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Label-Synchronous Neural Transducer for Adaptable
Online E2E Speech Recognition
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Abstract—Although end-to-end (E2E) automatic speech recog-
nition (ASR) has shown state-of-the-art recognition accuracy, it
tends to be implicitly biased towards the training data distribution
which can degrade generalisation. This paper proposes a label-
synchronous neural transducer (LS-Transducer), which provides
a natural approach to domain adaptation based on text-only data.
The LS-Transducer extracts a label-level encoder representation
before combining it with the prediction network output. Since blank
tokens are no longer needed, the prediction network performs as a
standard language model, which can be easily adapted using text-
only data. An Auto-regressive Integrate-and-Fire (AIF) mechanism
is proposed to generate the label-level encoder representation while
retaining low latency operation that can be used for streaming.
In addition, a streaming joint decoding method is designed to
improve ASR accuracy while retaining synchronisation with AIF.
Experiments show that compared to standard neural transducers,
the proposed LS-Transducer gave a 12.9% relative WER reduction
(WERR) for intra-domain LibriSpeech data, as well as 21.4%
and 24.6% relative WERRs on cross-domain TED-LIUM 2 and
AESRC2020 data with an adapted prediction network.

Index Terms—Domain adaptation, E2E ASR, neural transducer.

I. INTRODUCTION

THE hybrid deep neural network and hidden Markov model
(DNN-HMM) [1], [2], [3] approach for automatic speech

recognition (ASR) is a widely-used deep learning-based frame-
work, which contains several separately optimised modules,
including the acoustic model, pronunciation lexicon, context
dependency model [4], and language model (LM). However, the
separately optimised models make it hard to achieve a globally
optimised system [5]. End-to-end (E2E) ASR simplifies the
modelling pipeline and integrates the separate modules used
by the DNN-HMM approach [6]. Notable E2E ASR methods
include connectionist temporal classification (CTC) [7], the
neural transducer [8], and the attention-based encoder-decoder
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(AED) [9], [10]. Among these techniques, the neural transducer
provides a natural approach for streaming ASR that can give a
high accuracy, and has become popular for industrial applica-
tions [11].

The hybrid DNN-HMM framework is, however, still used
in many industrial ASR systems [11]. Several practical ad-
vantages of hybrid systems contribute to this, including low-
latency streaming and domain adaptation capabilities [11]. In the
past few years, the streaming features of E2E ASR have been
extensively explored [12] and neural transducers can replace
hybrid DNN-HMMs in some cases [13]. However, the hybrid
DNN-HMM approach is highly modular and contains an explicit
independent LM, making it straightforward to bias the recogni-
tion system to unseen domains using text-only data. The neural
transducer, which is the most commonly deployed E2E model,
is still weaker than HMM-based systems in this regard. This is
because E2E ASR models jointly learn acoustic and linguistic
information [14] and do not have an explicit LM that can be
used for flexible domain adaptation with text-only data. For the
standard neural transducer, in which speech is decoded on a
per-frame basis i.e. frame-synchronously, blank tokens are used
to augment the output sequence thus allowing the frame-level
encoder output to be combined with the label-level prediction
network output [8]. However, blank token generation means that
the prediction network cannot be viewed as an explicit LM [15]
due to the inconsistency with the LM task [15], [16] and thus
poses a challenge to text-only domain adaptation.

The motivation of this paper is to modify the standard neural
transducer by enabling an acoustic encoder representation to
be directly combined with the prediction network output at the
label level and hence not need blank tokens. Therefore, operation
is label-synchronous and the prediction network performs as
a standard LM. This makes it straightforward to biased the
model to previously unseen domains using text-only data. In this
paper, a label-synchronous neural transducer (LS-Transducer) is
proposed1 that provides a natural approach to domain adaptation,
while retaining the valuable streaming property and E2E training
simplicity.

The main contributions of this work can be summarised in
four key parts:
� LS-Transducer: A label-synchronous neural transducer

(LS-Transducer) is proposed that extracts a label-level
encoder representation before combining it with the pre-
diction network output. The LS-Transducer improves E2E

1An earlier and less complete description of the work is available at [17].
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ASR domain adaptation while maintaining low ASR error
rates and good streaming properties.

� Auto-regressive Integrate-and-Fire (AIF): In order to ex-
tract the label-level encoder representation for the LS-
Transducer, an AIF mechanism is proposed, which is ex-
tended from the Continuous Integrate-and-Fire (CIF) [18]
approach but with improved efficiency and robustness to
inaccurate unit boundaries.

� Prediction Network Adaptation: The LS-Transducer pre-
diction network performs as an explicit LM, so can be
easily fine-tuned on target-domain text.

� Streaming Joint Decoding: This paper also proposes a
streaming joint decoding method to enhance the accuracy
of the LS-Transducer by utilising an online CTC pre-
fix score, which is synchronised with the AIF alignment
through a simple but effective modification to the standard
CTC prefix score.

Experiments with ASR models trained on LibriSpeech
data [19] show that the proposed LS-Transducer gives reduced
WERs over standard neural transducer models for both intra-
domain and cross-domain scenarios.

The rest of this paper is organised as follows. Section II re-
views related works including CIF on which the AIF technique is
based. Section III describes the proposed LS-Transducer frame-
work. Section IV details the experimental setups and Section V
presents the results. Finally, Section VI concludes.

II. RELATED WORK

A. Neural Transducer Models

The neural transducer [8] has gained widespread interest
and is the leading E2E model deployed in industry [11]. The
neural transducer removes the independence assumption in CTC
between output tokens by conditioning on previous non-blank
output tokens [20]. When aligning input speech and output
token sequences, the neural transducer aligns the sequences at
the frame level by inserting a blank token to augment output
sequences. Consequently, the neural transducer output is con-
ditioned on the speech sequence up to the current time step,
providing a natural approach for streaming ASR [11]. This is in
contrast to the AED [9] which relies on a global attention mech-
anism that hampers streaming processing or incurs significant
latency [21],

The neural transducer contains an encoder network, a pre-
diction network, and a joint network. The encoder network
extracts an acoustic representation henc

t from input speech
x. The encoder network can use a long short-term memory
(LSTM) [22], Transformer [10], or Conformer [23] structure.
However, when aimed at streaming, strategies like the chunk-
based or lookahead-based method [13] need to be employed to
achieve a streaming Transformer/Conformer encoder.

The prediction network allows the neural transducer to capture
causal dependencies in the output by generating a representation
hpre
n from previous non-blank tokens y1:n−1. The prediction net-

work is an auto-regressive structure and can employ an RNN [8],
unidirectional Transformer [24] or even only an embedding

layer [15]. The prediction network normally has a similar struc-
ture to an LM, but it does not perform as an explicit LM because
it also needs to predict blank tokens, which is inconsistent with
the LM task [16].

The joint network combines henc
t and hpre

n at the frame level
with fully-connected (FC) networks and the output logits lt,n
can be computed as:

lt,n = FC(Ψ(FC(henc
t ) + FC(hpre

n ))) (1)

where Ψ is a non-linear activation function and the predicted
probability of the k-th token is obtained by applying a softmax
function to the logits lt,n:

p(yn = k|x1:t, y1:n−1) = softmax(lt,n) (2)

where x1:t denotes the speech sequence up to frame t. The
neural transducer loss function Lnt is defined as the negative
log-likelihood of the target text sequence y of length N :

p(a|x) ≈
T+N∏
u=1

p(au|A(a1:u−1),x) (3)

Lnt = −ln
∑

a∈A−1
p(a|x) (4)

where T is the total length of x and A is a collapsing function
that maps all alignment paths a to the target text sequence.

B. Continuous Integrate-and-Fire (CIF)

CIF [18] is presented as background since the AIF mechanism
in the LS-Transducer is an extension of CIF. CIF estimates
a monotonic alignment for streaming ASR. In CIF, the first
step involves learning a weight αt for each encoder output
frame et. To obtain this weight, a one-dimensional scalar is
generated from each encoder output et through convolutional
or fully-connected layers [18] or even directly using a particular
element of et [25]. Using a sigmoid function, the weight αt

is then computed from this scalar. Next, the CIF mechanism
accumulates the weights over time and integrates the acoustic
representation via a weighted sum. The accumulation continues
until the accumulated weight is above a threshold of 1.0. At this
point, the current weightαt is split into two parts: one part is used
to make the current accumulated weight be exactly 1.0, while the
remainder is used for the integration of the next label. CIF then
“fires” the integrated acoustic representation cj corresponding
to label yj and resets the accumulation.

As shown the example in Fig. 1, if the weights (α1, . . . , αT )
generated by CIF are (0.2, 0.9, 0.2, 0.3, 0.6, 0.1 · · · ), the
α2 = 0.9 needs to be divided into α2,1 = 0.8 and α2,2 =
0.1, so that α1 + α2,1 = 1.0 and c1 = 0.2e1 + 0.8e2 can be
emitted. The same situation will also occur when α5 = 0.6,
which needs to be divided into α5,1 = 0.4 and α5,2 = 0.2, so
that α2,2 + α3 + α4 + α5,1 = 1.0 and c2 = 0.1e2 + 0.2e3 +
0.3e4 + 0.4e5 can be emitted. The calculation of c3, c4, etc.,
are similar and applied until the end of the encoder output.

During training, a scaling strategy is used to ensure that
the integrated acoustic representations C=(c1, . . . , cL) have
the same length L as the target sequence. This strategy in-
volves computing a scaled weight, α̂t, which is obtained by
α̂t=αt · (L/

∑T
i=1 αi). By using α̂t instead of αt to extract C,
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Fig. 1. Example of CIF [18]. ⊕ and ⊗ denote addition and multiplication.
E=(e1, . . . ,eT ) denotes encoder output and α=(α1, . . . , αT ) represents pre-
dicted weights whose example values are (0.2, 0.9, 0.2, 0.3, 0.6, 0.1 · · · ).

the length is effectively controlled. However, during decoding,
the length of integrated representations is solely determined
by the weight accumulation

∑T
i=1 αi. Hence, a quantity loss

Lqua = |∑T
i=1 αi − L|, defined as the absolute difference be-

tween
∑T

i=1 αi and the target length L, is used to supervise CIF
to extract a number of integrated representations close to L.

Note that CIF doesn’t always locate the real acoustic bound-
aries and thus accurately estimate the text length [26], [27]. This
is especially true for English ASR tasks using units such as
BPE [28].2 In addition, since the scaling strategy is used during
training, a mismatch exists between training and decoding.
Moreover, CIF is a sequential method [27], [29] since it needs
to know the time step that the previous label representation was
emitted, before the weight accumulation mechanism is reset for
the next label. This can lead to reduced training efficiency.

C. Text Domain Adaptation

Various methods have been developed for E2E ASR domain
adaptation using text-only data. One solution involves LM fusion
where an external LM is integrated into the E2E ASR sys-
tem [30], [31], of which the most commonly used is shallow
fusion [30]. However, the E2E ASR model implicitly learns
an internal LM that characterises the source domain training
data distribution [32], which causes a mismatch when decoded
on unseen domains. To solve this issue, this internal LM can
be estimated [32], [33], [34], [35], [36], [37]. For example,
HAT [34] was proposed to estimate the internal LM by removing
the acoustic encoder effect from the neural transducer. Nonethe-
less, estimating the internal LM score increases the complexity
of decoding and achieving accurate estimation is not always
feasible due to domain mismatch [38]. More recent studies [16],
[39], [40] such as the factorised neural transducer [16], have in-
vestigated fine-tuning the internal LM using target-domain text.
However, this approach can lead to intra-domain performance
degradation [16]. The use of Kullback-Leibler divergence reg-
ularisation mitigates this issue but limits how much the internal

2CIF gained popularity in Mandarin ASR tasks because Chinese characters
correspond to clear syllable boundaries. However, CIF suffers from performance
degradation on English ASR due to difficulty in locating boundaries for BPE
units, as mentioned in [26]. While preliminary experiments show that the
proposed LS-Transducer is very effective on Mandarin data, this paper focuses
on English ASR.

Fig. 2. Illustration of the proposed LS-Transducer. Linear denotes linear
classifier. The output logits is a label-level two-dimensional matrix, where L
and V are the length and vocabulary size. ⊕ denotes addition.

LM learns the target domain [39], [40]. Another solution in-
volves using Text-to-Speech (TTS) to synthesise speech from the
target-domain text, which is then employed for fine-tuning the
ASR models [41], [42]. However, this method incurs significant
computational cost and lacks flexibility for fast adaptation [16].

III. LABEL-SYNCHRONOUS NEURAL TRANSDUCER

As shown in Fig. 2, the proposed LS-Transducer includes
the AIF mechanism to extract a label-level encoder represen-
tation before combining it with the prediction network output.
This is the main difference with the standard neural transducer
which directly combines the frame-level encoder output with the
label-level prediction network output. AIF ensures the extracted
label-level encoder representation is strictly synchronised with
the prediction network output by querying its intermediate out-
put, enabling the prediction network to work as a standard LM.
The joint network in the LS-Transducer then adds the logits
obtained from the AIF and prediction network outputs through
linear fully-connected layers. This design enables the prediction
network to be flexibly biased to unseen domains on text-only
data, without affecting other parts of the model. Note that the
joint network output, as shown in Fig. 2, is a 2-dimensional
matrix RL·V , which differs from the standard neural transducer
where the output is a 3-dimensional tensor RT ·L·V with an extra
time dimension.

During training, with the help of the proposed AIF mecha-
nism, the logits (as in Fig. 2) in the LS-Transducer will have the
same length as the target sequence, therefore the cross-entropy
(CE) loss Lce can be computed between them and used as the
training objective. Computing this CE loss can also help save a
considerable amount of memory compared to the RNN-T loss
that is computed based on three-dimensional tensors [11]. In
addition, the AIF mechanism calculates the quantity lossLqua to
learn an explicit speech-text alignment, which will be described
in detail in Section III-A. Inspired by [43], which shows that
CTC [7] always helps model training for both AED and neural
transducers, CTC-based supervision Lctc is also used by the
encoder in the LS-Transducer. Therefore, the overall training
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Fig. 3. Illustration of the proposed AIF. � denotes dot-product attention,
whose query dinter

j is the intermediate output of the prediction network.

objective Llst of the LS-Transducer is:

Llst = γLctc + (1− γ)Lce + μLqua · L (5)

where L is the target length, and γ and μ are hyper-parameters.

A. Auto-Regressive Integrate-and-Fire (AIF)

The AIF mechanism is proposed in this paper, which extracts
label-level representations C = (c1, . . . , cL) from the acoustic
encoder output E = (e1, . . . , eT ). Extended from CIF [18],
AIF retains the streaming property and also uses accumulated
weights αt to locate boundaries and thus decide when to fire a
label-level representation cj . However, AIF resolves a number
of issues present in CIF, thus improving the LS-Transducer
recognition accuracy. The main difference to CIF is that AIF
uses dot-product attention instead of the weights αt to extract
the cj , after locating the boundaries based on the accumulated
weights αt.

To be more specific, as shown in Fig. 3, AIF first computes a
weight αt for each encoder output frame et, and this weight can
be obtained using a sigmoid function, after transforming et into
a scalar by neural networks or even simply selecting a particular
element. The next step is locating the boundaries corresponding
to the ASR modelling unit. To decide when to fire the label-
level representation cj where j ∈ (1, L), the weight αt will be
accumulated from left to right until it exceeds j (j is both the
index and threshold for cj), and then the time step of the located
boundary for cj is recorded as Tj+1. If the j isn’t reached until
all T frames have been read (i.e.

∑T
i=1 αi ≤ j), Tj = T . When

firing the label-level representation cj , AIF employs dot-product
attention, where E1:Tj

is used as the keys and values:

cj = softmax(dinter
j ·E1:Tj

�) ·E1:Tj
(6)

where the query dinter
j is the prediction network intermediate

output at the j-th step. Note the use of E1:Tj
is an important

difference from AED-based [9] models, in which all speech
input (i.e. E1:T ) is used by the attention module. As shown in
Fig. 3, after the cj is extracted, the accumulation of the weight

αt will continue to locate the boundaries of cj+1, this process
is carried out incrementally until the last cL is obtained. When
finding cL, AIF is closer to the AED since the complete E1:T is
available to be used as the keys and values.

As shown in the example in Fig. 3, when generating the first
representation c1, the accumulated weight αt exceeds 1 at the
5-th time step (i.e.

∑5
i=1 αi > 1 and

∑4
i=1 αi ≤ 1), thus E1:4

is used as the keys and values to extract c1 with dinter
1 as the

query. After that, the weights αt continue to be accumulated to
find the time step when the accumulation exceeds 2, which is at
the 11-th time step in this example. Therefore, E1:10 is used as
the keys and values to extract c2 with query dinter

2 . Subsequent
extraction for c3, c4, etc., follows a similar rule.

The joint network combines the logits obtained from AIF and
the prediction network at the label level, and the output logits lj
can be computed as:

lj = FC(cj) + FC(dfinal
j ) (7)

where dfinal
j denotes the final output of the prediction network.

FC denotes linear output layers that map the dimension to the
vocabulary size.

During training, in order to encourage AIF to learn accurate
speech-text alignments and thus locate the correct boundaries,
an explicit objective i.e. quantity loss Lqua will be computed:

Lqua = |
T∑

i=1

αi − L| (8)

This alignment learning is explicit and independent of recog-
nition, as these weights (α1, . . . , αT ) are not used to extract
label-level representations C = (c1, . . . , cL) and thus predict
the target labels, hence distinguishing it from other E2E methods
such as standard neural transducers, CTC, and AED.

In general, AIF generates the label-level representation in an
auto-regressive manner, which has many advantages compared
to conventional CIF. First of all, as mentioned in Section II-B,
the length of label-level representation C extracted by CIF is
solely determined by the value of accumulated weights

∑T
i=1 αi

and thus needs to employ a scaling strategy during training.
However, this scaling strategy relies on the ground truth of target
length and is not accessible during decoding, causing a mismatch
between training and decoding. However, in AIF, the length of
C is decided by the number of queries, so the scaling strategy
is not used and the mismatch issue does not arise. Second,
AIF has a higher training speed due to its ability to generate
label-level representations in parallel with teacher forcing by
masking certain attention weights, while, CIF, as discussed
in Section II-B, is a sequential approach. Third, although the
boundaries located by the accumulated weights αt might not
always be accurate, as shown in the dashed box in Fig. 3, AIF
shows flexibility in tackling this issue by taking the first frame
as the left boundary when extracting the cj .

B. Streaming Joint Decoding

Due to the proposed AIF mechanism, the LS-Transducer
is naturally equipped with streaming decoding. In addition,
considering the LS-Transducer uses the CTC branch to help
model training, a streaming joint decoding method is proposed
which computes an online CTC prefix score synchronously
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with the LS-Transducer predictions to refine the search space
and eliminate irrelevant alignments. The standard CTC prefix
score is inapplicable in streaming scenarios because it requires
a complete speech utterance. Suppose g is a partial hypothesis,
q is a token appended to g, and h = g · q is a new hypothesis.
When q is a normal vocabulary token (i.e. not end-of-sentence
[eos]), the CTC prefix score Sctc of h in [44] is calculated as:

pctc(h, · · · |E) =
∑

ν∈(U∪[eos])
pctc(h · ν|E) (9)

Sctc(h,E) = log(pctc(h, · · · |E)) (10)

where pctc refers to the sequence probability3 given by CTC,
e.g. pctc(h · ν|E) represents the probability of the sequenceh · ν
given the entire encoder outputE. In this context, ν represents all
possible non-empty tokens (withUdenoting normal tokens), and
h · ν means appending ν to h. Therefore, the CTC prefix score is
calculated as the accumulated probability of all sequences with
h as their prefix [44]. However, if q (i.e. the last token of h) is
[eos], the CTC score is computed as:

Sctc(h,E) = log(γ
(n)
T (g) + γ

(b)
T (g)) (11)

where γ
(n)
T (g) and γ

(b)
T (g) are the forward probabilities [44] of

the partial hypothesis g over T frames, with CTC paths ending
with a non-blank or blank label, respectively. These CTC prefix
scores are computed based on whole encoder output E with T
frames, hampering streaming decoding.

To compute an online CTC prefix score for streaming joint
decoding, inspired by [45], this paper uses Sctc(h,E1:Th

) to
approximate Sctc(h,E), where Th is the maximum number
of encoder output frames accessible when predicting the new
hypothesish, which is decided by the accumulated weightsαt of
AIF. Therefore, the online CTC prefix score and LS-Transducer
prediction are strictly synchronised.

However, since CTC has too much flexibility when learning
alignments, there is no theoretical guarantee that the CTC spikes
and AIF-located boundaries will be synchronised. When the
corresponding CTC spike for token q doesn’t appear during
E1:Th

, preliminary experiments showed that the online CTC
prefix score Sctc(h,E1:Th

) would be very likely to predict [eos]
because hwould be considered complete forE1:Th

, which could
greatly degrade the performance. Previous work tackles this
problem by waiting until the corresponding CTC spike appeared
before starting decoding [46] or switching to decoding the next
block of speech if the [eos] label is predicted [45]. However,
these methods are not feasible for the proposed LS-Transducer
that needs to compute online CTC scores synchronously.

To solve this issue, a proposed streaming joint decoding
method modifies the computation of online CTC prefix scores
for [eos], which is shown as follows where h=g · [eos]:

Sctc(h,E1:Th
) =

{
log(pctc(h, · · · |E1:Th

)), Th < T

log(γ
(n)
Th

(g) + γ
(b)
Th

(g)), Th = T
(12)

This means that if the speech has not been completely loaded
(i.e. Th < T ), h will not be considered complete, leading to
an extremely low score for [eos] because CTC training never
encounters the [eos] label. This makes sense because the online

3See [44] for detailed computation of the CTC-based sequence probability.

Algorithm 1: Modified Online CTC Prefix Score.
Input: h,E1:Th

Output: Sctc

1: g, q ← h: Split h into the last label q and the rest g
2: if q = [eos] and Th = T then
3: return log(γ

(n)
Th

(g) + γ
(b)
Th

(g))
4: else

5: γ
(n)
1 (h)←

{
p(z1 = q|E1:Th

)), if g = [sos]
0, otherwise

6: γ
(b)
1 (h)← 0

7: Ψ← γ
(n)
1 (h)

8: for t = 2 · · · Th do

9: Φ← γ
(b)
t−1(g) +

{
0, if last(g) = q

γ
(n)
t−1(g), otherwise

10: γ
(n)
t (h)← (γ

(n)
t−1(h) + Φ)p(zt = q|E1:Th

)

11: γ
(b)
t (h)←(γ

(b)
t−1(h)+γ

(n)
t−1(h))p(zt=blank|E1:Th

)
12: Ψ← Ψ+Φ · p(zt = q|E1:Th

)
13: return log(Ψ)

CTC prefix score should not consider ending prediction before
reading the whole speech utterance.

The detailed procedure for the modified online CTC prefix
score is shown in Algorithm 1, which modifies the condition in
line 2 compared to the standard CTC prefix score [44]. zt and
p(zt = q|E1:Th

) are the label and probability for the t-th frame.
[sos] is start-of-sentence. Other details follow [44].

During streaming joint decoding, score Slst assigned by the
LS-Transducer is computed synchronously with Sctc(h,E1:Th

)
and follows the chain rule:

Slst(h,E1:Th
) =

n∑
i=1

log(plst(hi|h1, . . . , hi−1,E1:Ti
)) (13)

where plst denotes the predicted probabilities obtained from the
final logits output by the joint network, as shown in Fig. 2, n is
the length of hypothesis h = g · q, and Ti is the corresponding
right boundary of the i-th label as decided by AIF. The overall
streaming score S is computed as:

S(h,E1:Th
) = βSctc(h,E1:Th

) + (1− β)Slst(h,E1:Th
)
(14)

where β denotes the weight of online CTC scores. Hence, the
streaming scores of the LS-Transducer Slst(h,E1:Th

) and the
CTC branch Sctc(h,E1:Th

) are strictly synchronised.

C. Prediction Network Adaptation

With the prediction network of the LS-Transducer perform-
ing as an explicit LM, fine-tuning it on text-only data when
encountering a domain shift is straightforward. Therefore, after
ASR training and before decoding on an unseen domain, when
target-domain text data setD available, the fine-tuning objective
is:

Lfinetune = −
∑
Y ∈D

N∑
n=1

log ppred(yn|Y 0:n−1; θpred) (15)
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where Y = ([sos], y1, . . ., yN ) is a text sequence belonging to
D and yn denotes the n-th token. θpred represents the parame-
ters of the prediction network, and ppred denotes the predicted
probabilities of the prediction network, which are obtained by
applying the softmax function to its output logits, i.e. linear
classifier output as shown in Fig. 2.

D. Specific Implementation

In this paper, inspired by [25], a simple method is used to
compute the weight αt in AIF by applying a sigmoid function
to the last et,d of each encoder output frame et:4

αt = sigmoid(et,d) (16)

where d is the dimension of et. Preliminary experiments
showed that an auxiliary phone-based quantity loss helps model
training, and the effectiveness of this specific implementa-
tion is evaluated in the Supplemental Materials. Hence, (8)
is written as Lqua=|∑T

i=1 αi-L|+|
∑T

i=1 wi-P |, where wt =
sigmoid(et,d−1) and P corresponds to the number of phone
units in the utterance. Correspondingly, when AIF extracts the
label-level representations cj , only the other elements of et are
used, i.e. et,1:d−2, so (6) of AIF can be expressed as follows in
this specific implementation.

cj = softmax(dinter
j · FC(E1:Tj ,1:d−2)

�) · FC(E1:Tj ,1:d−2)
(17)

where FC denotes fully connected layers that map et,1:d−2 to
the same dimension as the dinter

j .

IV. EXPERIMENTAL SETUP

A. Datasets

ASR models were trained on the LibriSpeech [19] data, a
read audiobook corpus, and its dev/test sets (i.e. “test/dev-
clean/other”) were used for intra-domain evaluation. The source-
domain text data included training set transcripts and Lib-
riSpeech LM training text. To evaluate the domain adaptation
capability of the LS-Transducer, two out-of-domain test corpora
were used. The first corpus consisted of TED-LIUM2 [47]
dev/test sets, comprising spontaneous lecture-style data. For
target-domain adaptation text, the training set transcripts and
TED-LIUM2 LM training text were used. The second corpus
was AESRC2020 [48] dev/test sets, containing human-computer
interaction speech commands, and the training set transcriptions
were used as the target-domain text data.

The models and experimental evaluations were implemented
based on the ESPnet2 [49] toolkit. Raw speech data was used as
input, and 1000 ASR modelling units were used as text output,
including 997 BPE [28] units and 3 non-verbal symbols (i.e.
blank, unknown-character and start/end-of-sentence).

B. ASR Model Description

1) Standard Neural Transducer Models: Three standard
Transformer transducer (T-T) [24] models, built with stream-
ing wav2vec 2.0 encoders and different prediction networks,

4LS-Transducer is not limited to this method of generatingαt. Other methods
including convolutional or fully-connected layers could be used.

were compared to the proposed LS-Transducer. The T-T with
an embedding layer as the prediction network is denoted the
Stateless-Pred T-T (319 M parameters); the T-T with a 6-
layer 1024-dimensional LSTM prediction network is referred
to as the LSTM-Pred T-T (370 M parameters); and the T-
T with a 6-layer unidirectional Transformer prediction net-
work (1024 attention dimension, 2048 feed-forward dimension,
and 8 heads) is called as the Transformer-Pred T-T (371 M
parameters). Streaming wav2vec 2.0 encoders, based on a
“w2v_large_lv_fsh_swbd_cv” [50], were built using a chunk-
based mask [13] to enable streaming, with a 320 ms average
latency. Inspired by [43], [51], three standard T-T models also
used the CTC with 0.3 weight to help training. In addition, extra
results with a conformer-based encoder are given in the Supple-
mental Materials which allow further detailed comparisons with
previously published work.

2) LS-Transducer: The proposed LS-Transducer (373 M pa-
rameters) had the same streaming wav2vec2.0 encoder as the
three standard T-T baseline models with a 320 ms theoretical
average latency. A more detailed evaluation of the latency is
given in the Supplemental Materials. The LS-Transducer had a
unidirectional Transformer prediction network, which was the
same as that of Transformer-Pred T-T. The intermediate output
from the 3 rd sub-layer of the prediction network was employed
as the query for the AIF mechanism. The linear layers in Fig. 2
mapped dimensions from 1024 to 1,000. In (5), the CTC loss
was computed based on et,1:d−2 where d = 1024, and γ and μ
were respectively set to 0.5 and 0.05. In (14), β was set to 0.3
except for TED-LIUM2 which was 0.4.

3) Offline AED Model: An offline Transformer-based AED
model (394 M parameters) was also built to compare with the
online LS-Transducer. It used the same streaming wav2vec 2.0
encoder but underwent offline training and was decoded using
offline CTC/attention joint decoding [44].

4) Related Variants of Standard Neural Transducer: Build-
ing upon the Transformer-Pred T-T structure, both factorised
T-T [16] (372 M parameters) and HAT [34] (371 M parame-
ters) were implemented with the same encoder and prediction
network (called the vocabulary predictor in factorised T-T). For
the factorised T-T, the embedding layer from the vocabulary
predictor was directly used as the blank predictor.

C. LM Model and Text Adaptation

A source-domain 6-layer Transformer LM was trained on the
source-domain text data for 25 epochs and fine-tuned on the
target-domain text for an additional 15 epochs as a target-domain
LM. The trained source-domain LM was used to initialise the
prediction network of the LS-Transducer but not for the three
standard T-T models because this didn’t help enhance perfor-
mance [15]. ASR training was for 40 epochs. When adapting the
LS-Transducer prediction network as in (15), the first 3 layers
were fixed, and the rest were fine-tuned on the target-domain
text data with 50 epochs for AESRC2020 and 20 epochs for
TED-LIUM2 data. Shallow fusion [30] was used with a 0.2 LM
weight if using the target-domain LM for domain adaptation. A
beam size of 10 was used during inference.
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TABLE I
INITIAL EXPERIMENTS: INTRA-DOMAIN WER ON LIBRISPEECH DEV/TEST SETS

FOR ONLINE TRANSDUCER MODELS TRAINED FROM LIBRISPEECH-100 H

(TRAIN-CLEAN-100 SET)

V. EXPERIMENTAL RESULTS

The LS-Transducer was compared to the standard T-T models
for both intra and cross-domain scenarios. Ablation studies were
conducted to evaluate the effectiveness of AIF, streaming joint
decoding, and prediction network initialisation. Several related
methods were also implemented and experimentally compared
to the LS-Transducer.

A. Initial Experiments

Initial experiments were conducted on the LibriSpeech-100 h
set and the ASR results are listed in Table I, in which our
models showed good results on the LibriSpeech-100 h bench-
mark compared to various recent work. In addition, among
the three standard T-T models, the Transformer-Pred T-T per-
formed the best, showing that a strong Transformer-structured
prediction network is very helpful for the neural transducer to
achieve high ASR accuracy. Moreover, compared to the strong
Transformer-Pred T-T, HAT [34] and factorised T-T [16] slightly
degraded the intra-domain performance. However, the proposed
LS-Transducer still clearly surpassed the strong Transformer-
Pred T-T model with up to 16.3% relative WER reduction
(WERR). Moreover, the online LS-Transducer even slightly
outperformed the offline AED model, showing the advantages
of the LS-Transducer, including that the prediction network
performs as an explicit LM so that it can be easily initialised
by a trained source-domain LM. This initialisation technique
proved to be highly effective in improving ASR performance
for some non-autoregressive E2E models [25], but remains a
challenge for auto-regressive E2E models such as Transformer-
based AED [29] and standard neural transducer [15] due to the
lack of an explicit LM component.

Given the strong performance shown by the Transformer-Pred
T-T, the main experiments were carried out on the LibriSpeech-
960 h data focusing on the comparison between the Transformer-
Pred T-T and LS-Transducer.

TABLE II
INTRA-DOMAIN WER ON LIBRISPEECH DEV/TEST SETS FOR ONLINE

TRANSDUCER MODELS TRAINED FROM LIBRISPEECH-960 H

TABLE III
CROSS-DOMAIN WER RESULTS ON TED-LIUM 2 (TED2) AND AESRC2020

(AESRC) FOR ONLINE TRANSDUCER MODELS TRAINED FROM

LIBRISPEECH-960 H (LS960)

B. Main Experiments

Table II lists intra-domain ASR results, with E2E ASR models
trained on the LibriSpeech-960 h corpus, our models yielded
competitive results on the LibriSpeech-960 h benchmark com-
pared to recent work. The LS-Transducer still outperformed
the Transformer-Pred T-T in the high-resource LibriSpeech-
960 h scenario, with 10% relative WERR. In addition, when
the external source-domain LM was used for the E2E ASR
via shallow fusion [30], the performance of both models was
further improved, where the LS-Transducer still gave a 12.9%
relative WERR compared to the Transformer-Pred T-T. It should
be noted that the results in Table II are not directly comparable
to other published results since there are many differences in
both model encoder types and also in the streaming operation.

The TED-LIUM 2 and AESRC2020 dev/test sets were used
to evaluate the cross-domain performance of the ASR models
trained on the LibriSpeech-960 h data. As shown in Table III,
the proposed LS-Transducer gave the best results on both cross-
domain corpora, showing that LS-Transducer generalises well
rather than overfitting to the source domain. With the predic-
tion network adapted/fine-tuned using the target-domain text
data, further improvements could be gained and surpass the
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TABLE IV
ABLATION STUDIES ON THE LABEL-LEVEL ENCODER REPRESENTATION

GENERATION MECHANISM: INTRA-DOMAIN WER FOR LS-TRANSDUCER

TRAINED ON LIBRISPEECH-100 H OR LIBRISPEECH-960 H WITH AIF OR

NORMAL CIF [18]

Transformer-Pred T-T model with 21.4% and 24.6% relative
WERR on TED-LIUM 2 and AESRC2020, respectively. Even
when shallow fusion [30] was used for the Transformer-Pred
T-T model to improve the cross-domain performance by in-
corporating an external target-domain LM, a performance gap
of at least 10.8% relative WERR still existed compared to the
LS-Transducer with adapted prediction network. In addition, the
LS-Transducer could also use shallow fusion with the external
target-domain LM to further boost cross-domain accuracy.

In summary, the proposed LS-Transducer not only outper-
forms the standard T-T models within the source domain but also
exhibits greatly improved domain adaptation capabilities. This is
primarily because the prediction network of the LS-Transducer
works as an explicit LM, which brings advantages in utilising
text-only data.

C. Ablation Studies on AIF

Ablation studies were conducted to evaluate the effectiveness
of the proposed AIF mechanism. As shown in Table IV, when
ASR models were trained on the LibriSpeech-100 h data, using
CIF with LS-Transducer resulted in noticeably inferior perfor-
mance compared to the strong Transformer-Pred T-T model,
which is consistent with the conclusion about CIF in [26]. The
proposed AIF gave much lower WER than CIF [18] and played
an essential role in enabling the LS-Transducer to surpass the
strong Transformer-Pred T-T model. This is consistent with the
comparison in Section III-A that the proposed AIF has several
advantages that improve performance over CIF, including no
mismatch between training and decoding and enhanced robust-
ness to inaccurate unit boundaries.

When ASR models were trained on the LibriSpeech-960 h
corpus, as shown in Table IV, the LS-Transducer with CIF
achieved obvious progress compared to when it was only
trained on LibriSpeech-100 h data. However, it still failed to
yield competitive performance compared to the Transformer-
Pred T-T. Consistent with the LibriSpeech-100 h scenario, the
LS-Transducer with AIF gave relative WERR between 14.9%

TABLE V
ABLATION STUDIES: INTRA-DOMAIN WER FOR LS-TRANSDUCER TRAINED ON

LIBRISPEECH-960 H WITH OR WITHOUT THE STREAMING JOINT DECODING

to 34.7% compared to using CIF, thereby allowing the LS-
Transducer to exceed the Transformer-Pred T-T.

Real speech examples are given in the Supplemental Materials
to illustrate the operation of the AIF mechanism and compare it
to CIF.

D. Ablation Studies on Streaming Joint Decoding

Ablation studies were also conducted to evaluate the proposed
streaming joint decoding method. As shown in Table V, the
LS-Transducer gave competitive results compared to the strong
Transformer-Pred T-T model even without the streaming joint
decoding. Moreover, streaming joint decoding could further
yield up to 23.1% relative WERR for the LS-Transducer. This is
because the online CTC prefix score can help refine the search
space and eliminate irrelevant alignments. However, when the
modification of the online CTC prefix score for [eos] proposed in
(12) or line 2 of Algorithm 1 was not used, the performance was
greatly degraded. This is consistent with what is mentioned in
Section III-B. Therefore, the proposed streaming joint decoding
method is simple and effective and can ensure strict synchro-
nisation of the online CTC prefix score and the LS-Transducer
predictions.

The performance of the LS-Transducer when the CTC branch
is removed is explored in the Supplemental Materials.

E. Ablation Studies on Prediction Network Initialisation

In addition, considering a trained source-domain LM was
used to initialise the prediction network of the LS-Transducer,
ablation studies were conducted to evaluate its effectiveness
for both the LS-Transducer and Transformer-Pred T-T. As
shown in Table VI, pre-training the prediction network of the
Transformer-Pred T-T cannot improve performance but rather
harms it, consistent with the conclusion in [15]. In contrast,
the prediction network initialisation is highly effective for the
LS-Transducer because it performs as an explicit LM. Text-
only data is normally easier to collect in large quantities, and
the source-domain text data in this paper is much larger than
the LibriSpeech-960h transcripts, which is why the prediction
network initialisation is still effective for this high-resource
LibriSpeech-960h data. Hence, the LS-Transducer provides a
natural approach to utilise pre-trained LMs in ASR.
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TABLE VI
INTRA-DOMAIN WER FOR TRANSFORMER-PRED T-T AND LS-TRANSDUCER

TRAINED ON LIBRISPEECH-960 H WITH OR WITHOUT PREDICTION NETWORK

PRE-TRAINED

TABLE VII
WER ON INTRA (LS100) AND CROSS-DOMAIN (TED2 AND AESRC) TEST

SETS FOR DIFFERENT MODELS TRAINED FROM LIBRISPEECH-100 H

F. Comparison With Related Work

As a further point of comparison, the cross-domain per-
formance of the factorised T-T [16] and HAT [34] models
were compared to the LS-Transducer. The intra-domain and
cross-domain results are listed in Table VII, as mentioned in
Section V-A, HAT and factorised T-T performed slightly worse
than the strong Transformer-Pred T-T in the intra-domain sce-
nario. Nonetheless, leveraging their strengths in domain adapta-
tion, such as internal LM estimation or adaptation, mitigates
this gap and results in improved cross-domain performance
compared to the Transformer-Pred T-T. However, the proposed
LS-Transducer still significantly outperformed the HAT and
factorised T-T in both intra and cross-domain scenarios with
relative WERRs between 8.0% and 18.5%.

The WER improvement brought by the LS-Transducer over
the HAT and factorised T-T is statistically significant at the 0.1%
level according to a matched-pair sentence-segment word error
statistical test [57].

VI. CONCLUSION

This paper proposes a label-synchronous neural transducer
(LS-Transducer), which offers a natural solution to domain
adaptation for online ASR. The LS-Transducer does not require
the prediction of blank tokens and it is therefore easy to adapt
the prediction network on text-only data. An Auto-regressive
Integrate-and-Fire (AIF) mechanism is designed to generate a

label-level encoder representation before being combined with
the prediction network output while still allowing streaming.
In addition, a streaming joint decoding method is proposed to
refine the search space during beam search while maintaining
synchronisation with the AIF. Experiments showed that the pro-
posed LS-Transducer had superior ASR performance and effec-
tive domain adaptation capabilities, exceeding standard neural
transducers with 12.9% and 24.6% relative WER reductions in
intra-domain and cross-domain scenarios respectively.
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