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 Dear Editor,

This letter deals with the tracking problem of quadrotors subject to
external disturbances and visibility constraints by designing a robust
model  predictive  control  (RMPC)  scheme.  According  to  the  image-
based  visual  servoing  (IBVS)  method,  a  virtual  camera  is  con-
structed  to  express  image  moments  of  the  tracking  target.  Further-
more,  we design time-varying visibility constraints  to cater  to UAV
attitudes in the RMPC optimization problem so that the tracking tar-
get always stays within the field of view (FoV) of the aerial camera.
Moreover, the RMPC algorithm is proved to be recursively feasible,
and the closed-loop system is stable. Finally, numerical experiments
verify the efficacy of the proposed method.

In recent decades, the visual servoing of unmanned aerial vehicles
(UAVs)  has  attracted  considerable  research  attention [1], [2].  In  a
GPS-denied environment, the quadrotors with aerial cameras can be
regulated  to  a  predefined  target  according  to  the  image  data  and
visual  servoing  technologies [3].  In  the  existing  literature  on  IBVS
methods, the virtual camera method, virtual spring approach, spheri-
cal  image  moment-based  design,  and  homography-based  method
have been successfully applied [4]. In this letter, we focus on the vir-
tual camera-based method because of its practicability, where the vir-
tual  camera  has  the  same  yaw  angle  and  origin  as  the  real  camera
frame [5].

Note that for the visual servoing methods, it is important to ensure
the  target  remains  in  the  field  of  view  of  the  camera.  To  solve  the
feature  loss  problem,  some  novel  IBVS  schemes  are  proposed  by
introducing  predefined  performance  specifications  and  control  bar-
rier functions to handle visibility constraints [5], [6]. However, many
studies  design  fixed  visibility  constraints  by  assuming  that  the  roll
and pitch angles of UAVs are small and do not affect visibility con-
straints [2], [6], [7]. How to theoretically design and handle the time-
varying visibility constraints related to UAV attitudes is still  a chal-
lenge. It is worth noting that MPC solves a constrained optimization
problem to obtain the control input, which provides an effective solu-
tion to tackle various constraints [8], [9].

Motivated  by  this  fact,  this  letter  proposes  a  novel  RMPC-based
IBVS method for  quadrotors  to  track a  moving target.  By using the
virtual camera method, the image moments of the tracking target are
calculated as the control objective. Different from the fixed visibility
constraint in [7], a time-varying visibility constraint related to UAV
attitudes  is  designed  to  prevent  UAVs from losing  the  target,  while
fully  using  the  FoV  to  improve  the  control  performance.  Then,  the
RMPC scheme is utilized to efficiently tackle state constraints,  con-
trol input constraints, and visibility constraints. In addition, the suffi-
cient conditions on ensuring the recursive feasibility and closed-loop
system  stability  are  developed.  Finally,  a  numerical  experiment  is
provided to illustrate the efficacy of the proposed method.

Notations: The  symbols  of  all  real  numbers  and  natural  numbers
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are  denoted  by  and ,  respectively. .
For  matrices ,  their  maximum  and  minimum  eigenval-
ues  are  denoted  by , ,  and ,  and

 is set as . Given a vector , its Euclidean and -
weighted norms are denoted by  and . Let

 denote  the  column  operation  for  column  vec-
tors .  For  two  sets ,  the  Pontryagin  difference  is
given by .

ηa = [xa, ya,

za, ψa]T [ϕq, θq, ψq]T

s s = [s1, s2,

s3, s4]T = [s3uv/λ, s3nv/λ,
√

a∗/a, 0.5arctan( 2µ11
µ20−µ02

)]T [uv,

nv]T

µi j =
∑NP
τ=1(uv

τ−uv)i(nv
τ−nv) j a = µ20+µ02 NP

a∗

se = s− sr sr = [0, 0, sr,3,
0]T ve

ve = vq−va vq = [vq, x, vq, y, vq, z]T

va = [va, x, va, y, 0]T

η = col(s, vq) ηe = col(se, ve)

Problem statement: As shown in Fig. 1(a), a quadrotor follows a
moving  target  that  moves  along  a  designed  trajectory 

. Let  denote the UAV attitude vector. To con-
trol  the  quadrotor  conveniently,  a  virtual  camera  method  in [2] is
introduced  by  constructing  a  virtual  image  plane.  In  the  real  image
plane,  the tracking target  is  set  as  a  rectangle consisting of multiple
points. Then, we transform the target pixel coordinates from the real
image  plane  to  the  virtual  image  plane.  The  relative  distance  of  the
target  is  obtained  from  the  image  moments  such  that 

,  where 
 is  the  pixel  center  of  the  target  in  the  virtual  camera  plane,

, ,  is  the  number  of
points  in  the  tracking  target,  and  is  the  desired  value  when  the
quadrotor  reaches its  desired pose.  Our control  objective is  to  regu-
late the UAV to follow the target and maintain a desired height. We
define  the  image  moment  error  as ,  where 

 is  the  desired  image  moment.  Let  denote  the  velocity  error
such  that ,  where  is  the  UAV
velocity, and  is the ground target velocity in the
virtual image plane. Then the quadrotor state and the quadrotor IBVS
error are set as  and . Similar to [7], the
dynamics of the tracking error is derived as follows:
 

ṡe =



−
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zc + s2ψ̇q

−
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−
vq, z

zc

−ψ̇q+ ψ̇a


, v̇e =


ψ̇qve, y+ue, 1

−ψ̇qve, x +ue, 2

ue, 3

 (1)

ue = [ue, 1, ue, 2, ue, 3, ue, 4]T = [r1 + ψ̇qva, y − v̇a, x, r2 −
ψ̇qva, x − v̇a, y, r3, ψ̇q− ψ̇a]T r = [r1, r2, r3]T

u = col(r, ψ̇q) η̇e = f (ηe, u) = col(ṡe,
v̇e)

η̄e(k+1) = fe(η̄e(k), u(k)) = η̄e(k)+ f (η̄e(k), u(k))δ

where 
, , and the control input is

given  by .  Therefore,  we  have 
,  and  the  discrete-time  version  of  the  nominal  error  dynamics  is

given by , where δ
is the control interval.
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Fig. 1. Example for time-varying visibility constraints.
 

u(k)
ϕd(k+1) = arcsin

( r2(k)√
r1(k)2+r2(k)2+(r3(k)−g)2

) θd(k+1) = arctan( r1(k)
r3(k)−g ) ψd(k+1) =

ψ̇q(k)δ+ψq(k)

According  to  the  control  input  from  the  IBVS  controller,
the  desired  UAV  attitudes  are  given  by 

, ,  and 

, where g is  the  gravitational  constant.  By  employing
an  output-tracking  UAV  controller  from [7], [10],  this  letter  only
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ρ(k)
ηe(k+1) = fe(ηe(k), u(k))+ρ(k) ∥ρ(k)∥

ρ̄

focuses  on  designing  the  IBVS  controller  instead  of  generating  the
actuator level commands directly, where the UAV attitudes vary with
the control input. Considering the system disturbances [2], the track-
ing  error  dynamics  subject  to  disturbances  is  developed  as

, where  is bounded by a con-
stant .

∥ f (η̄e(k+1),
u(k))− f (η̄e(k), u(k))∥ ≤ L∥η̄e(k+1)− η̄e(k)∥

η̄e(k+1) = Aη̄e(k)+
Bue(k) A+BK

Assumption  1:  There  exists  a  constant L such  that 
.  The  tracking  error  sys-

tem  can  be  linearized  in  the  target  states  as 
, and there exists a feedback gain K such that  is Hur-

witz.
L = ψ̇q,max+

1
zc ψ̇q,maxRemark 1: A feasible constant is ,  where  is

the maximum angular velocity.
Main results: To guarantee that the tracking target is always in the

field of view of the aerial camera, we develop a time-varying visibil-
ity  constraint  for  the  robust  MPC,  resulting  in  the  following  opti-
mization problem:
 

min
u(k+n|k)

J(k) =
N−1∑
n=0

(∥∥∥η̄e(k+n|k)
∥∥∥2Q+ ∥ue(k+n|k)∥2R

)
+
∥∥∥η̄e(k+N |k)

∥∥∥2P (2a)
 

s.t. η̄e(k+n+1|k) = fe(η̄e(k+n|k), u(k+n|k)) (2b)
 

u(k+n|k) ∈ U, n ∈ N[0, N−1] (2c)
 

p̄e(k+n|k) ∈ Vn(u(k+n|k)), p̄e(k+N |k) ∈ VT (2d)
 

∥η̄e(k+n|k)∥P ≤ X(n), n ∈ N[0, N] (2e)
X(n) U

X(n) = (N−n)H+n
N ε

η̄e(k+n|k)
η̄e(k|k) = ηe(k) p̄e(k+n|k)

[s̄e, 1(k+n|k), s̄e, 2(k+n|k)]T Vn(u(k+n|k))
VT

pc = [xc, yc, zc]T

[uc, nc]T = λ/zc[xc, yc]T

V(u(k+n|k))

A1 = [uv, nv]T

[uv, nv]T = [ sψ sθ n̄c+λcψ sθ+ūccθ
sψcθ n̄c+λcψcθ−ūc sθ

,
n̄ccψ−λsψ

sψcθ n̄c+λcψcθ−ūc sθ
]T s. = sin(·)

c. = cos(·) ūc n̄c

where Q, R, and P are positive definite matrices.  and  are the
tracking  error  constraint  and  the  control  input  constraint  such  that

,  where H is  a  tuning  factor,  and ε is  the  value  of
the  terminal  set  level.  Moreover,  is  the  nominal  tracking
error, and .  includes partial image moments

. Furthermore,  is the time-
varying  visibility  constraint,  and  is  the  terminal  visibility  con-
straint.  Particularly,  the  visibility  constraint  is  related  to  UAV  atti-
tudes  and  bounds  of  the  visible  area  in  the  real  image  plane.  As
shown  in Fig.  1, O is  the  original  point  of  the  virtual  image  plane
which  is  also  the  mapping  point  of  the  UAV.  For  a  point

 in the camera frame, its projection in the real image
plane  is  obtained  according  to ,  where λ is
the  camera  focal  length.  Let  denote  the  real  visibility
constraint  area,  which  will  be  distorted  to  the  blue  quadrangle  in
Fig.  1(b)  with  the  change  of  attitudes.  The  image  moments  in  this
area  indicate  that  the  tracking  target  is  within  the  field  of  view  of
the UAV. Then the boundary point  of the real visibil-
ity  constraint  area  in  the  virtual  image  plane  is  calculated  by

,  where ,
.  Furthermore,  and  denote  the  upper  bounds  of  the

visible area in the real image plane, which are related to the camera
parameters.

VT

rv M(u(k+
n|k))

rv

After  calculating  four  boundary  points  by  the  same  method,  the
midpoint M of the real visibility constraint area is obtained. Then, we
calculate the intersection of real visibility constraint areas as the ter-
minal visibility constraint area  when the roll and pitch angles are
both maximum or minimum. The terminal visibility constraint area is
the red octagon as shown in Fig. 1(b), which is calculated offline, and
this area is visible in any UAV attitude. Moreover, we use γ to denote
the radius of its inscribed circle.  Particularly,  the real visibility con-
straint  will  change with system errors and control inputs,  increasing
the computational complexity of the optimization problem. Thus, the
real  visibility  constraint  area  is  simplified  as  the  green  circle  in
Fig.  1(b)  with  a  fixed  radius  and  a  time-varying  center 

.  When the  UAV is  hovering,  the  real  visibility  constraint  area
becomes the yellow dashed square in Fig. 1(b), and the radius of its
inscribed  circle  is .  The  simplified  time-varying  visibility  con-

Vn(u(k+n|k)) = V0(u(k+n|k))⊖ ζn
n ∈ N[1, N] V0(u(k+n|k)) = {p ∈ R2, (p−M(u(k+n|k)))2 ≤
r2

v } ζn = {p ∈ R2, ∥p∥ ≤ nρ̄eL(n−1)δ}

V0(u(k+n|k)) ∈ V(u(k+
n|k))

straint  at  time k is  given  by  for
,  where 

,  and .  The  distance  from the  mid-
point  of  the  real  visibility  constraint  area  to  each  edge  is  minimal
when  the  UAV  is  hovering,  resulting  in 

.
Ω = {ηe ∈ R7 :

∥ηe∥P ≤ ε} u f (k)
ηe(k) ∈Ω u f (k) =Kηe(k)+Γ(k) ∈ U

AT
KPAK − (1− κ)P ≤ −Q∗ r(k)T Pr(k) + 2ηe(k)T AT

KPr(k) ≤
κηe(k)T Pηe(k) 0 < κ < 1 Q∗ =Q+KT RK Γ(k) = [v̇a, x(k)−
ψ̇q(k)va, y(k), ψ̇q(k)va, x(k)+ v̇a, y(k), 0, ψ̇a(k)]T AK = A+BK
r(k) r(k) = fe(ηe(k), u(k))−AKηe(k)

Assumption  2:  There  exist  a  terminal  invariant  set 
 and a  terminal  control  law  such that  the  following

conditions  hold  for  any :  1) ;  2)
;  3) 

,  where , , 
, ,  and

 is the nonlinear error such that .
Remark  2:  It  is  standard  in  MPC.  Based  on  the  Schur’s  comple-

ment, P and K are  obtained  by  solving  a  linear  matrix  inequality
(LMI) optimization problem with convex combinations [11], [12].

Λ(N −1) ≤ H−1
N ε Λ(N) ≤ (1−√

1 − λmin(Q∗)
λmax(P) )ε minηe ∈Ω

√
s2

e, 1 + s2
e, 2 ≤ γ Λ(n) =

λmax(
√

P)ρ̄eLnδ

Theorem  1:  The  RMPC  scheme  is  recursively  feasible  if  the  fol-
lowing  conditions  hold:  1) ;  2) 

;  3) ,  where 
.

u∗(k+n|k)
n ∈ N[0, N−1]

η̄∗e(k+n|k)
u∗e(k+n|k) k+1

u∗(k+n|k) n ∈ N[1, N−1]
u f (k+N |k)) η̄e(k+n|k+1) ue(k+n|k+1)

η̄e(k+1|k+1) = ηe(k+1)

Proof:  Given  the  optimal  control  input  trajectory ,
,  the nominal  tracking error  and control  input  error  pre-

dicted  by  the  optimal  control  input  are  set  as  and
.  Then  we  construct  a  control  sequence  at  time 

including ,  and  the  terminal  controller
 in  Assumption  2.  Let  and 

denote  the  corresponding  nominal  tracking  error  and  control  input
error,  where .  By  virtue  of  the  Gronwall-
Bellman-Ou-Iang-type  inequality [13] and  Assumption  1,  the  track-
ing error between two predicted states is derived as follows:
 

∥η̄e(k+n|k+1)− η̄∗e(k+n|k)∥P

≤ λmax(
√

P)δ
n−1∑
s=1

(
∥ f (η̄e(k+ s|k+1), u∗(k+ s|k))

− f (η̄e(k+ s|k), u∗(k+ s|k))∥
)
+λmax(

√
P)ρ̄

≤ λmax(
√

P)ρ̄eL(n−1)δ = Λ(n−1), n ∈ N[2, N]. (3)

∥η̄e(k+n|k+1)∥P ≤ ∥η̄∗e(k+n|k)∥P+Λ(n−1) ≤ (N−n+1)H+n−1
N ε

n ∈ N[1, N] η̄e(k+N |k) ∈Ω∥∥∥η̄∗e(k+1+N |k)
∥∥∥P ≤ √1− λmin(Q∗)

λmax(P) ε

k+1 ∥η̄e(k+N +1|k+1)∥P ≤
∥η̄∗e(k+N +1|k)∥P+Λ(N) ≤ ε

∥p̄e(k+n|k+1)− p̄∗e(k+n|k)∥ ≤ ∥η̄e(k+
n|k+1)− η̄∗e(k+n|k)∥ ≤ ρ̄eL(n−1)δ ≤ nρ̄eL(n−1)δ− (n−1)ρ̄eL(n−2)δ

p̄∗e(k+n|k) ∈ Vn(u∗(k+n|k)) p̄e(k+n|k+1) ∈ Vn−1(u(k+
n|k+1))

Using the condition (1) in Theorem 1 and the triangular inequality
yields: 
for . Since , by virtue of the condition (2) in
Theorem 1, one gets .  The termi-
nal  tracking error  at  time  is  derived as:

, implying that the constraint (2e) is sat-
isfied.  Based on the  condition  (3)  in  Theorem 1,  the  maximum dis-
tance from any point in the terminal invariant set to any point in the
terminal visibility constraint area is shorter than γ. Therefore, the ter-
minal visibility constraints are satisfied. As for the time-varying visi-
bility  constraint,  one  gets 

 . Beca-
use , we have 

. ■
pe(k) [ se, 1(k)

s3(k) ,
se, 2(k)
s3(k) ]TRemark 3: In practical,  can be denoted by  to

relax  the  visibility  constraints  of  the  UAV  and  improve  the  control
performance, which hardly affects the feasibility of the system.

λ(Q, P)
∑N

n=1

(
Λ(n−1)2 + 2Λ(n−1)X(n)

)
+ Λ(N)2 +

2
√

1− λmin(Q∗)
λmax(P) Λ(N)ε ≤ λ(Q, P)ε2

Theorem 2: The closed-loop system is stable if the following con-
dition  holds: 

.
V(k) = J(k)

V(k+1)−V(k) = ∆1+∆2 ∆1 =
∑N−1

n=1

(∥∥∥η̄e(k+n|k+1)
∥∥∥2Q −∥∥∥η̄∗e(k+n|k)

∥∥∥2Q+ ∥ue(k+n|k+1)∥2R−
∥∥∥u∗e(k+n|k)

∥∥∥2R ) ∆2 = ∥η̄e(k+

N |k+1)∥2Q + ∥ue(k+N|k+1)∥2R +
∥∥∥η̄e(k + 1+ N |k+1)

∥∥∥2P − ∥η̄∗e(k +

Proof:  We  define  the  optimal  cost  function ,  and  the
cost  function  difference  between  two  control  intervals  is  derived  as

,  where 
,  and 
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N |k)∥2P−
∥∥∥η̄∗e(k|k)

∥∥∥2Q− ∥∥∥u∗e(k|k)
∥∥∥2R ∆1.  By  virtue  of  (3),  is  derived  as

follows:
 

∆1 ≤
N−1∑
n=1

(∥∥∥η̄e(k+n|k+1)− η̄∗e(k+n|k)
∥∥∥Q

×
∥∥∥η̄e(k+n|k+1)+ η̄∗e(k+n|k)

∥∥∥Q )
≤ λ(Q, P)

N−1∑
n=1

(
Λ(n−1)2+2Λ(n−1)X(n)

)
. (4)

Similarly, according to Assumption 2, we have
 

∆2 ≤ λ(Q, P)(Λ(N −1)2+2Λ(N −1)ε)+Λ(N)2

+2

√
1− λmin(Q∗)
λmax(P)

Λ(N)ε−λ(Q, P)ε2. (5)

ηe(k) <Ω V(k+1)−V(k) ≤ 0For any , one gets , and the quadrotor
will converge to Ω in finite time. By virtue of the argument in [14], it
can be shown that the closed-loop system is stable. ■

λ = 2.8×10−3 FoV = 84◦

2.52×10−6

xa(t) = 0.1t
ya(t) = 4sin(0.025t) ψa(t)

ψa(t) =
atan2(ẏa(t), ẋa(t))√

ẋ2
a(t)+ ẏ2

a(t) ẋa(t)ÿa(t)−ẏa(t)ẍa(t)
ẋ2

a(t)+ẏ2
a(t)

0.5 × 0.4 × 0.3

a∗ = 8.036×10−7 sr = [0, 0, 1, 0]T

[−0.2, 0.4, −3.2, 0, 0, π/8]T [0, 0,0, π/4]T

δ = 0.05
N = 16 H = 5 ε = 0.15
Q = diag([5, 5, 1, 1, 5, 5, 1])×10−3 R = diag([1, 1, 1, 1])×
10−2 ρ̄ = 1×10−4

{η ∈ R7 : −ηmax ≤ η ≤ ηmax} {u ∈ R4 : −umax ≤ u ≤ umax}
ηmax = [2, 2, 4, π, 1, 1, 1]T umax = [1.5, 1.5, 1.5, 0.3]T

Numerical  example: In  the  simulation  experiment,  a  quadrotor
with the same parameters in [7] follows an automated guided vehicle
(AGV).  The  focal  length  of  the  aerial  camera  equipped  on  the
quadrotor is  m, and . The pixel of the cam-
era  is  assumed  as  a  square  with  the  side  length  m.  To
verify the efficacy of the proposed method, we select a small visibil-
ity constraint area, which is set to be half of the aerial image and has
the same center  as  the aerial  image.  The leader  AGV is  assumed to
be  regulated  along  a  reference  trajectory  such  that ,

,  and the heading angle  is  calculated acco-
rding  to  the  four-quadrant  inverse  tangent  operator  as 

. The linear velocities and angular velocities of the
AGV are  set  as  and .  The  model  size
of  the  leader  AGV is  m  m  m.  The designed height
between  the  UAV  and  the  AGV  top  is  set  as  2  m  and  the  desired
image features are given as  and .
The  initial  coordinates  and  attitudes  of  the  quadrotor  and  the  AGV
top  are  and ,  respec-
tively.  For  specific  control  parameters  of  the  RMPC  scheme,  the
sampling  interval  is  chosen  as  s,  the  prediction  horizon  is

, , ,  and  the  positive  matrices  are  given  by
  and 

. In addition, the upper bound of the disturbance is .
The  state  constraint  and  the  input  constraint  are  given  by

 and ,  where
 and .

Fig.  2(a)  describes  the  3-D  trajectories  of  the  UAV  and  partial
image moment errors. During the tracking process, the pixel trajecto-
ries  of  the  leader  AGV  in  the  real  image  plane  are  described  in
Fig. 2(b). The pixel coordinates of the AGV are always less than 500,
implying  that  the  visibility  constraints  are  satisfied  by  the  RMPC
method.

Conclusion: This letter has investigated a robust MPC-based IBVS
method for quadrotors with aerial cameras. To avoid losing the track-
ing  target,  we  have  designed  a  time-varying  visibility  constraint
related to UAV attitudes,  followed by proposing the RMPC scheme
to  deal  with  the  visibility  constraints  and  external  disturbances.
Moreover,  the  theoretical  analysis  of  the  recursive  feasibility  and
closed-loop stability has been developed. Finally, a numerical exam-
ple has verified the efficacy of the RMPC-based IBVS method.

Acknowledgments: This work was supported by the National Nat-
ural Science Foundation of China (U22B2039, 62273281).

References 

 Y.  Liu,  Z.  Meng,  Y.  Zou,  and  M.  Cao, “Visual  object  tracking  and
servoing  control  of  a  nano-scale  quadrotor:  System,  algorithms,  and
experiments,” IEEE/CAA  J.  Autom.  Sinica,  vol. 8,  no. 2,  pp. 344–360,
2021.

[1]

 H.  Xie  and  A.  F.  Lynch, “State  transformation-based  dynamic  visual
servoing for an unmanned aerial vehicle,” Int. J. Control, vol. 89, no. 5,
pp. 892–908, 2016.

[2]

 W.  Zheng,  F.  Zhou,  and  Z.  Wang, “Robust  and  accurate  monocular
visual  navigation  combining  IMU  for  a  quadrotor,” IEEE/CAA  J.
Autom. Sinica, vol. 2, no. 1, pp. 33–44, 2015.

[3]

 H.  Xie,  A.  F.  Lynch,  K.  H.  Low,  and  S.  Mao, “Adaptive  output-
feedback  image-based  visual  servoing  for  quadrotor  unmanned  aerial
vehicles,” IEEE  Trans.  Control  Syst.  Tech.,  vol. 28,  no. 3,  pp. 1034–
1041, 2020.

[4]

 D.  Zheng,  H.  Wang,  J.  Wang,  X.  Zhang,  and  W.  Chen, “Toward
visibility  guaranteed  visual  servoing  control  of  quadrotor  UAVs,”
IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1087–1095, 2019.

[5]

 C.  P.  Bechlioulis,  S.  Heshmati-Alamdari,  G.  C.  Karras,  and  K.  J.
Kyriakopoulos, “Robust  image-based  visual  servoing  with  prescribed
performance  under  field  of  view  constraints,” IEEE  Trans.  Robotics,
vol. 35, no. 4, pp. 1063–1070, 2019.

[6]

 K.  Zhang,  Y.  Shi,  and  H.  Sheng, “Robust  nonlinear  model  predictive
control based visual servoing of quadrotor UAVs,” IEEE/ASME Trans.
Mechatronics, vol. 26, no. 2, pp. 700–708, 2021.

[7]

 H. Li, W. Yan, and Y. Shi, “A receding horizon stabilization approach
to  constrained  nonholonomic  systems  in  power  form,” Systems  &
Control Lett., vol. 99, pp. 47–56, 2017.

[8]

 H.  Liang,  H.  Li,  Y.  Shi,  D.  Constantinescu,  and  D.  Xu, “Energy-
efficient  integrated  motion  planning  and  control  for  unmanned  surface
vessels,” IEEE Trans. Control Syst. Technology, vol. 32, no. 1, pp. 250–
257, 2024.

[9]

 T.  Lee,  M.  Leok,  and  N.  H.  McClamroch, “Nonlinear  robust  tracking
control  of  a  quadrotor  UAV  on  SE  SE(3),” Asian  J.  Control,  vol. 15,
no. 2, pp. 391–408, 2013.

[10]

 M. Lazar and M. Tetteroo, “Computation of terminal costs and sets for
discretetime  nonlinear  MPC,” IFAC-PapersOnLine,  vol. 51,  no. 20,
pp. 141–146, 2018.

[11]

 H.-N.  Nguyen,  S.  Olaru,  P.-O.  Gutman,  and  M.  Hovd, “Constrained
control  of  uncertain,  time-varying  linear  discrete-time  systems  subject
to  bounded  disturbances,” IEEE  Trans.  Autom.  Control,  vol. 60,  no. 3,
pp. 831–836, 2015.

[12]

 K.  Zhang,  Q.  Sun,  and  Y.  Shi, “Trajectory  tracking  control  of
autonomous  ground  vehicles  using  adaptive  learning  MPC,” IEEE
Trans.  Neural  Networks  and  Learning  Syst.,  vol. 32,  no. 12,  pp. 5554–
5564, 2021.

[13]

 H.  Li  and  Y.  Shi, “Event-triggered  robust  model  predictive  control  of
continuous-time  nonlinear  systems,” Automatica,  vol. 50,  no. 5,
pp. 1507–1513, 2014.

[14]

 

Initial positions
Final positions
Designed positions

300

200

100

0

−100

−200

−300

−400

−500

nc  (
pi

xe
l)

−30020181614121086420 −200 −100 0
uc (pixel)Time (s)

(b) Pixel trajectories(a) Trajectories and image moment errors

100 200 300

UAV

AGV

Initial point

UAV trajectory
AGV trajectory
Visibility constraint area

4

3

−z
e (

m
)

Im
ag

e 
m

om
en

t e
rr

or
s

2

1

0

0.6
0.4
0.2

0
−0.2

4
2

0
0 2 4 6

x (m)
8 10

y (m)

se,1 se,2 se,3 se,4

 
Fig. 2. Trajectories of the quadrotor and the moving target.
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