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T O  perform  well,  deep  learning  (DL)  models  have  to  be
trained  well.  Which  optimizer  should  be  adopted?  We
answer  this  question  by  discussing  how  optimizers  have
evolved from traditional methods like gradient descent to

more  advanced  techniques  to  address  challenges  posed  by  high-
dimensional  and  non-convex  problem  space.  Ongoing  challenges
include  their  hyperparameter  sensitivity,  balancing  between  conver-
gence  and  generalization  performance,  and  improving  interpretabil-
ity  of  optimization  processes.  Researchers  continue  to  seek  robust,
efficient,  and  universally  applicable  optimizers  to  advance  the  field
of DL across various domains.  

A.  Introduction to DL and Optimization
The  rapid  advancement  of  DL has  significantly  promoted  various

applications,  from computer  vision  and  natural  language  processing
to  speech  recognition  and  beyond [1]–[4].  At  the  heart  of  this
progress  lies  the  development  of  sophisticated DL architectures  and
models. These powerful models have achieved remarkable success in
learning complex patterns and representations from vast  amounts of
data,  enabling  breakthroughs  in  a  wide  range  of  applications.  How-
ever,  their  success  heavily  relies  on  effective  training  methods,  i.e.,
optimizers.  Optimization  meets  significant  challenges  due  to  the
high-dimensional  and  non-convex  nature  of  the  problem  space [5].
Traditional  optimizers,  such as gradient  descent,  often struggle with
slow convergence and the propensity to get trapped in local minima
[6].  We see a strong need for  increasingly sophisticated and power-
ful optimizers.

The journey of optimizer evolution began with the introduction of
stochastic  gradient  descent  (SGD) [7] as  shown  in Fig.  1.  It  has
brought  stochasticity  into  an  optimization  process,  enabling  faster
convergence  and  better  generalization.  However,  the  uniform learn-
ing  rate  across  all  parameters  in  SGD  limits  its  adaptability  to  the
diverse learning dynamics of different model components. This limi-
tation motivates the development of adaptive learning rate methods,
such as Adagrad [8],  RMSprop [9],  and Adam [10].  These optimiz-

ers  introduce  parameter-specific  learning  rates,  allowing  for  more
efficient traversal of an optimization landscape.  

B.  Overview of DL Models
The diverse landscape of DL models form the backbone of today’s

artificial  intelligence  (AI)  applications.  Each  model  is  designed  to
excel  in specific domains or to address particular  challenges in data
processing  and  representation  learning.  These  models  have  evolved
significantly  for  long  with  various  architectures  emerging  to  tackle
different  types  of  problems.  Convolutional  neural  networks  (CNNs)
have revolutionized computer vision tasks, from image classification
to  object  detection  and  segmentation.  Their  representatives  include
LeNet,  AlexNet,  VGGNet,  and  ResNet,  each  contributing  to  the
advancement of the field.

Recurrent neural networks (RNNs) and their variants, such as long
short-term  memory  (LSTM)  and  gated  recurrent  unit  (GRU),  have
proven effective in processing sequential data, making them particu-
larly  useful  for  tasks  involving time series  or  natural  language.  The
introduction of  the Transformer [11] has  led to  significant  advance-
ments in natural language processing. Transformer-based models like
BERT,  GPT,  and  T5  have  achieved  outstanding  results  in  various
natural language processing (NLP) tasks.

In  addition  to  these  mainstream  architectures,  several  specialized
and emerging models  have gained attention.  Graph neural  networks
(GNNs) are designed to process data represented as graphs,  making
them suitable for tasks involving relational data,  social networks, or
molecular  structures.  Tensor-based  Neural  Networks  have  shown
promise  in  handling  complex,  multi-dimensional  data  structures
through tensor distribution regression based on 3D conventional neu-
ral  networks.  Dendritic  neuron  model  (DNM)  represents  a  biologi-
cally  inspired  approach to  neural  network design.  Unlike  traditional
artificial  neurons  that  perform  a  simple  weighted  sum  of  inputs,
DNMs  incorporate  more  complex  processing  within  each  neuron,
mimicking  the  dendritic  computations  observed  in  biological  neu-
rons.  DNMs offer  an  interesting  alternative  to  traditional  DL archi-
tectures, potentially leading to more efficient and biologically plausi-
ble AI systems.

The effectiveness of these diverse architectures heavily depends on
the  optimizers  employed  during  training.  An  optimizer  can  signifi-
cantly impact not only the training speed but also the generalization
performance of the trained model. For instance, the implicit regular-
ization effect of SGD may be particularly beneficial for CNNs, while
adaptive methods like Adam for large Transformer models.  

C.  Evolution of Optimizers
Evolution From SGD to Adaptive Methods: The optimization land-

scape in DL has witnessed significant transformations since the intro-
duction  of  SGD.  Yet  its  uniform learning rate  across  all  parameters
limited its  adaptability to diverse learning dynamics.  This limitation
leads to the development of adaptive learning rate methods. They are
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well  represented by Adagrad,  RMSprop,  and Adam. These optimiz-
ers  employ parameter-specific  learning rates,  resulting  in  more  effi-
cient  traversal  of  the  optimization  landscape  than  SGD.  Adam,  in
particular, has gained widespread popularity due to its ability to adapt
the  learning  rate  for  each  parameter  based  on  first  and  second
moment estimates of the gradient.

Generalization  Challenge: Despite  the  significant  improvements
brought  by  adaptive  optimizers,  they  often  exhibit  a  trade-off
between fast initial convergence and the ability to generalize well to
unseen data.  This observation has spurred research into hybrid opti-
mization  strategies,  e.g.,  SWATS [12] and  Adabound [13],  which
aim  to  combine  the  benefits  of  adaptive  methods  with  the  stability
and generalization capabilities of SGD.

Regularization-Based  Optimizers: Recent  advancements  have
focused  on  incorporating  regularization  techniques  directly  into  an
optimization  process.  Adaptive  learning-rate  with  momentum
(AdamW) [14] has  gained  popularity  for  its  ability  to  combine  the
benefits  of  Adam  with  improved  generalization  through  decoupled
weight decay.

Sharpness-Aware  Minimization: A  significant  breakthrough  in
optimizer  design  comes  with  the  introduction  of  sharpness-aware
minimization (SAM) [15] and its adaptive variant called ASAM [16].
These  optimizers  explicitly  seek  flat  minima  in  the  loss  landscape,
leading to improved generalization. SAM has shown remarkable per-
formance  across  various  tasks,  particularly  in  improving  model
robustness and out-of-distribution generalization.

Emerging  Optimizers: Several  novel  optimizers  have  been  pro-
posed  to  address  the  limitations  of  existing  methods  and  push  the
boundaries of optimization in DL. These emerging optimizers intro-
duce innovative techniques such as combining adaptive methods with
normalized  directions  (Adan [17]),  using  predicted  changes  in  loss
for adaptive learning rates (AdaBelief [18]),  and leveraging second-
order  information  for  faster  convergence  and  better  generalization
(Sophia [19]). These advancements aim to improve performance, sta-
bility, and efficiency across a wide range of DL tasks, particularly in
large-scale models.  

D.  Heuristic Optimization Algorithms
Heuristic optimization algorithms have gained significant attention

in recent years due to their robust exploration capabilities and ability
to  avoid  local  optima.  They  offer  several  advantages  over  gradient-
based  methods,  such  as  global  search  capabilities,  parallelization
potential,  flexibility  in  handling  non-differentiable  or  discontinuous
objective functions, and efficient hyperparameter optimization. These
features make them particularly useful for complex, non-convex opti-
mization problems in DL.

Heuristic  algorithms  have  been  successfully  applied  to  various
aspects  of  DL,  including  training  models,  optimizing  hyperparame-
ters,  and  designing  model  architectures.  Population-based  heuristic
algorithms,  such  as  Particle  Swarm  Optimization  and  Evolutionary
Algorithms,  have  been  leveraged  for  their  inherent  parallelizability,
enabling efficient optimization of large-scale models [20]–[23]. Fur-
thermore,  heuristic  algorithms  have  been  employed  to  optimize  the
architecture  and  parameters  of  DNMs.  By  utilizing  heuristic  opti-
mization  techniques,  researchers  have  been  able  to  effectively  train
and optimize DNM-based models for various machine learning tasks

[24], [25].  This approach has shown promising results  in improving
the performance of DNMs.

Despite  the  promising  outlook,  heuristic  algorithms  face  several
challenges  when  applied  to  DL.  The  computational  cost  associated
with  function  evaluations  can  be  substantial,  especially  for  large-
scale models. Scalability issues may arise as the problem dimension-
ality  increases,  and  the  theoretical  foundations  of  heuristic  algo-
rithms are less robust compared to gradient-based methods. Address-
ing  these  challenges  through  improved  algorithm design,  scalability
enhancements, and deeper theoretical analysis will be crucial for the
continued success of heuristic algorithms in DL optimization.  

E.  Hyperparameter Sensitivity
Hyperparameter  tuning has  long been a  problem.  It  often  impacts

research  progress  and  the  reliability  and  reproducibility  of  experi-
mental  results,  emerging  as  a  major  bottleneck  in  the  performance
and widespread application of DL models.

1) Learning Rate Selection: The selection of an appropriate learn-
ing rate is one of the most challenges. A well-chosen rate can accel-
erate  model  convergence,  while  a  poor  choice  may  lead  to  training
failure. Even with adaptive methods such as Adam or AdamW, find-
ing the optimal one and initial value often necessitates extensive grid
searches or complex learning rate scheduling strategies. This process
is  typically  time-consuming,  labor-intensive,  and  computationally
expensive,  resulting  in  significant  energy  waste  and  environmental
burden.

More  problematically,  a  learning  rate  strategy  that  performs  well
on one task may fail in other tasks or models. This forces us to repeat
this tedious parameter tuning process when facing different tasks. For
instance,  a  learning rate  setting that  excels  in  computer  vision tasks
may completely fail in natural language processing tasks, presenting
substantial challenges due to this cross-domain non-transferability.

β1 β22) Parameters in Adam-Like Optimizers: Parameters  and  in
Adam and its variants (e.g., AdamW and RAdam) can greatly impact
model performance. They control  the exponential  decay rates of the
first  and  second  moment  estimates,  respectively,  directly  affecting
the optimizer’s efficiency in utilizing gradients. However, their opti-
mal values vary depending on the task and model architecture, mak-
ing it difficult to find a universally applicable setting.

β1 β2

β1 = 0.9
β2 = 0.999

More complexly, there exists a subtle interplay between them. For
example, ’s  change  affects  the  optimal  value,  and  vice  versa.
This intricate interdependence makes the tuning process complex and
unpredictable. In practice,we often adopt default values (  and

),  potentially  missing  their  best  settings.  How  to  quickly
find such best settings for different tasks remains open.

3)  Weight  Decay and Adaptive  Learning Rates: Weight  decay,  as
an important regularization technique, often has an overlooked inter-
action effect with adaptive learning rates. This interaction can lead to
unexpected  optimization  behaviors.  For  example,  in  Adam,  the
implementation  method  of  weight  decay  significantly  affects  the
model’s  convergence  performance.  Traditional  L2  regularization  in
Adam may lead to  suboptimal  results,  which has  given rise  to  vari-
ants such as AdamW.

This  complex  interaction  requires  us  to  not  only  adjust  learning
rates  and  momentum  parameters  but  also  consider  the  impact  of
weight decay, greatly increasing the complexity of parameter tuning.

 

SGD Lion

1951

AdaGrad RMSprop Adam AdamW SAM ASAM Adan
Sophia

2011 2012 2014 2017 2020 2021 2022 2023

SGD: Stochastic gradient descent
AdaGrad: Adaptive gradient
RMSprop: Root mean square propagation
AdaDelta: Adaptive delta
Adam: Adaptive moments estimation
AdamW: Adaptive moment estimation with weight decay

AdaDelta

SAM: Sharpness-aware minimization
ASAM: Adaptive sharpness-aware minimization
Adan: Adaptive Nesterov momentum
Lion: Least-squares Interpolation optimizer with
noise
Sophia: Second-order clipped stochastic

 
Fig. 1.     Evolutionof optimizers for deep learning model training.
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More challengingly, different layers of weights may require different
decay  rates,  introducing  the  concept  of  layer-adaptive  weight  decay
and further complicating the optimization process.

4)  Reproducibility  Problem: The  sensitivity  of  hyperparameters
affects the reproducibility of DL outcomes. Researchers working on
the  same  problem  may  arrive  at  drastically  different  results  due  to
subtle  differences  in  hyperparameter  tuning.  For  instance,  in  some
cases,  merely  changing the  random seed can lead  to  significant  dif-
ferences  in  model  performance.  This  instability  makes  it  exception-
ally  difficult  to  compare  the  true  performance  of  different  methods.
More seriously, this irreproducibility may lead to erroneous research
conclusions, misleading subsequent research directions.

To mitigate this problem, some researchers advocate for standard-
ized  hyperparameter  search  processes  or  automated  hyperparameter
optimization methods. However, these approaches often require sub-
stantial  computational  resources,  which  may  be  challenging  for  the
projects  with  limited  resources.  How  to  ensure  experimental  repro-
ducibility with limited resources has become an urgent problem to be
solved.  

F.  Generalization Performance
The  issue  of  generalization  performance  in  optimizers  has  long

been a focal point. It impacts the practical application of DL models.
This problem has not only garnered widespread attention in academia
but has also become a critical consideration for industry profession-
als when deploying DL models in real-world scenarios.

1)  Adaptive  Methods  vs.  SGD: While  adaptive  methods  enjoys
rapid  convergence,  numerous  studies  have  demonstrated  that  their
generalization performance often  falls  short  of  carefully-tuned SGD
with  momentum.  This  phenomenon  has  been  consistently  observed
across  various  research  efforts.  For  instance,  in  computer  vision
tasks,  ResNet  models  trained using SGD typically outperform those
trained with Adam on test sets. This presents a challenging dilemma:
should they prioritize faster training speeds or superior model perfor-
mance? As rapid training is highly valued, this question becomes par-
ticularly pressing. Especially for resource-constrained projects, strik-
ing a balance between these two objectives poses a significant chal-
lenge.

2) Implicit Regularization Effect of SGD: SGD is believed to pos-
sess a form of implicit regularization effects, which may account for
its superior generalization performance over adaptive methods. How-
ever,  the  precise  mechanisms  underlying  this  remain  elusive,  ham-
pering  our  ability  to  design  optimizers  that  can  achieve  both  rapid
convergence  and  excellent  generalization  performance.  Understand-
ing and replicating this  characteristic  of  SGD has emerged as a  key
challenge  in  optimizer  research.  Currently,  researchers  are  delving
into this issue from both theoretical and practical perspectives, a pur-
suit that promises to be highly valuable.

3) Performance and speed Trade-offs With SAM: SAM and ASAM
methods have shown promising results in enhancing model general-
ization  performance.  However,  the  substantial  computational  over-
head of SAM could potentially become a severe bottleneck in large-
scale  model  training.  This  is  particularly  problematic  when  dealing
with  extensive  datasets  or  training  ultra-large  models,  as  the  addi-
tional computational burden may significantly contribute to increased
training time and costs. Exploring ways to simplify SAM’s computa-
tional process or identifying alternative methods that achieve similar
effects with greater computational efficiency is a crucially important
topic.

4)  Balancing  Task  Specificity  and  Universality: Different  tasks
may require distinct optimization strategies to achieve optimal gener-
alization  performance.  For  example,  optimizer  configurations  that
excel in natural language processing tasks may prove less effective in
computer vision ones. Nevertheless, in practical applications, there is
often a desire for a “universal” optimizer capable of performing well
across  various  tasks.  This  demand  is  particularly  pronounced  in
industrial settings, where maintaining multiple optimizer versions for
different  tasks  would  increase  system  complexity  and  maintenance
costs.  Finding  a  balance  between  task  specificity  and  universality

remains challenging.  

G.  Interpretability Problem
As DL technology rapidly advances, the complexity of optimizers

has  increased  significantly,  rendering  their  behavior  increasingly
opaque.  This  lack  of  transparency  is  evident  not  only  in  traditional
gradient-based  optimizers  but  also  in  emerging  heuristic  ones.  This
phenomenon, known as the “black box problem” of optimizers, poses
several challenges in practical applications:

1)  Inscrutable  Decision-Making  Processes: Modern  adaptive  and
heuristic algorithms often show potential in addressing various tasks.
However,  their  internal  decision-making  processes  remain  largely
enigmatic.  This  lack  of  interpretability  hinders  our  ability  to  accu-
rately diagnose and effectively address training issues.  For instance,
when  model  convergence  is  unusually  slow or  overfitting  occurs,  it
becomes  challenging  to  determine  whether  the  issue  lies  with  the
optimizer  or  model  architecture.  In  the  case  of  heuristic  algorithms,
while  they  effectively  explore  complex  parameter  space,  we  often
fail  to  explain  why  certain  search  paths  yield  superior  results.  This
opacity is particularly problematic in fields demanding high levels of
safety and interpretability, such as medical diagnostics and financial
risk management, potentially impeding DL’s deployment.

2)  Complex  Interactions  Between  Optimizer  Behavior  and  Model
Representations: The  interplay  between  optimizer  behavior  and  the
representations learned by DL models is  intricate and poorly under-
stood. This issue becomes even more complex when using heuristic
algorithms,  as  their  search  strategies  may  lead  to  entirely  different
parameter  trajectories.  Consequently,  it  becomes  difficult  to  ascer-
tain  whether  performance  improvements  stem  from  enhanced  opti-
mization  processes  or  superior  feature  representations.  In  practical
applications,  this  problem  is  particularly  pronounced  as  identical
model architectures may learn different feature representations when
using  different  optimizers.  For  heuristic  algorithms,  due  to  their
stochastic  nature  and  global  search  characteristics,  even  runs  with
identical  initial  conditions  may  yield  significantly  different  results.
Such phenomena make it challenging for us to determine whether to
focus on improving the optimizer,  algorithm design,  or data prepro-
cessing to enhance model performance.

3) Impediments to Transfer Learning and Meta-Learning: The lack
of interpretability in optimizer behavior also presents  challenges for
the  application  of  transfer  learning  and  meta-learning.  Establishing
principled  methods  to  transfer  optimization  strategies  learned  from
one  task  to  another  proves  difficult.  This  issue  is  even  more  pro-
nounced when using heuristic algorithms because their search strate-
gies are often tailored to specific problems, making them difficult to
transfer directly to other tasks. Furthermore, the lack of deep under-
standing of the algorithms'  internal  mechanisms hampers our ability
to  design  meta-learning  algorithms  that  can  automatically  adapt  to
different tasks.

4)  Balancing  Computational  Cost  and  Interpretability: While
heuristic algorithms can sometimes find superior solutions, they typi-
cally require more function evaluations, translating to higher compu-
tational  cost.  As we strive for better  performance,  we face the chal-
lenge of balancing computational efficiency with model interpretabil-
ity. A fine trade-off is particularly need when large-scale DL models
are trained.  

H.  Conclusion and Future Perspectives
The  evolution  of  optimizers  is  on-going  with  a  mission  to  cope

with  great  challenges  posed  by  high-dimensional,  non-convex  opti-
mization  landscapes.  From  the  foundational  SGD  to  cutting-edge
approaches like Sharpness-Aware Minimization and Sophia, optimiz-
ers  have  continuously  adapted  to  meet  the  demands  of  DL  models.
This  journey  has  been  marked  by  significant  innovations,  including
adaptive learning rate methods, regularization-based techniques, and
the  exploration  of  heuristic  algorithms.  However,  persistent  chal-
lenges remain, particularly in areas such as hyperparameter sensitiv-
ity, generalization performance, and interpretability. Making desired
trade-off between fast convergence and excellent generalization, han-
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dling  complex  interactions  between  optimizer  behavior  and  model
representations,  and  balancing  well  computational  efficiency  and
interpretability motivate researchers to advance the field of optimiz-
ers. Looking ahead, the key areas for future research include:

1)  Developing self-adaptive  optimizers  with  improved generaliza-
tion capabilities.

2)  Enhancing  the  theoretical  understanding  of  optimizer  behavior
in DL contexts.

3)  Exploring  task-specific  optimization  strategies  while  maintain-
ing cross-domain applicability.

4)  Improving the scalability  and efficiency of  advanced optimiza-
tion techniques for large-scale models.

5) Enhancing the interpretability of optimization processes to facil-
itate model diagnostics and reliability.

As  DL  continues  to  evolve,  addressing  these  challenges  and
exploring new optimization paradigms will be crucial in unlocking its
full potential across various domains and applications. Our next work
is  to  compare  extensively  the  optimizers  in  terms  of  their  perfor-
mance in training some specific deep learning models,  for  example,
powerful  dendritic  neuron models [24], [26]−[28].  We hope to  gain
sufficient insights 1) to guide engineers in selecting right optimizers
when  they  face  their  particular  applications;  and  2)  to  motivate
researchers to invent robust, parameter-free and universally effective
optimizers  to  train  various  DL  models  across  many  application
domains,  especially  autonomous  driving [29], [30],  Internet  of
Behaviors [31], and Industry 5.0/Automation 5.0 [32], [33].
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