one obtained with the initial configuration of 3
blocks (0.618). However, it is important to note that increasing
the number of blocks seems to have a negative impact on the
temporal precision, as evidenced by the reduced PSDS1 values.
We hypothesize that this behavior results from self-attention
layers, which have access to the entire input sequence. Stacking
a higher number of blocks might create an accumulative effect
on the output of the Conformer, tending to be less local and more
global, thus reducing the time precision. In the next section, we
will further explore this effect by visualizing how the attention
matrices vary along the Conformer blocks.

Considering a fixed encoder dimension, each head within the
self-attention module specializes in focusing on specific seg-
ments of the input sequence. Therefore, modifying the number
of attention heads inherently alters the span of attention for
each head. We conducted experiments by varying the number
of attention heads within the 7-block FDY-Conformer system
to assess its impact on the two PSDS scenarios. As presented
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TABLE V
EFFECTS OF MODIFYING THE NUMBER OF HEADS EMPLOYED IN THE
MULTI-HEAD SELF-ATTENTION MODULE OVER THE DESED VALIDATION SET

Attention Heads Dim/Head PSDS1  PSDS2
2 72 0.264 0.614
4 36 0.254 0.648
8 18 0.264 0.626
TABLE VI

EFFECTS OF POOLING FACTOR EMPLOYED IN THE FDY-CNN FEATURE
EXTRACTOR OVER THE DESED VALIDATION SET

Net Pooling PSDS1  PSDS2
2 0.343 0.543
4 0.328 0.582
8 0.254 0.648
16 0.167 0.645
TABLE VII

EFFECTS OF DATA AUGMENTATION ON BOTH PSDS SCENARIOS OVER THE
DESED VALIDATION SET

Mixup Frame Shift FilterAugment PSDS1  PSDS2
X 0.254 0.648
X X 0.273 0.637
X X 0.274 0.650
X X X 0.281 0.678

in Table V, PSDS2 achieved its highest value with the default
number of heads (4), while PSDS1 improved with alternative
head counts (2 or 8), although the differences are small.

The CNN-based feature extractor includes a net pooling factor
along the time axis, determining the length of the input sequence
processed by the Conformer blocks. By reducing this factor, we
can obtain longer sequences with higher temporal resolution.
However, this also entails increased computational costs. Given
that the Conformer baseline uses a default net pooling factor of 8,
we conducted experiments to evaluate the effects of modifying
this factor. The results in Table VI indicate that lowering the
pooling factor improves temporal precision within the Con-
former system, and thus PSDS1, but negatively impacts PSDS2
performance. In contrast, doubling the net pooling factor does
not seem to improve the PSDS2 value but considerably affects
the results of PSDS1. Therefore, a net pooling factor of 4 seems
to achieve a reasonable balance between the two performance
criteria. Considering that our primary focus was optimizing this
architecture for the second scenario, we continued to use a net
pooling factor of 8in subsequent experiments. However, given
the performance obtained for both scenarios when increasing
the input’s length, we speculate that longer sequences might be
impacting global attention, reducing its effectiveness as attend-
ing to distant frames becomes more difficult. In the next section,
we will further analyze this effect on the attention function using
our multi-resolution approach.

Finally, we explored the effects of various data augmentation
techniques on our best-performing PSDS2 Conformer system,
which was initially trained using only mixup [35]. As presented
in Table VII, we examined the combination of mixup with
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Fig.3. Analysis on both PSDS scenarios of training the optimized Conformer
system across the different time-frequency resolution points defined in Table II.
Results are presented over the DESED Validation set.

other methods such as frame-shifting and FilterAugment [36].
The results show that employing frame-shifting alone improves
performance, primarily in terms of PSDS1, while FilterAug-
ment enhances results in both scenarios. Notably, when both
techniques are used along with Mixup, there is a substantial
overall improvement in performance.

B. Multi-Resolution Analysis

Given the results presented in the previous section, it is
evident that the Conformer system exhibits relatively lower
performance in terms of PSDS1, indicating that its key limitation
is its lack of temporal precision. This observation underscores
the need for further exploration and refinement of the Con-
former architecture, particularly in addressing temporal aspects
of sound event detection. For this purpose, we have employed our
multi-resolution approach (see Section III-B) to analyze whether
different time-frequency resolution points could alleviate this
issue.

In Fig. 3 we present the results obtained when training our
optimized Conformer with the different time-frequency resolu-
tion points defined in Table II. Observing the PSDS1 values, we
can assert that the Conformer system is very dependent on the
time resolution, as there is a notable variance between the results
obtained with different settings compared to PSDS2, for which
results present higher stability. Enhancing the time resolution
significantly improves the results for PSDS1 without a dramatic
drop in the PSDS2 performance. Additionally, an enhancement
in frequency resolution appears to be more beneficial for PSDS2
but results in a lower score for PSDS1.

For a more in-depth analysis of the results, Fig. 4 presents
the predictions of the Conformer output scores for two example
audio clips at different time-frequency resolution points. For
this purpose, we have selected the BS configuration, F'; which
yielded the highest PSDS2 score and 7%, which enhances
PSDSI. It is noticeable that enhancing the resolution in time
improves the precision of onsets and offsets predictions, partic-
ularly when dealing with brief, continuous sound events such
as the cat’s meows depicted in Fig. 4(b). For such events, the
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Comparison of Conformer model predictions across three time-frequency resolution points defined in Table II. This comparison was conducted for two

audio samples: (a) Y39Pfle5CrPU_30.000_40.000.wayv and (b) YPB5FosTwMS8s_10.000_20.000.wav, both extracted from the DESED Validation set.

Fig.5.

Layer 5

Layer 7

Attention scores obtained for audio Y39PfIe5CrPU_30.000_40.000.wav. The top row displays attention scores obtained with BS resolution and the bottom

row with T++ resolution. The attention matrices represent the average scores from the 4 heads in the MHSA module, visualizing only the even layers. Both axes

denote time, facilitating a better comparison between the two resolution points.

Conformer tends to group all events into a single one, but the
time enhancement helps to correctly locate each one separately.
However, it is worth mentioning that this grouping feature of the
Conformer also helps to avoid false predictions of short events
caused by noise, which can be detected when time resolution is
enhanced, as observed with the Dishes event in Fig. 4(a).
Considering the accurate time boundary predictions obtained
when increasing the resolution in time, it is worth studying how

the attention evolves along the Conformer layers employing
different time-frequency resolution points. For this purpose, in
Fig. 5 we present the averaged attention matrices of the 4 heads
employed in the MHSA module for the example in Fig. 4(a).
Observing the matrices obtained for the BS resolution (top
row), it seems that the attention patterns appear randomly in the
first layers. However, when increasing the number of blocks,
they become more localized in the segments containing relevant
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TABLE VIII
EFFECTS OF INPUTTING THE AGGREGATION OF ALL THE CONFORMER BLOCKS
OUTPUTS IN THE POINT-WISE CLASSIFIER

Resolution  Aggregation PSDS1  PSDS2
BS No 0.250 0.700
Yes 0.307 0.666
No 0.363 0.686
Ty +
Yes 0.356 0.628

Results are reported over the desed validation set.

audio events, achieving in the output layer vertical lines that
tend to dominate over diagonal ones. In our example, the first
red rectangle in the seventh layer represents the second speech
event, whereas the following red rectangle is the alarm event.
These vertical lines are associated with global attention, where
all queries in the sequence (i.e. all output positions) attend
with similar intensity to the same keys (i.e. to the same input
locations). Consequently, as output frames at all positions focus
on the alarm event, its time boundaries are not correctly localized
and a fade-out effect is produced in the prediction. These global
patterns may be adequate for long stationary sound events and
avoiding cross-triggers, but they harm localization. This obser-
vation aligns with the results presented in Table IV, concluding
that stacking a higher number of Conformer blocks increases
the accumulative effect of self-attention layers, spanning the
attention over the whole output sequence and leading to higher
PSDS2 scores, but harming PSDS1 values.

Considering the evolution of attention patterns along the
Conformer blocks and the impact of predominately global at-
tention on results, it is worth investigating whether combining
features from different layers could benefit our task. Based on
the approach proposed for the Multi-scale Feature Aggregation
Conformer (MFA-Conformer) [13], we concatenated the output
of every Conformer layer and used it as input to the point-wise
classifier. By this means, we could analyze whether low-level
feature maps could also contribute to the accurate localization
of sound events. As presented in Table VIII, aggregating the
outputs of all layers for the baseline configuration improves
the PSDS1 score compared to using only the output of the last
layer. This suggests that adding representations from previous
blocks partially compensates for the predominance of global
attention patterns. However, this produces the opposite effect in
the second scenario (PSDS2), where global attention seems to
be more important.

In the case of the resolution enhanced in time, aggregating the
outputs degrades the metric in both scenarios, suggesting that the
output of the last block was a better representation. Analyzing
the attention matrices of this resolution point, bottom row of
Fig. 5, it can be observed that these vertical lines are still present
but with a lower intensity and more discontinuous, implying that
queries will pay higher attention to neighboring keys in the input
and not to the whole sequence. Therefore, it seems that using
enhanced time resolution or longer input sequences reduces
the global attention effect, forcing it to be more localized and
thereby, facilitating the identification of time boundaries.
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TABLE IX
RESULTS OF COMBINING DIFFERENT TIME-FREQUENCY RESOLUTION POINTS
OVER THE DESED VALIDATION SET

Resolutions PSDS1  PSDS2
Ires Tyt 0.363 0.686

BS 0.250 0.700
3res Fy, BS, T+ 0.263 0.738
3res-F F,.,F.,BS 0.240 0.736
3res-T  BS, T4, T4y 0.333 0.732
4res-F F,, F.,BS, Ty 0.264 0.742
4res-T  F,,BS, Ty, Ty 0.293 0.740
Sres Fit,Fy,BS, T4, Ty 0.306 0.745

In light of these observations, it appears challenging to iden-
tify a single resolution point that optimally enhances both sce-
narios simultaneously. Therefore, we explore different combi-
nations of time-frequency resolution points to make the most
of them and obtain a more robust performance. In Table IX
we present some of the combinations explored along with their
corresponding results. Analyzing the scores obtained for PSDSI1,
none of the combinations surpasses the performance achieved
with T ;. This suggests that averaging this time-enhanced
resolution point with other settings featuring lower temporal
resolution adversely impacts the temporal precision, thereby
affecting PSDS1 results. Conversely, multi-resolution systems
outperform single-resolution models in terms of PSDS2 while
increasing the PSDS1 performance of the resolution points not
enhanced in time, obtaining systems more robust.

C. Conformer System in the DCASE 2023 Challenge Task 4 A

In this section we present part of our submission to the
DCASE 2023 Challenge Task 4 A, where we introduced our
PSDS2-optimized Conformer [44]. As detailed in Section III-C,
to analyze the benefits of each architecture for the two scenarios
proposed, we employ the time-frequency resolution used in the
baseline of this task.

To assess the advantages of employing Conformer blocks for
SED, we first compared the baseline system with our Conformer-
enhanced model, without the use of Frequency Dynamic Con-
volutions. This initial comparison revealed a significant PSDS2
performance improvement resulting from the incorporation of
Conformer blocks, as demonstrated in Table X. Our analysis
further highlights the positive impact of Frequency Dynamic
Convolutions on both the baseline and Conformer-based sys-
tems, particularly benefiting PSDS2. However, it is notewor-
thy that even with this enhancement, our Conformer system
consistently outperforms CRNN-based systems in the second
PSDS scenario. Regarding the number of parameters, our Con-
former system has almost four times as many as the CRNN
model. This difference is especially noticeable when adding
the FDY-CNN module to both architectures, causing a greater
relative increase in parameters for the CRNN compared to its
baseline.
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TABLE X
COMPARISON OF BASELINE AND PROPOSED ARCHITECTURES FOR SED OVER
THE DESED VALIDATION SET

Model Architecture PSDS1 PSDS2  Parameters
CRNN ! 0367  0.544 L.IM
Conformer 0.231 0.584 4.2M
FDY-CRNN 0.385 0.642 9.7 M
FDY-Conformer 0.250 0.700 12.6M
CRNN + BEATs ! 0.487  0.752 1.2M
FDY-CRNN + BEATS 0.474 0.780 9.8 M
Conformer + BEATSs 0.354 0.807 4.3M
FDY-Conformer + BEATs 0.390 0.813 12.9M

Additionally, we evaluated whether employing embeddings
extracted from the pre-trained BEATs model was as well ben-
eficial for Conformer blocks, as the incorporation of BEATS
embeddings into the baseline yielded notably superior results.
Following the same procedure, we concatenated the BEATs em-
beddings to both the output of our CNN and FDY-CNN modules,
which subsequently serve as input to the Conformer blocks.
In line with previous findings, the inclusion of Conformer
blocks does not yield notable benefits for PSDS1 results, but
it does enhance PSDS2 values, resulting in even more favorable
outcomes than those achieved with multi-resolution systems.
While incorporating FDY to the Conformer system with BEATs
significantly improves the temporal localization of sound event
timestamps, its impact on PSDS?2 is less pronounced compared
with previous observations. Therefore, it appears that the in-
clusion of BEATs embeddings already makes a significant con-
tribution to the accurate classification of sound events, thereby
diminishing the impact of FDY on the predictions. However,
it is noteworthy that although using FDY-CRNNs along with
BEATS increases the performance in PSDS2, results for PSDS1
are slightly worse. Additionally, in terms of efficiency, concate-
nating BEATs embeddings adds slightly more parameters to the
model while boosting considerably the performance, making it
a better approach than using only FDY.

V. CONCLUSION

In this paper, we have analyzed the advantages and limitations
of the Conformer architecture for Sound Event Detection, in
comparison with the most common architecture in this field, the
CRNN, within the context of the DCASE 2023 Challenge Task
4 A. Given that the main limitation of the Conformer architecture
relies on its temporal precision, we decided to optimize the
Conformer for the PSDS2. Through this optimization process,
we gained several important insights.

For instance, we observed that increasing the number of
Conformer layers tends to improve PSDS2 while worsening
PSDSI1, suggesting that additional Conformer layers tend to
smooth the outputs over time. To gain more insights into this
problem, we combined the Conformer architecture with our pre-
viously proposed multi-resolution approach. By using features
with enhanced temporal resolution, we partially compensated
for the Conformer’s lack of temporal precision, reaching similar
PSDS1 results to those obtained with CRNN-based models, with
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minimal degradation in the PSDS2 results. This multi-resolution
study has also allowed us to analyze the temporal resolution of
the conformer outputs, confirming that this architecture tends to
smooth the output in time and that this effect can be alleviated by
using input features with better time resolution. We hypothesize
that this effect could be due to the attention mechanism in
the Conformer, which has access to the whole input sequence
to generate the output at each time. Therefore we studied the
attention matrices of the different Conformer blocks, observing
that they tend to include vertical lines in the last block. This
indicates that the prediction for every position in the output
sequence tends to be computed based on only limited parts of the
input sequence, where the sound events are located, producing
therefore larger predictions over time. Given that the output
of the different Conformer blocks seemed to contain different
temporal precision, we also tried combining them, obtaining
small improvements for PSDS1.

All these experiments have allowed us to better understand the
benefits and drawbacks of the Conformer architecture for SED
and how to optimize it for PSDS1 or PSDS2. This optimiza-
tion process has also allowed us, by combining the conformer
with Frequency Dynamic Convolutions and with the addition
of BEATs embeddings, to obtain a very competitive PSDS2
result (0.813), outperforming the best non-ensemble PSDS2
score achieved by the winning team (0.807) [45] in the DCASE
Challenge 2023 Task 4A.
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