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 Dear Editor,

This  letter  deals  with state  estimation issues of  discrete-time non-
linear  systems  subject  to  denial-of-service  (DoS)  attacks  under  the
try-once-discard  (TOD)  protocol.  More  specifically,  to  reduce  the
communication  burden,  a  TOD protocol  with  novel  update  rules  on
protocol weights is designed for scheduling measurement outputs. In
addition, unknown nonlinear functions vulnerable to DoS attacks are
considered due to the openness and vulnerability of the network. For
such systems, the neural networks (NNs) are exploited to estimate the
unknown nonlinear system dynamics in the designed Luenberger-like
observer.  With the help of  Lyapunov theory,  some sufficient  condi-
tions  are  derived  under  which  the  estimation  error  and  the  approxi-
mation  errors  of  NNs  weights  are  uniformly  ultimately  bounded
(UUB).  Finally,  the  validity  of  designed  observers  is  demonstrated
by a power system example.

State  estimation  refers  to  the  process  of  determining  the  internal
state variables of a system based on the available measurements [1].
It plays an important role in engineering applications such as aircraft,
robotics  and  power  grids  and  therefore  has  received  a  great  deal  of
research  attention.  However,  the  behavior  of  addressed  systems  is
much  more  complex  and  the  nonlinear  features  are  unknown  com-
pared to ones in existing results, which lead to its state not being esti-
mated  accurately.  Fortunately,  the  ability  of  NNs  to  approximate
highly complex and nonlinear functions, and adapt to changes in the
system makes them a powerful tool for approximating nonlinear sys-
tems. In the past few years, various types of NNs have been utilized
for  state  estimation,  including  polynomial  NNs [2],  Markov  jump
NNs [3], memristive NNs [4], and recurrent NNs [5].

With  the  rapid  development  of  communication  technology,  net-
works have been introduced into practical  engineering.  This implies
that  the  exchange  of  data  between  devices  is  achieved  via  a  shared
network medium. On the one hand, the measurement output is sched-
uled  using  a  dynamic  scheduling  protocol,  the  TOD  protocol,  to
relief  the  channel  burden [6].  Under  this  protocol,  usage  rights  are
assigned to  the  communicating  nodes  by  comparison.  However,  the
traditional  scheduling  matrix  of  the  TOD protocol  is  fixed,  and  not
suitable for the current situation where information about each node

is  often  required  in  practical  applications.  Therefore,  there  is  an
urgent  need  to  design  a  new  weight  update  rule  to  overcome  this
shortage.

On  the  other  hand,  it  cannot  be  avoided  that  malicious  attacks,
including  deception  attacks  and  DoS attacks,  may occur  in  the  sen-
sor-to-observer channels due to the openness and vulnerability of the
network [7], [8].  Thus,  we  consider  the  case  of  DoS  attacks  that
block  the  information  transmission  channel.  It  is  obvious  that  the
scheduling employed to save communication resources and the possi-
ble attacks considered may lead to degraded system performance and
affect the observation results. Therefore, the research interest in this
letter focuses on designing an NN-based observer to estimate the sys-
tem  state  when  the  system  is  scheduled  by  the  TOD  protocol  with
DoS attacks. The innovations are concluded as

1) A new weight update rule is proposed to increase the transmis-
sion opportunity of the node with the second highest  demand in the
next  instance  with  the  hope  to  improve  the  estimation  performance
without increasing the communication burden;

.

2)  The  UUB  sufficient  conditions  are  obtained  for  the  estimation
errors  of  the  observer  and  the  NN’s  weights  when  considering  the
unknown nonlinear system is affected by the TOD protocol and DoS
attacks

Problem statement: Consider  the  unknown  discrete-time  nonlin-
ear system
 {

xk+1 = f (xk)+g(xk)ωk
yk =Cxk

(1)

xk ∈ Rnx ωk ∈ Rnω

|ωk | ≤ ωm ωm
f (xk) ∈ Rnx g(xk) ∈ Rnx×nω

f (0) = 0 g(0) = 0 yk ∈ Rny

C ∈ Rny×nx

where  is  the system state,  is  the external bounded
disturbance,  i.e.,  where  is  a  positive  constant.

 and  are  the  unknown  nonlinear  function
with  and , respectively.  is the measurement
output, and  is the known constant matrix.

(n > 1)
For  system  (1),  based  on  the  spatial  distribution  of  sensors,  it  is

divided into n  nodes. Therefore, the measurement output can
be written as follows:
 

yk = [yT
1,k, yT

2,k, . . . yT
i,k, . . . , yT

n,k]T (2)

yi,k (i ∈ {1,2, . . . ,n})where   is the measurement of the ith node.

ξk ∈ {1,2, . . . , l}
ξk

The TOD protocol is performed to transmit the signal at  first.  Let
 be  the  sensor  node  with  network  access  at  instant k.

Then, the selection of  can be characterized by
 

ξk = arg max
i∈{1,2,...,n}

(yk − ȳk−1)T Q̄kΦi(yk − ȳk−1) (3)

ȳk−1 = [ȳT
1,k−1 ȳT

2,k−1 . . . ȳT
n,k−1]T Q̄k = diag{Q1,k,Q2,k, . . . ,

Qn,k} ȳi,k−1
Qi,k (i ∈ {1,2, . . . ,n})

Φi = diag{σ1
i I,

σ2
i I, . . . ,σn

i I} σn
i ≜ σ(i−n) ∈ {0,1} (i = 1,2, . . . ,n)

where  and 
 with  is the last output of ith node before k (excluding k)

and   is a known positive definite matrix denoting
the  weight  matrix  of  the ith  sensor  node.  Here, 

 and  is  a  Kronecker
delta function.

In  this  letter,  a  new  weight  update  method  is  given  in  order  to
allow  the  node  with  the  second  largest  demand  to  have  a  higher
opportunity  to  obtain  transmission  at  the  next  instance.  The  second
most demanded node is introduced as
 

ξ́k = arg max
i∈{1,2,...,n},i,ξk

(yk − ȳk−1)T Q̄kΦi(yk − ȳk−1). (4)

Here, the novel update rule on protocol weights is proposed by
 

Q j,k =

{
QM , if j = ξ́k
Qm, otherwise

(5)

QM
Qm 0 ≤ Qm < QM

y⃗k =

[⃗yT
1,k y⃗T

2,k · · · y⃗T
n,k]T y⃗i,k

where  is  a  known  positive  definite  upper-bounded  weight,  and
 is  the  known  positive  definite  weight  satisfying .

Moving  forward,  the  attacked  measurement  is  denoted  by 
,  where  represents  the  measurement  of  the ith
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sensor node being received by observers.  The attacked output could
be expressed as follows:
 

y⃗k = αkyk (6)
αkwhere  is  an  index  function  that  indicates  whether  an  attack  has

occurred at time instance k, and has the form
 

αk =

{0, DoS attack
1, otherwise.

(7)

At the time instant k, the occurring probability of an attack follows
a Bernoulli distribution with probability p.

ȳk−1According to the definition of , it is easy to see that
 

ȳk =

{
y⃗k, if i = ξk
ȳk−1, otherwise

(8)

where  the  zero-order-holder  is  utilized  in  the  viewpoint  of  practical
engineering.  By  means  of  the  above  variable,  the  actually  received
measurement is further denoted as
 

ȳk = αkΦξk yk + (I−Φξk )ȳk−1. (9)
F(xk) = f (xk)−AxkLet ,  in  which A is  a  known  positive  matrix.

Then, the system is
 {

ηk+1 =Akηk +F (ηk)+G(ηk)ωk
ȳk = Ckηk

(10)

where
 

ηk = [ xT
k ȳT

k−1 ]T , Ck = [ αkΦξkC I−Φξk ]T

G(ηk) = [ gT (Dηk) 0 ]T , F (ηk) = [ FT (Dηk) 0 ]T

D = [ I 0 ]T , Ak =

[
A 0

αkΦξkC I−Φξk

]
.

Main results:
Based  on  the  approximation  properties  of  NNs  for  nonlinearities

[9], the system dynamics (10) can be rewritten as
 

ηk+1 =Akηk +WT
I ϕ(ηk)ω̌k + θ̌(ηk) (11)

where
 

WI =

[
W f
Wg

]
∈ Rl×nη , ω̌k =

[
1
ωk

]
∈ R(1+nu)

ϕI(ηk) =
[
ϕ f (ηk) 0

0 ϕg(ηk)

]
∈ Rl×(1+nu)

θ̌(ηk) =
[
θ f (ηk) θg(ηk)

]
ω̌k ∈ Rnη .

WI
∥WI∥ ≤ wIM θ(ηk)

∥θ̌(ηk)∥ ≤ θM ϕ(ηk)
∥ϕ(ηk)∥ ≤ ϕM wIM θM ϕM

Here, l is the number of hidden neurons,  is the ideal weight of
NNs  and  satisfies ;  is  the  bounded  approximation
error,  i.e., ;  and  is  the  activation function satisfy-
ing .  In  addition, , ,  and  are  all  positive
scalars.

αkSince the true system dynamic is unavailable and the variable  is
random, the Luenberger-like observer using an NN is proposed by
 η̂k+1 = Ākη̂k + ŴT

I,kϕI(η̂k, ω̌k)+L(ȳk −Ckη̂k)

ˆ̄yk = C̄kη̂k
(12)

ŴI,k η̂k ˆ̄yk WI ηk ȳk
L ∈ Rnη×ny

Āk = [A, 0; pΦξkC,I−Φξk ]
C̄k = [pΦξkC, I−Φξk ]T ϕI(η̂k, ω̌k) = ϕI(η̂k)ω̌k ∥ϕI(η̂k, ω̌k)∥ ≤
ϕIM

where , ,  and  are  the  estimated  values  of , ,  and ,
respectively.  is  the  observer  gain  that  can  be  obtained
using the pole assignment method. Here, ,

, and  with 
.

Ack =Ak −LCk Āck = Āk −LCk Ãck =Ack −ĀckDenote , , ,  and
then the state estimation error is
 

η̃k+1 = Āckη̃k + Ãckηk + W̃T
I,kϕI(η̂k, ω̌k)+ θ̌W (ηk) (13)

W̃ =W − Ŵk ϕ̃I(ηk, η̂k) =
ϕI(ηk, ω̌k)−ϕI(η̂k, ω̌k) θ̌W (ηk) = θ̌(ηk)−WI ϕ̃I(ηk, η̂k)

WI ϕ̃I(ηk, η̂k) = [WI ϕ̃I(ηk, η̂k) 0(1+nω)×1]

where  is  the  NN  weights  estimation  error; 
 and  are  boun-

ded terms, and .
˜̄yk = ȳk − ˆ̄yk

1/2˜̄yT
k

˜̄yk
ŴI,k

Define  the  estimated  output  error  to  be .  To  minimize
, based on the gradient descent algorithm, the tuning law of

 is given as follows:

 

ŴI,k+1 = (1−β1)ŴI,k +β2ϕI(ηk, ω̌k)˜̄yT
k+1Ck (14)

β1 β2where  and  are positive adjustable parameters.  Hence,  the esti-
mation error dynamics of NN weights is
 

W̃I,k+1 = (1−β1)W̃I,k +β1WI −β2ϕ(ηk, ω̌k)

× η̃T
kA

T
ckC

T
k Ck −β2ϕ(ηk, ω̌k)ϕT (ηk, ω̌k)

× W̃I,kCT
k Ck −β2ϕ(ηk, ω̌k)θ̌TW (ηk)CT

k Ck. (15)
Before proceeding, the useful definitions are introduced as follows.

η0 ∈Ω
Ω ∈ Rnη

t(d,η0) ∥ηk −η0∥ ≤ B k ≥ t

Definition 1 [10]: A system with any initial state  is said to
be  UUB if  there  exist  a  compact  set ,  a  bound d and  a  step
time  such that  for all .

k0 ≥ 0∑k0+i−1
i=k0

ηkη
T
k > bIn ηk ∈ Rn

Definition  2:  For  all ,  if  the  positive  constants b satisfies
, then the function  is persistently exciting.

Next,  we will  give the relative parameters to ensure the bounded-
ness of estimation errors.

ŴI,0 ΩW
∥Āck∥ = ∥Āk −LC∥ ≤ (1/(1+4C2

M(1+
ϕ2

min)))1/2 (k ∈ {1,2, . . . , l}) β1 β2

(2−
√

2)/2 < β1 < 1 0 < β2 < 2(1−β1)CM/(1+ϕ2
min) 0 <

∥Ck∥ < CM η̃k
W̃I,k

Theorem 1:  Consider  the proposed observer  (12) with NN weight
tuning law (14). Let the initial value  be selected within the .
If  the  matrix L satisfies 

  and  positive  constants  and  satisfy
 and  with 

,  then  the  observer  error  and  the  NN  weights  estima-
tion errors  are all UUB.

Proof:  The  Lyapunov  function,  which  includes  the  estimation
errors of the observer and the NN’s weights, is designed as
 

Vk = V1,k +V2,k = η̃
T
k η̃k + tr{W̃T

I,kPW̃I,k} (16)

P = (2(1+ϕ2
I min)/β2)× I

0 < ϕ2
I min < ∥ϕI(η̂k)∥2 < ∥ϕI(η̂k, ω̌k)∥2

where  with I being  the  identity  matrix  and
 is  ensured  due  to  the  persis-

tently exciting conditions.
E{ÃT

k Ãk} = σ2 σ

A
V1,k

First, it  can be calculated that ,  where  is defined
as  the  standard  deviation  of .  Taking  the  first-order  difference  of

 along with the state estimation error, yields
 

E{∆V1,k |αk} ≤ − (1−3∥Āk∥2)∥η̃k∥2

+3(∥W̃I,k∥2ϕ2
IM + θ̌

2
WM)+σ2η2

M . (17)

V2,k CT
k CkPCT

k Ck ≤
a∥CT

k Ck∥2P
For  the  first-order  difference  of ,  noting 

, one has
 

E{∆V2,k |αk} ≤ ΘWM − (1−2(1−β1)2)∥P∥∥W̃I,k∥2

−6β2
2∥P∥ϕ

2
IM∥Āck∥2∥CT

k Ck∥2∥η̃k∥2

−2β2((1−β1)∥CT
k Ck∥−β2ϕ

2
Imin)∥P∥ϕ2

IM∥W̃I,k∥2 (18)

ΘWM =6β2
1∥P∥w

2
IM +6β2

2∥P∥ϕ
2
IMC

2
M θ̌

2
WM +β

2
2∥P∥ϕ

2
IM∥C

T
k Ck∥2

×σ2η2
M 0 ≤ ∥ϕI(η̂k, ω̌k)∥2 ≤ ϕ2

IM ∥θ̌W∥2 ≤ θ̌2WM

where 
 with  and .

Combining (17) and (18), one has
 

E{∆Vk |αk} ≤ − (1− (1+4C2
M(1+ϕ2

I min))3∥Āk∥2)∥η̃k∥2 +Θ̌WM

−ϕ2
IM∥W̃I,k∥2 − (1−2(1−β1)2)∥P∥∥W̃I,k∥2 (19)

Θ̌WM = 3θ̌2WM +ΘWM E{∆Vk |αk}
(2−
√

2)/2 < β1 < 1
0 < β2 < 2(1−β1)CM/(1+ϕ2

I min)

where . Using Lyapunov stability,  is
less  than  zero  outside  a  compact  set  when ,

 and the following conditions hold:
 

∥η̃k∥ >
√

Θ̌WM

1− (1+4C2
M(1+ϕ2

Imin))3∥Āk∥2
= aη̃ (20)

or
 

∥W̃I,k∥ >
√

Θ̌WM

ϕ2
IM + (1−2(1−β1)2)∥P∥

= aW̃ . (21)

0 < 3∥Āk∥2 < 1/(1+4C2
M(1+ϕ2

I min)) 0 < ∥Ck∥ < CM

∥Āck∥ = ∥Āk −LC∥ ≤ (1/(1+4C2
M(1+ϕ2

I min)))1/2

To  ensure  that  the  denominator  of  (20)  is  positive,  one  has
 with  when  the

designed  parameter L is  selected  using  pole  placement  such  that
. ■
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An illustrative example: Considering the nonlinearity of the sys-
tem itself and the coupling effects between subsystems, the dynamic
equation of a power system can be expressed as
 

ẋ = Ax+ f (x)+g(x)ω, y =Cx
x =
[
∆ f ∆Pm ∆Pv

]T , C = I3×3, A = [−1/Tp,Kg/Tp,0;0,−1/
TT ,1/Tt; −1/RTg,0,−1/Tg] Pm Pv

f (x) = [10sin(∆ f ), 5sin(∆Pm), 0]T g(x) = [0, 0, 5+
sin(∆Pv)] ωk

0.01
300

Tp = 2 Kg = 0.5
TT = 5 Tg = 0.2 R = 0.5

Q = diag{3,3,3} QM = 5 Qm = 1
pk 0.9

ŴI,0 =

[I3×3 03×3] ϕ(·) = 0.05tanh(·)
ϕM = 0.05 β1 = 0.2 β2 = 0.8

where 
, f,  and  represent  the  frequency,

generator power, and steam valve position of power systems, respec-
tively. Select  and 

, respectively. Note that the disturbance  satisfies the nor-
mal distribution. The sampling period is selected as  s and simu-
lation step size is . The other physical meaning of the parameters
are the same as in [11] and the respective values are , ,

, , .  In  the  TOD  protocol,  the  corresponding
parameters  are  selected  as , , .  In  the
DoS attacks description, the probability  is chosen to be . In the
NNs  weight  training  process,  the  initial  weight  is  chosen  as 

,  the  activation  function  is  chosen  as 
with ,  and  the  learning  rates  are , .  The
observer gain is
 

L =

 1.5 0.2 −0.1 1.0 0.0 0.0
−0.2 1.5 0.0 0.0 1.0 0.0
0.0 0.0 1.2 0.0 0.0 1.0


T

.

x0 = [0.5;−0.2;0.2] x̂0 = 03×1

After  checking,  the  parameters  taken  all  satisfy  the  conditions  in
Theorem.  The  initial  values  of  state  and  estimation  state  are

 and .

ŴI,k
ωk

The states and their estimated trajectories of the power system, as
shown  in Fig.  1,  indicate  that  the  observer  can  effectively  estimate
the  original  state.  Additionally,  it  can  be  observed  from Fig.  2 that
the  NNs  weight  fluctuates  within  a  bounded  range,  which  is
mainly attributed to the random disturbance  and the random DoS
attack.  These  results  demonstrate  the  effectiveness  of  the  proposed
NN-based  observer  method  for  the  nonlinear  systems  with  DoS
attacks under TOD protocol.
  

0 50 100 150 200 250 300
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^
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Fig. 1. The original and estimated state trajectories of power system.
 

Conclusion: This letter has investigated the state estimation prob-
lem of nonlinear system with DoS attacks under the TOD protocols.
Based on NNs approximation capability and Lyapunov technique, the
UUB  conditions  for  the  NN-based  Luenberger-like  observer  have
been formulated.  Finally,  an illustrative example of  a  power system
has proved the validity of the state estimation framework in this let-
ter.  One  of  the  future  research  topics  would  be  to  extend  the  main
results in this letter to distributed systems [12].
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Fig. 2. The updating trajectories of partial NNs’ weights.
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