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 Dear Editor,

This  letter  addresses  the  predefined-time  control  for  cooperative
tracking  of  multiple  quadrotor  unmanned  aerial  vehicles  (UAVs)
under  a  directed  communication  network.  A  predefined-time  dis-
tributed  estimator  is  first  introduced  to  accurately  get  the  reference
velocity and acceleration for each UAV. Then, a cascade predefined-
time control strategy is proposed to guarantee that all the UAVs track
the  reference  trajectory  while  maintaining  a  preassigned  configura-
tion, where an attitude constraint algorithm is developed to avoid the
flipping  over  of  each  UAV.  Stability  analysis  demonstrates  that  the
tracking errors of the closed-loop systems converge to zero within a
predefined  time.  Finally,  experiment  results  validate  the  proposed
control strategy.

Recently, the cooperative mission of multiple quadrotor UAVs has
received considerable attentions by researchers and scientists [1], [2].
Different  from  the  application  of  a  single  UAV,  the  UAV  team
requires  all  the  members  achieving a  common goal  while  maintain-
ing a desired configuration cooperatively [3]. As for the cooperative
formation  of  quadrotor  UAVs,  geometric  control [4] and  adaptive
control [5] approaches  have  been  reported,  where  the  communica-
tion  topology  among  the  UAVs  was  undirected.  In  addition,  these
results are obtained by assuming that the desired acceleration [4] (as
well  as  velocity [5])  is  available  to  all  the  UAVs.  To  improve  the
control  accuracy,  a  distributed  estimator  was  introduced  to  get  the
accurate  estimate  of  the  desired  trajectory [6].  However,  the  upper
bound  of  the  desired  trajectory  is  supposed  to  be  available  for  the
UAV  who  has  no  access  to  it.  Besides,  the  control  strategies  in
[4]–[6] fail to ensure the achievement of the formation within a finite
time or predefined time. The attitude of each UAV should be main-
tained within a given set to avoid the flipping over [1], [2], which has
not been considered by previous results [4]–[6].

To solve the cooperative control problem of UAVs with finite-time
convergence  property,  a  wealth  of  distributed  control  algorithms
were studied [7], [8]. Although these results can achieve the coopera-
tive  tracking of  UAVs within  a  finite  time,  the  settling time is  cou-
pled  with  both  initial  value  of  the  system  and  the  communication
topology. Any changes of this would result in a redesign of the con-
trol  parameters.  For  the  sake  of  avoiding  this  issue,  a  distributed
fixed-time  control  strategy  was  studied  for  the  formation-contain-
ment of quadrotors [9]. Despite of the fact that the settling time in [9]

is  no  longer  related  to  the  initial  state  of  the  UAV  system,  it  still
could  not  provide  an  intuitive  expression  by  a  predefined  single
parameter.  In  addition,  the  calculated settling time in  the fixed-time
control  would be conservative since the estimate of its  upper bound
may be quite larger than the real settling time [10]. The predefined-
time control that provides a preassigned settling time which is inde-
pendent of both initial system state and control parameters is studied
[11].  To  provide  the  consensus  estimate  of  the  leader’s  state,  a  dis-
tributed prescribed-time estimator was developed for the multi-agent
systems [12], where the upper bound of the leader’s state is available
for  all  the  agents.  A  distributed  prescribed-time  optimization  was
investigated  in [13],  and the  experimental  validation was  conducted
on the quadrotors, where only the consensus was achieved rather than
the trajectory tracking.

Motivated  by  aforementioned  discussions,  this  paper  focuses  on
developing  a  distributed  control  strategy  that  achieves  the  coopera-
tive  tracking  of  multiple  quadrotors  over  a  directed  communication
topology  within  a  predefined  time.  The  main  contributions  are  pre-
sented as follows: 1) Compared with [6], [9], [12], an adaptive prede-
fined-time  distributed  estimator  is  proposed  where  the  upper  bound
of  the  desired  trajectory  is  merely  available  for  the  UAV  who  can
access  it.  2)  In  contrast  to [4]–[9],  a  predefined-time  attitude  con-
straint  torque is  developed.  Since the roll  and pitch of the UAV are
constrained within a safe range,  the reliability of  the control  system
can be enhanced.

λ̄(·) λ(·)
s· ≜ sin(·)

c· ≜ cos(·) tt > 0 t0 ≥ 0
Ttt ,t0 (t) = 1/(tt + t0 − t) ∀t ∈ [t0, tt + t0)

Ttt ,t0 (t) = 1 ∀t ∈ [0, t0)∪[tt + t0,∞) x ∈ Rn

s(x) = x/∥x∥ ∀∥x∥ , 0 s(x) = 0 ∀∥x∥ = 0

Preliminaries: Let  and  denote  the  maximum  and  mini-
mum  eigenvalues  of  a  square  matrix.  Define  and

.  For  a  positive  constant  and ,  the  time  func-
tion  is  defined  as , ,  and

, .  For ,  the  following  func-
tion is defined  , , and , .

Gn ≜ (V,E)
V ≜ {1,2, . . . ,n} E ⊆ V×V

(i, j) ∈ E
A = [ai j] ∈ Rn×n

L= [li j]∈Rn×n

Gn ai j = 1 ( j, i)∈E ai j=0
lii=
∑n

j=1, j,i ai j li j = −ai j j , i Gn+1 ≜ {V̄, Ē}

V̄ = {0,1, . . . ,n} Ē ⊆ V̄×V̄
Ā ∈ R(n+1)×(n+1) L̄ ∈ R(n+1)×(n+1)

B = diag(b1,b2, . . . ,bn) bi = 1
bi = 0

Communication  topology: To  formulate  the  communication  net-
works among the UAVs, a graph  consisting of a node set

 and  an  edge  set  are  introduced.  For  a
directed  graph,  indicates  that  the  information  of  node j is
available  to  node i,  but  not  conversely.  Define  as
the  adjacent  matrix  and  as  the  Laplacian matrix  of  a
UAV  graph ,  where  if  and  otherwise,

 and  for .  Denote  as  a
directed  graph  (the  reference  trajectory  is  labeled  as  0),  where

 and .  The  adjacent  matrix  and  Laplacian
matrix  are  denoted  by  and .  Let

, where  if node i is accessible to the ref-
erence trajectory and  otherwise.

G Gn+1

W = [wi j] ≜L+B [1/h1,
1/h2, . . . ,1/hn]T =W−11n Ψ =WTH +HW

H = diag(h1,h2, . . . ,hn)

Suppose that the UAV graph  is directed and the graph  has
a directed spanning tree with the reference trajectory being the root.
Therefore,  is  positive  definite [6].  Let 

. Then,  is positive defi-
nite, where .

i ∈ V
Problem description: Based on the Euler-Newton formula [1], for

,  the kinematics and dynamics of the under-actuated quadrotor
UAV are given by
 

ṗi = vi

v̇i = −gê3 +
Ti

mi
Riê3

Γiγ̇i = ωi,
Jiω̇i = −ω×i Jiωi +τi

(1)

pi ∈ R3 vi ∈ R3

mi
Ri = R(γi) ∈ SO(3)

ê3 ≜ [0,0,1]T Ti ∈ R
γi = [ϕi, θi,ψi]

T ωi ∈ R3

Ji ∈ R3×3 τi ∈ R3

where  and  are the position and velocity of the center
of  gravity  of  the  UAV  in  the  earth-fixed  inertial  frame,  is  the
mass, g is  the  local  gravitational  acceleration,  is
the  rotation  matrix, ,  is  the  thrust  command,

 is  the  Euler  angle,  is  the  angular  velocity,
 is  the  inertial  matrix,  is  the  torque  command,  and
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Γi = [1,0,−sθi;0,cϕi,sϕicθi;0,−sϕi,cϕicθi].
0

p0 v0
v̇0 ∥v̈0∥ ≤ γ

σi

i ∈ V
p̃i = pi − p0 −σi ṽi = vi − v0

Ti τi
limt→to p̃i(t) = 0 limt→to ṽi(t) = 0

to

Control  objective: Consider  the  reference  trajectory  labeled  by .
Suppose  that  the  reference  position ,  velocity  and  acceleration

 are all bounded. In particular, , where γ is a positive con-
stant.  Given  a  desired  position  offset  between  the i-th  UAV and
the  reference  trajectory,  the  cooperative  predefined-time  tracking
objective  can be achieved if  all  the  UAV track the  reference trajec-
tory while maintaining the desired configuration within a predefined
time.  More  specifically,  for ,  define  the  tracking  errors

 and , the control objective is to design the
thrust command  and torque command  for each UAV described
by  (1)  such  that  and  with  a  prede-
fined time .

Main  results: In  this  section,  the  main  design  procedures  of  the
distributed estimator, thrust command and torque command are pro-
vided.

i ∈ V v̂i âi
γ̂i v0 v̇0

Predefined-time distributed estimator: For , define ,  and
 as the estimates of ,  and γ, respectively. Design the following

adaptive distributed estimator:
 

˙̂vi = âi − kvTtv,ta+tγ (t)v̄
e
i

˙̂ai = −kaTta,tγ (t)ā
e
i − γ̂is(āe

i )
˙̂γi = −kγTtγ ,0(t)γ̄e

i

(2)

kv ka kγ tv ta tγ
v̄e

i =
∑

j∈Ni ai j(v̂i − v̂ j)+bi(v̂i − v0) āe
i =
∑

j∈Ni ai j
(âi − â j)+bi(âi − v̇0) γ̄e

i =
∑

j∈Ni ai j(γ̂i − γ̂ j)+bi(γ̂i −γ)

where ,  and  are constant parameters, ,  and  are positive
time  constants, , 

, and .

kv ≥ 2λ̄(H)/λ(Ψ) ka ≥ 2λ̄(H)/λ(Ψ) kγ ≥ 2λ̄(H)/λ(Ψ)

te =
tv + ta + tγ

Theorem  1:  If  the  estimator  parameters  are  chosen  such  that
, ,  and ,  then the

proposed  adaptive  distributed  estimator  (2)  guarantees  that  all  the
estimate  errors  converge  to  zero  with  a  predefined  time 

.
ṽe

i = v̂i − v0 ãe
i = âi − v̇0 γ̃e

i = γ̂i −γ
v̄e

i =
∑n

j=1 wi jṽe
j āe

i =
∑n

j=1 wi jãe
j γ̄e

i =∑n
j=1 wi jγ̃

e
j v̄e āe γ̄e ṽe ãe γ̃e

v̄e
i āe

i γ̄
e
i ṽe

i ãe
i γ̃e

i
Lγ = γ̄eT (H ⊗ I3)γ̄e L̇γ =

−kγTtγ ,0(t)γ̃eT (WTH + HW)γ̃e ≤ − k∗γTtγ ,0(t)Lγ k∗γ =
kγλ(Ψ)/λ̄(H) ≥ 2

Lγ(t) ≤ Lγ(0)((tγ − t)/tγ)k∗γ ∀t ∈ [0, tγ)
limt→t−γ Lγ(t) = 0 Lγ
Lγ(tγ) = 0 L̇γ(t) ≤ −k∗γLγ ≤ 0 ∀t ≥ tγ

Lγ(t) = 0 ∀t ≥ tγ
γ̄e(t) t = tγ γ̄e(t) = 0 ∀t ≥ tγ

γ̄e = (W⊗ I)γ̃e γ̃e(t) = 0 ∀t ≥ tγ
ãe(t) = 0 ∀t ≥ tγ + ta

ṽe(t) = 0 ∀t ≥ tγ + ta + tv ṽe

ãe γ̃e te = tγ + ta + tv

Proof:  Define ,  and   as  the  esti-
mate  errors.  Note  that ,  and 

.  Let , , , ,  and  be  the  column  stack  vec-
tors of , , , ,  and , respectively. Choose a Lyapunov fun-
ction  candidate .  Its  derivative  satisfies 

,  where 
.  According  to  the  Comparison  principle [14],  we

have , .  This  implies  that
.  Based  on  the  continuity  of ,  it  follows  that

. This further implies that , . It can
be  concluded  that  is  invariant .  Therefore,  we  have

 converges to zero at  while maintaining , .
By  recalling ,  we  finally  have , .  Fol-
lowing  similar  analysis,  we  can  conclude  that , ,
and , . Therefore, it can be concluded that ,

 and  converge to zero with a predefined-time . ■
t ∈ [0, tγ) ∥Ttγ ,0(t)γ̄e

i ∥ ≤√
Lγ(0)/λ(H)/tγ ˙̂γe

i ∈ L∞ γ̂e
i

v̂e
i âe

i

Remark  1:  Based  on  (2),  for ,  we  have 
. This implies that . Then, we have that  is

uniformly  continuous  and  bounded.  Similarly,  the  boundedness  and
uniform continuity of  and  can be also proved.
Force  command  development: Introduce  an  auxiliary  manifold  as
follows:
 

si = vi − v̂i + κ1Ttp,ts (t) p̄i (3)
κ1 > 0 tp ts p̄i =∑

j∈Ni ai j(pi − p j −σi j)+bi(pi − p0 −σi) =
∑n

j=1 wi j p̃ j

si ṡi = −gê3 +ui − (âi −Ttp,ts (t)v̄
e
i )+ κ1Ṫtp,ts (t)p̄i+

κ1Ttp,ts (t)v̄i +Ti(Ri −Rci)ê3/mi ui = TiRciê3/mi Rci = R(γci)
γci = [ϕci, θci,ψci]

T

γci v̄i =
∑

j∈Ni ai j(vi − v j)+bi(vi − v0)
Ti = mi∥ui∥

∥Rciê3∥ = 1

where ,  and  are  positive  time  constants,  and 
. Taking the der-

ivative  of  gives 
,  where , ,

 is  the  attitude  command (the  detailed  expression
of  can  be  found  in [1]),  and .
Therefore,  the  thrust  command  is  obtained  since

. Develop the following force command:
 

ui = −κ2Tts,0(t)si +gê3 + âi − κ1(Ṫtp,ts (t)p̄i +Ttp,ts (t)v̄i) (4)

κ2where  is a positive constant.

η(νi) ≜ νi/(π2/4− ν2i ) νi = ϕi, θi
ηi→ ηci νi→ νci η(νi) ∈ L∞
νi, νci ∈ (−π/2,π/2) ρ̃i ≜ [η̃ϕi, η̃θi, ψ̃i]

T =

ρi −ρci ρi = [η(ϕi),η(θi),ψi]
T ρci = [η(ϕci),η(θci),ψci]

T

ρi ρ̇i = Qiγ̇i Qi = Q(γi) ≜
diag((π2/4+ϕ2

i )/(π2/4−ϕ2
i )2, (π2/4+ θ2i )/(π2/4− θ2i )2,1)

Torque  command  development: To  ensure  the  safety  during  the
operation  and  avoid  the  singularity  caused  by  the  representation  of
the Euler angle, inspired by [1],  a nonlinear transformation function
is  introduced  as , .  According  to [1],

 is  sufficient  to  ensure  with ,  for
.  Define a  new attitude error 

,  where  and .
Then,  the  derivative  of  satisfies ,  where 

.  Define  an
auxiliary manifold
 

zi = γ̇i +Q−1
i (κ3Ttρ,tz (t)ρ̃i − ρ̇ci) (5)

κ3 > 0 tz ρ̇ci = Q(γci)γ̇ci
Γizi Jid(Γizi)/dt = ϱi +τi ϱi = JiΓ̇iQ−1

i
(κ3Ttρ,tz (t)ρ̃i − ρ̇ci)− JiΓi(Q−1

i Q̇iQ−1
i (κ3Ttρ,tz (t)ρ̃i − ρ̇ci)−Q−1

i (κ3Ṫtρ,tz (t)
ρ̃i + κ3Ttρ,tz (t) ˙̃ρi − ρ̈ci))−ω×i Jiωi

where ,  is  a  positive time constant,  and .  The
derivative  of  satisfies ,  where 

 
.  Design  the  following  torque  com-

mand:
 

τi = −ϱi − κ4Ttz,0(t)Γizi (6)
κ4where  is a positive constant.

Stability  analysis: Two  propositions  are  first  stated  for  the  prede-
fined time stabilities of the attitude and position error dynamics.

ϕi(0), θi(0) ∈
(−π/2,π/2) κ3 ≥ 2
κ4 ≥ λ̄(Ji)

tr = tz + tρ ϕi(t), θi(t) ∈ (−π/2,π/2) ∀t ≥ 0

Proposition  1:  If  the  initial  roll  and  pitch  satisfy 
,  and  the  control  parameters  are  chosen  such  that 

and ,  the  proposed  torque  command  (6)  ensures  that  the
closed-loop attitude error  dynamics converges to  zero with a  prede-
fined time  and , .

i ∈ V Vzi = (Γizi)T Ji×
Γizi/2
V̇zi ≤ −λziTtz,0(t)Vzi λzi = 2κ4/λ̄(Ji)

zi(t) t = tz zi(t) = 0
∀t ≥ tz Vρi = ρ̃T

i ρ̃i/2
Vρi V̇ρi ≤ −λρTtρ,tz (t)Vρi + ρ̃

T
i Qizi

λρ = 2κ3 Qizi t = tz

Vρi(t) = 0 ∀t ≥ tρ + tz ρ̃i(t) =
0 ∀t ≥ tr

Proof:  For ,  choose  a  Lyapunov  function 
. Taking its derivative along the closed-loop trajectory satisfies

,  where .  It  can  be  easily  shown
that  converges  to  zero  at  while  maintaining ,

. Next, choose a Lyapunov function . The deriva-
tive  of  is  derived  as ,  where

. Based on previous analysis,  converges to zero at .
According  to  the  Comparison  principle,  we  can  conclude  that

 is invariant, . Therefore, we finally have 
, . ■
κ1 ≥ 2λ̄(H)/λ(Ψ) κ2 ≥ 1

to ≜ tp + ts

Proposition  2:  If  the  control  parameters  are  chosen  such  that
 and ,  then  the  proposed  force  command  (4)

with  adaptive  distributed  estimator  (2)  guarantees  that  closed-loop
position  error  system  converges  to  zero  with  a  predefined  time

.

ṡi = −κ2Tts,0(t)si Ttv,ta+tγ (t)v̄
e
i+

Ti(Ri −Rci)ê3/mi i ∈ V
Vsi = sT

i si/2 V̇si ≤ −λsTts,0(t)Vsi
λs = 2κ2

Ti ∈ L∞
T (t)tv,ta+tγ v̄

e
i Ti(Ri −Rci)ê3/mi

te tr Vsi(t) ≤ Vsi(max(te, tr))
((ts − t)/(ts −max(te, tr)))λs ∀t ∈ [max(te, tr), ts)

si(t) t = ts
si(t) = 0 ∀t ≥ ts p̃ s̄ p̃i
si Vp = p̃T (H ⊗ I3) p̃

V̇p ≤ −λpTtp,ts (t)Vp +2p̃T (H ⊗ I3)
(ṽe + s̄) λp = κ1λ(Ψ)/λ̄(H) ≥ 2 ṽe + s̄

ts Vp(t) ≤ Vp(ts)((ts+

tp − t)/tp)λp ∀t ∈ [ts, ts + tp) Vp(t) = 0
∀t ≥ tp + ts

to = tp + ts

Proof:  By substituting the force command (4),  we have the nomi-
nal  closed-loop  system  perturbed  by 

.  For ,  choose a  Lyapunov function candidate
.  Its  derivative  can  be  derived  as ,

where .  Thus,  all  the  closed-loop  signals  are  bounded  and
.  According  to  Theorem 1  and  Proposition  1,  we  know that

the perturbations  and  converge to zero
at  and ,  respectively.  Then,  we  have 

, .  Therefore,  it  can  be
concluded  that  converges  to  zero  at  while  maintaining

, . Define  and  as the column stack vectors of  and
,  respectively.  Choose  a  Lyapunov  function .

Taking  its  derivative  gives  that 
,  where .  Since  are bounded and

converge  to  zero  at ,  it  can  be  concluded  that 
, . Then, we can conclude that  is

invariant, .  Therefore,  the  closed-loop  position  error  sys-
tem is predefined-time stable with .

Based on Propositions 1 and 2 and the hierarchical system stability
theory, the main result can be summarized as following theorem.

Theorem 2: Consider the n quadrotor UAVs described by (1). The
proposed force command (4) and torque command (6) with the adap-
tive distributed estimator (2) ensure that the cooperative predefined-

 2180 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 10, OCTOBER 2024



to
time tracking of multiple quadrotor UAVs is achieved with a prede-
fined time .

tr < ts te < ts

Remark 2: It is worthy noting that although there exist seven time
parameters, they can be easily selected based on the following crite-
ria:  and , since the convergence of attitude-loop tracking
and estimator is required to be faster than the position-loop tracking.

0.032 p0 = [0.5×
cos(πt/10);0.5sin(πt/10);1−0.5e−0.1t]T

σ1 = [0,0,0]T σ2 = [0.5,0,0]T

σ3 = [0,0.5,0]T σ4 = [0.5,0.5,0]T

tv = 1 ta = 1 tγ = 3 kv = 8
ka = 10 kγ = 5 tp = 0.5
ts = 5.5 κ1 = 5.4 κ2 = 3

Experiment  results: To  evaluate  the  proposed  strategy,  a  flight
experiment that describes a group of 4 crazyflie quadrotors coopera-
tively tracking a reference trajectory is provided, where the position
and  velocity  are  obtained  by  the  motion  capture  system,  and  the
information exchange is operated by a control center under a directed
communication  topology  in Fig.  1.  The  proposed  adaptive  distri-
buted  estimator  and  predefined-time  force  command  are  imple-
mented  in  the  position  loop  of  the  crazyflie  UAV.  The  mass  of  the
UAV is  kg. The reference trajectory is designed as: 

 m. The desired position off-
sets of the UAVs are assigned as:  m, 
m,  m  and  m.  The  parameters  of
the  distributed  estimator  are  chosen  as: , , , ,

 and .  The  control  parameters  are  chosen  as: ,
,  and .  The experiment results  are provided in

Figs.  2 and 3.  (The  experiment  video  can  be  found  in https://b23.
tv/crJUxX5.)
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Fig. 1. Communication topology.
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Fig. 2. Experiment result: Trajectories of the quadrotors and the target.
 

Fig. 2 shows the formation evolution of the quadrotors with respect
to the reference trajectory, where the formation is depicted at regular
7.5  s  intervals. Fig.  3 exhibits  the  position  tracking  errors  of  each
quadrotor on three axes. It can be seen from these two figures that the
formation  tracking  is  constructed  in  6  s  and  then  it  is  maintained
afterwards.  Note  that  although  there  are  errors  in  the  final  tracking
arising  from measurement  noise,  the  convergence  results  are  within
reasonable  ranges.  Therefore,  the  flight  experiment  has  verified and
accessed the effectiveness of the proposed control strategy.

Conclusion: In this  letter,  a  predefined-time control  strategy con-
sisting of an adaptive distributed estimator and a hierarchical control
algorithm has been developed for the cooperative tracking of multi-
ple  quadrotor  UAVs  under  a  directed  communication  topology.
Experimental validations have been provided to assess the proposed
theoretical results.
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Fig. 3. Experiment result: Position tracking error.
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