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 Dear Editor,
In  this  letter,  a  novel  data-driven  adaptive  predictive  control

method is  proposed  using  the  triangular  dynamic  linearization  tech-
nique. The proposed method only contains one time-varying parame-
ter  with  explicit  physical  meaning,  which can prevent  severe  devia-
tion  in  parameter  estimation.  Specifically,  a  triangular  dynamic  lin-
earization  (TDL)  data  model  is  employed  to  predict  future  system
outputs, and then to correct inaccurate predictive outputs, a feedback
regulator is designed. An autotuned weighing factor is introduced to
alleviate  the  computational  burden in  practical  applications  and fur-
ther improve output tracking performance. Closed-loop stability con-
ditions  are  derived  by  rigorous  analysis.  Simulation  results  are  pro-
vided to demonstrate the efficacy of the proposed method.

Model predictive control (MPC) has received a surge of interests in
various  applications,  such  as  autonomous  vehicles [1],  power  elec-
tronic  systems [2],  and  networked  control  systems [3], [4].  In  prac-
tice,  however,  it  is  generally  difficult  to  develop  an  accurate  model
for  those  systems  with  nonlinearity,  uncertainty,  or  time-varying
characteristics.  To address this,  data-driven predictive control  meth-
ods were proposed [5]–[9]. For example, a data-driven model predic-
tive control method was presented in [8], where the unknown system
was  estimated  directly  from  measured  data  by  the  subspace  tech-
nique. A model-free adaptive predictive control (APC) method based
on an equivalent data model with partial form dynamic linearization
(PFDL),  called  PFDL-APC,  was  proposed  in [9].  However,  there
exist  two  restrictions  stated  as  follows.  Firstly,  most  of  the  existing
data  models  lack  explicit  physical  significance  pertaining  to  their
model parameters. Secondly, massive parameters in these data mod-
els  require  online  identification.  In  practical  applications,  the  two
problems  would  lead  to  the  deviation  of  parameter  estimates  in  the
online identification process and also impose an additional computa-
tional burden.

To  solve  those  problems,  based  on  the  TDL  technique  in [10],  a
novel  data-driven  adaptive  predictive  control  method  called  TDL-
APC is  proposed in  this  letter  for  a  class  of  nonlinear  systems.  Our
contributions  are  summarized as  follows.  1)  To solve the  parameter
estimate deviation problem in the PFDL-APC method, a data-driven
adaptive  predictive  control  method  utilizing  triangular  dynamic  lin-
earization  is  designed.  2)  An  autotuned  weighting  factor  is  intro-
duced to alleviate the computational burden and also provide a better
tracking performance compared to the corresponding method with a

fixed  weighting  factor.  3)  The  rigorous  analysis  is  given  to  obtain
closed-loop stability conditions.

∥ · ∥
∆x(k) = x(k)− x(k−1) ρ(·)
Im 0m×n m×m

m×n

Notations: Throughout this paper,  denotes the Euclidean norm.
It  is  defined  that .  means  the  spectral
radius  of  a  matrix.  and  denote  an -dimensional  iden-
tity matrix and an -dimensional zero matrix, respectively.

TDL-APC  method: Consider  a  general  nonlinear  system  as  fol-
lows:
 

z(k+1) = f
(
z(k), . . . ,z(k−nz),v(k), . . . ,v(k−nv)

)
(1)

z(k) v(k)
f (·)

nz nv

where  and  denote the system output and the control input at
time k,  respectively;  represents  an unknown nonlinear  function;
and  and  are the unknown system output and input orders.

According  to [10],  system  (1)  can  be  expressed  as  the  following
TDL data model:
 

z(k+1) = z(k)+ p(k)∆ω(k) (2)
p(k) ∈ [pl, pu] pl pu

ω(k)
where  is a scalar with positive constants  and , and

 is defined as
 

∆ω(k) =
1
n

n∑
i=1

i∆v(k− i+1)+
1

M−n

M∑
i=n+1

(M− i)∆v(k− i+1) (3)

M ∈ [2,+∞) n ∈ [1,M)where  and  are  both  integer  constant  parame-
ters of the TDL data model. For details of data model (2), please refer
to [10].

The  proposed  TDL-APC  scheme  consists  of  four  parts,  i.e.,  a
parameter  estimator,  a  TDL  predictor,  a  feedback  regulator,  and  an
optimal controller. Each part is presented below in detail.

p(k)1) Parameter estimator: The estimate of  is given as
 

p̂(k) = p̂(k−1)+
∆ω(k−1)
η+∆ω2(k−1)

(
∆z(k)

− p̂(k−1)∆ω(k−1)
)

(4)
where η is a constant weighting parameter.

∆V̂(k) = [∆v̂(k|k−1), . . . ,∆v̂(k+Np −1|k−
1)]T ∆Vp(k−1) = [∆v(k−1), . . . ,∆v(k−M+2)]T Np

∆Vp(k−1)
∆V̂(k)

2) TDL predictor: Define 
, ,  and  is  the  pre-

dictive horizon of the system output. Based on the historical control
input  sequence  and  the  future  control  input  sequence

, future system outputs are predicted by using TDL data model
(2), which are given as
 

ẑ(k+ i|k) = ẑ(k+ i−1|k)+ âi(k)∆V̂(k)+ b̂i(k)∆Vp(k−1)

= z(k)+
i∑

j=1

â j(k)∆V̂(k)+
i∑

j=1

b̂ j(k)∆Vp(k−1) (5)

i = 1,2, . . . ,Npwhere , and
 

â j(k) =



p̂(k)[
j
n
,

j−1
n
, . . . ,

1
n
,01×(Np− j)], 1 ≤ j < n

p̂(k)[
M− j
M−n

, . . . ,1,
n−1

n
, . . . ,

1
n
,01×(Np− j)]

n ≤ j < M

p̂(k)[01×( j−M+1),
1

M−n
, . . . ,1,

n−1
n
,

. . . ,
1
n
,01×(Np− j)], M ≤ j ≤ Np

(6)

 

b̂ j(k) =



p̂(k)[
j+1

n
, . . . ,1,

M−n−1
M−n

, . . . ,
1

M−n
,01×( j−1)]

1 ≤ j < n

p̂(k)[
M− j−1

M−n
, . . . ,

1
M−n

,01×( j−1)], n ≤ j < M

01×(M−2), M ≤ j ≤ Np.
(7)

The compact form of (5) can be rewritten as 
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Ẑ(k+1) = Qz(k)+ Â(k)∆V̂(k)+ B̂(k)∆Vp(k−1) (8)
Ẑ(k+1) = [ẑ(k+1|k), . . . , ẑ(k+Np|k)]T Q = [1,1, . . . ,1]T Â(k)

= [âT
1 (k), âT

1 (k)+ âT
2 (k), . . . ,

∑Np

i=1 âT
i (k)]T B̂(k) = [b̂T

1 (k), b̂T
1 (k) +

b̂T
2 (k), . . . ,

∑Np

i=1 b̂T
i (k)]T

where , , 
,  and 

.
∆v(k+ j−1) = 0 j > NvIf  for , (8) is simplified as

 

Ẑ(k+1) = Qz(k)+ Â1(k)∆V̂Nv (k)+ B̂(k)∆Vp(k−1) (9)
Nv ≤ Np

∆V̂Nv (k) = [∆v̂(k|k−1), . . . ,∆v̂(k+Nv −1|k−1)]T Â1(k) ∈ RNp×Nv

Nv Â(k)

where  is  the  predictive  horizon  of  the  control  input,
,  and 

consists of the first  columns of .
3) Feedback regulator: In order to further correct inaccurate predic-

tive  outputs,  a  feedback  regulator  is  designed.  Define  the  feedback
regulation term as
 

β̂(k) = F
(
z(k)− ẑ(k|k−1)

)
(10)

F = [ f1, f2, . . . , fNp ]Twhere  is  the weighting coefficient  vector.  As a
result, the modified predictive output vector is expressed as
 

Ẑp(k+1) = Ẑ(k+1)+ β̂(k) (11)
which is used for the design of the subsequent optimal controller.

4)  Optimal  controller:  By considering the  future  system behavior,
the  following  receding  horizon  optimization  performance  criterion
with an autotuned weighting factor is constructed
 

J = ∥Z∗(k+1)− Ẑp(k+1)∥2 +λ p̂2(k)∥∆V̂Nv (k)∥2 (12)

Z∗(k+1) = [z∗(k+1), . . . ,z∗(k+Np)]Twhere  is  the  reference  input,
and λ is  a  positive  control  weighting  factor.  Minimizing (12)  yields
the following control prediction sequence:
 

∆V̂Nv (k) =
(
ÂT

1 (k)Â1(k)+λ p̂2(k)I
)−1ÂT

1 (k)
(
Z∗(k+1)

−Qz(k)− B̂(k)∆Vp(k−1)− β̂(k)
)

= p̂−1(k)H−1
0 AT

0
(
Z∗(k+1)−Qz(k)

− B̂(k)∆Vp(k−1)− β̂(k)
)

(13)
H0 = AT

0 A0 +λINv A0 = Â1(k)/ p̂(k)where  and  are  constant  matrices.
According to the receding horizon optimization mechanism of MPC
[6], the first element of the control prediction sequence is applied to
the controlled plant at the current time instant, i.e.,
 

v(k) = v(k−1)+g∆V̂Nv (k) (14)
g = [1,01×(Nv−1)]where .

λ p̂2(k)(
ÂT

1 (k)Â1(k)+λp̂2(k)I
)−1ÂT

1 (k) p̂−1(k)H−1
0 AT

0
H−1

0 AT
0

Remark 1: It  is noted that by introducing the autotuned weighting
factor  in (12),  the computational burden can be considerably
reduced  by  avoiding  the  calculation  of  matrix  inversion,  since

 in  (13)  is  turned  into ,
where  can be calculated offline. Furthermore, it is easy to see
from  (2)  and  (13)  that  the  autotuned  weighting  factor  can  preserve
smooth output response for different operating points of a nonlinear
system.

Stability analysis:
p(k) p̂(k)

p̂(k) ∈ [p̂l, p̂u] p̂l

p̂u

Theorem 1: If  is bounded, the parameter estimate  is also
bounded,  i.e., ,  where  positive  constant  scalars  and

 denote the lower and upper bound, respectively.
Proof: For a detailed proof, please refer to Theorem 17 of [9]. ■

z∗(k)
r∗

To  analyze  the  convergence  of  the  system  output  tracking  error,
without  loss  of  generality,  the  reference  input  is  set  as  a  con-
stant . Thus, the predictive control law (14) becomes
 

∆v(k) = ψ̂1(k)e(k)+ ψ̂2(k)∆V′p(k−1) (15)

e(k) = r∗ − z(k) D = [ 1
n ,

2
n ,

. . . ,1, M−n−1
M−n , . . . ,

1
M−n ] ∆V′p(k−1) = [∆v(k−1), . . . ,∆v(k−M+1)]T

ψ̂1(k) = p̂−1(k)gH−1
0 AT

0 Q ψ̂2(k) = −gH−1
0 AT

0 B0 − g
p̂(k)
(
p(k−1)− p̂(k−

1)
)
H−1

0 AT
0 FD B̂1(k) = [B̂(k),0Np×1] B̂1(k) = p̂(k)B0

where  the  system  output  tracking  error , 
, ,

, 
, , and .

p̂l ≤ p̂(k) ≤ p̂u ψ̂1(k)
ψ̂1(k) ∈ [ψ̂l

1, ψ̂
u
1] ψ̂l

1 ψ̂u
1

∆V′p(k)

As shown in  Theorem 1, .  Thus,  the  scalar  is
also  bounded,  i.e., ,  where  and  are  constant
scalars. Then, with (15),  can be written as
 

∆V′p(k) = Ψ̂1(k)e(k)+Ψ̂2(k)∆V
′
p(k−1) (16)

where
 

Ψ̂1(k) = [ψ̂1(k),01×(M−2)]T , Ψ̂2(k) =
[

ψ̂2(k)
IM−20(M−2)×1

]
. (17)

p(k) p(k)− p̂(k)
ψ̂2(k)

||Ψ̂2(k)|| ||Ψ̂2(k)|| ≤
µ1 µ1

Since  is bounded, using Theorem 1,  is bounded for
any time k, which further leads to  being bounded. Then, it can
be  obtained  from  (17)  that  is  also  bounded,  i.e., 

, where  is a scalar.
Theorem 2: If the weighting factor λ satisfies

 

0 < µ1 < 1 (18)
 

0 <
plψ̂l

1
n
< 1, 0 <

puψ̂u
1

n
< 1 (19)

 

0 <
plψ̂l

1
n
+ pu∥D∥ψ̂u

1 ≤ 1 (20)

µ1 ψ̂l
1 ψ̂u

1
limk→∞ |e(k)| = 0
where , ,  and  are  all  only  related  to  the  constant λ,  then

.
∥∆V′p(0)∥ = 0

∥∆V′p(k)∥
Proof: Let , and by taking norm of both sides of (16),

 satisfies
 

∥∆V′p(k)∥ ≤ µ1∥∆V′p(k−1)∥+ ψ̂u
1|e(k)|

≤ µk
1∥∆V′p(0)∥+ ψ̂u

1

k−1∑
g=0

µ
g
1|e(k−g)|

= ψ̂u
1

k−1∑
g=0

µ
g
1|e(k−g)|. (21)

Therefore, with (16), it can be obtained that
 

e(k+1) =
(
1− p(k)ψ̂1(k)

n
)
e(k)− p(k)DΨ̂2(k)∆V

′
p(k−1). (22)

µ2 = 1− plψ̂l
1

n µ3 = pu∥D∥ 0 < plψ̂l
1

n <
puψ̂u

1
n < 1Let  and .  With  (19), 

holds, and it can be derived that
 

0 < 1−
puψ̂u

1
n
≤ 1− p(k)ψ̂1(k)

n
≤ µ2 < 1.

With (21), the norm of (22) is
 

|e(k+1)| ≤ µ2|e(k)|+µ1µ3∥∆V′p(k−1)∥

≤ µk
2|e(1)|+µ1µ4

k−2∑
g=0

µ
g
2

k−2−g∑
h=0

µh
1|e(k−1−g−h)|

= κ(k+1) (23)
µ4 = µ3ψ̂u

1 κ(2) = µ2|e(1)|where , , and
 

κ(k+1) = µ2κ(k)+µ4

k−2∑
h=1

µh+1
1 |e(k−1−h)|+µ1µ4|e(k−1)|

= µ2κ(k)+ ℓ(k) (24)

ℓ(k) = µ4
∑k−2

h=1 µ
h+1
1 |e(k−1−h)|+µ1µ4κ(k−1)

0 < plψ̂l
1

n + pu∥D∥ψ̂u
1 ≤ 1 µ4 ≤ µ2

with .  According  to
(20), , i.e., . Thus, one has
 

ℓ(k) ≤ µ1

[
µk−1

2 |e(1)| +µ1µ4

k−3∑
g=0

µ
g
2

×
k−3−g∑

h=0

µh
1|e(k−2−g−h)|

]
= µ1κ(k). (25)

Substituting (25) into (24) gives
 

κ(k+1) ≤ (µ1 +µ2)κ(k) ≤ (µ1 +µ2)k−1κ(2). (26)

µ1 <
plψ̂l

1
n µ1 +µ2 < 1Since , i.e., , it is obtained that

 

lim
k→+∞

|e(k+1)| ≤ lim
k→+∞

(µ1 +µ2)k−1κ(2) = 0. (27)

■
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Numerical  simulation: To  verify  the  effectiveness  of  the  pro-
posed  method,  the  following  time-varying  nonlinear  system  is  con-
sidered:
 

z(k+1) =
α(k)z(k)z(k−1)

1+ z2(k)+ z2(k−1)
+ v3(k)+2v(k−1) (28)

α(k) = 1+0.9sin( kπ
40 )

η = 1 Np = 4 Nv = 2 F = [0.95,0.95,0.95,0.95]T

M = 5 n = 2 λ = 5 p̂(0) = 1
η = 1 µ = 0.1 Np = 4 Nu = 2 L = 4 λ = 10

φ̂L(1) = [1,0,0,0]T

where . The parameters of the proposed method
are  chosen  as , , , ,

, , , and . The parameters of the PFDL-APC
method are  set  as , , , , , ,  and

.

z∗(k) = sin( kπ
40 )

p̂(k)

Fig. 1 shows the comparative simulation results of the PFDL-APC
and  TDL-APC  methods  for  a  reference  signal .  As
shown  in Fig.  1(a),  both  methods  possess  similar  tracking  perfor-
mance.  Moreover,  the TDL-APC method can always maintain good
tracking  performance  while  that  of  the  PFDL-APC method  deterio-
rates significantly as time increases (see Figs. 1(b) and 1(c)). This is
because  the  estimates  of  the  four  model  parameters  of  the  PFDL-
APC method  gradually  deviate,  as  displayed  in Fig.  1(d),  while  the
estimate  of the TDL-APC method is relatively stable.
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Fig. 1. Tracking  performance  and  estimation  performance  of  the  proposed
TDL-APC  method  and  PFDL-APC  method.  (a)  Tracking  performance
( ;  (b)  Tracking  performance  ( );  (c)  Tracking  per-
formance ( ; (d) Estimation performance.
 

To  test  the  superiority  of  the  autotuned  weighting  factor  in  (12),
simulation  is  carried  out  for  the  TDL-APC  method  with  a  fixed
weighting factor and the following the performance criterion:
 

J = ∥Z∗(k+1)− Ẑp(k+1)∥2+λ∥∆V̂Nv (k)∥2. (29)
The  simulation  time  of  the  three  control  schemes  is  given  in

Table 1. It can be seen from Table 1 that the TDL-APC scheme with
the autotuned weighting factor (i.e., aTDL-APC) is 3.38 times faster
than  the  PFDL-APC  control  scheme  and  2.33  times  faster  than  the
TDL-APC scheme with the fixed weighting factor (i.e., fTDL-APC),
which verifies that the autotuned weighing factor can strongly allevi-
ate  computational  burden.  At  the  same  time, Fig.  2 shows  that  the
aTDL-APC  method  can  further  improve  the  tracking  performance
compared to the fTDL-APC method.

Conclusion: A novel TDL-APC method has been presented based
on  the  triangular  dynamic  linearization  technique  for  nonlinear  sys-
tems,  where  a  TDL  data  model  is  used  to  predict  future  outputs,  a
feedback  regulator  is  designed  to  correct  inaccurate  predictive  out-
puts, and an autotuned weighting factor is introduced to alleviate the
computational  burden.  The  closed-loop  stability  analysis  and  com-
parative simulation results have been provided to illustrate the effec-
tiveness and superiority of the proposed TDL-APC method.
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Table 1. Simulation Time of Three Control Schemes
Scheme Set 1

(ms)
Set 2
(ms)

Set 3
(ms)

Set 4
(ms)

Set 5
(ms)

Average
(ms)

PFDL-APC 11.83 11.05 12.10 11.33 12.55 11.77

fTDL-APC 7.82 8.10 8.12 8.67 7.87 8.12

aTDL-APC 3.85 3.62 3.69 3.20 3.06 3.48
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Fig. 2. Tracking performance of TDL-APC method under the fixed and auto-
tuned weighing factors.
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