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A Probabilistic Approach for Predicting Vessel Motion
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 Dear Editor,

This  letter  addresses  the  challenge  of  forecasting  the  motion  of
real-world vessels over an extended period with a limited amount of
available  data.  By  employing  stochastic  differential  equation  (SDE)
modeling, we integrate both deterministic and stochastic components
of  the  available  information.  Subsequently,  we establish  a  recursive
prediction  methodology  based  on  Bayes’ rule  to  update  the  model
state when new measurements are received. Furthermore, we develop
a stochastic model tailored specifically to vessel dynamics and intro-
duce an approximation method to tackle computational complexities.
Finally,  we present  an application example  and conduct  a  compara-
tive  experiment  to  validate  the  effectiveness  and  superiority  of  the
proposed method.

Introduction: The emergence of  the  automatic  identification sys-
tem (AIS) has provided an accurate and reliable measurement source
that complements traditional methods such as marine radar. This has
facilitated  various  applications  of  the  vast  amount  of  measurement
data  available.  The  prediction  of  vessel  motion,  a  cornerstone  in
numerous  applications  of  AIS  data,  is  recognized  for  the  complexi-
ties  inherent  in  vessels’ dynamics  and  the  intricate  nature  of  the
marine  environment.  However,  it  remains  relatively  less  explored
compared to the existing volume of research in the fields of vehicle
motion prediction and planning, as well as pedestrian trajectory pre-
diction [1]−[4].

There  are  primarily  three  modeling  methods  to  solve  the  predic-
tion problem. The first  method [5] is  based on recurrent  neural  net-
works,  such  as  long  short-term  memory  (LSTM)  networks  and
encoder-decoder  models.  This  approach  aims  to  learn  a  nonlinear
recurrent  model  from a  vast  amount  of  historical  measurement  data
and utilize the learned model to recursively predict  vessels’ motion.
The work presented in [6] utilizes  a  recurrent  encoder-decoder  neu-
ral  network  for  both  prediction  and  estimation  of  the  prediction
uncertainty.  The  second  modeling  method [7] is  based  on  machine
learning,  with  one  of  the  most  representative  techniques  being
Gaussian  processes,  where  the  data  is  utilized  to  fit  both  the  mean
function and the covariance function. The study outlined in [8] tack-
les  ship  trajectory  prediction  uncertainty  by  characterizing  lateral
motion  uncertainty  using  Gaussian  process.  The  third  method [9],
such  as  the  extended  Kalman  filter  (EKF),  derives  a  model  with
uncertainty based on physical laws, typically employing a kinematic
model with Gaussian noise. Perera et al. [10] introduced an EKF for
vessel state estimation, subsequently applying it to predict vessel tra-
jectories.

While  the  first  method  heavily  relies  on  abundant  measurement

data for effective modeling, its performance may suffer in scenarios
with  limited  training  data,  leading  to  robustness  and  transferability
issues.  The  second  method  may  encounter  difficulties  in  modeling
high-dimensional  data  and  is  highly  dependent  on  the  choice  of
kernel function. The prediction outcomes of the third method, gener-
ated  by  a  model  comprising  a  kinematic  model  and  white  noise,
frequently  result  in  straight-line  trajectories.  This  oversimplified
trajectory fails to capture the complexity of real navigation trajecto-
ries.

In this letter, the Itô SDE is employed to leverage the limited avail-
able  information  and  establish  the  model.  The  data  includes  sparse
measurements  of  vessel  motion,  such  as  geodetic  latitude,  geodetic
longitude,  yaw  angle,  speed  over  ground  (SOG),  and  course  over
ground (COG).  Additionally,  it  provides  details  on  navigation  envi-
ronments,  including nautical  charts,  as  well  as  vessel  characteristics
like  length,  width,  and  type.  Subsequently,  the  Markov  property  of
the  Itô  diffusion  and  Bayes’ rule  are  utilized  to  update  the  model
state  upon  receiving  new  measurements.  Following  this,  a  specific
demonstration  model  and  approximation  algorithm  are  presented.
Finally,  an  application  example  is  provided,  and  a  comparative
experiment  is  conducted  to  illustrate  the  effectiveness  and  superior-
ity of the proposed method.

tN X(t) Xt

Notations: Throughout  this  letter,  subscript N signifies  the  time
. Sometimes it  is convenient to write  instead of ,  and thus

we will use these two notations interchangeably.

Y = {y1, . . . ,yN} N > 1

{Y1, . . . ,YN}

Proposed  method: Consider  a  set  of N temporal  non-homoge-
neous measurements, denoted by , . These mea-
surements represent realizations of the observable stochastic process

, which is generated by a continuous-discrete state space
model characterized by the following equations:
 

dXt = f(Xt)dt+D(Xt)dWt (1)
 

Yk = h(Xk)+Vk (2)
k = 1, . . . ,N

Xt ∈ Rn

Yk
Yk ∈ Rp tk f

D(Xt) ∈ Rn×m

h
Vk ∼ N(0,Rk)

where . Itô SDE (1) represents the dynamic model, while
(2)  represents  the  observation  model.  The  continuous  state  variable

 is  a  latent  random  vector  observed  indirectly  through  its
effect  on  the  distribution  of .  The  discrete  observation  variable

 is assumed observable at time . The function  denotes the
drift  coefficient  determining  the  nominal  dynamics  of  the  model,
while  is the dispersion matrix that determines how the
m-dimensional  standard  Wiener  process  enters  the  model.  repre-
sents  the  observation  model  function,  and  is  a  Gaus-
sian observation noise.

Xt t f > tN
Y

The  prediction  problem aims  to  determine  the  probability  density
function  (PDF)  for  the  state  variable  at  time ,  which
depends  on  the  measurement  set  while  simultaneously  consider-
ing the navigation environment for this specific problem. This prob-
lem can be mathematically formulated as
 

p(x f |Y) = p(x f |y1:N) (3)
y1:N t1 tNwhere  represents  the  measurements  from  time  to .  The

knowledge  of  this  PDF  would  allow  prediction  of  the  state  for  any
performance criterion.

[tN , tp)

Navigating  vessels  typically  adhere  to  predetermined  waypoints
established based on various criteria, such as mission objectives, col-
lision  avoidance,  international  regulations,  and  other  factors.  While
reconstructing  the  exact  waypoints  followed  by  vessels  in  the  real
world  based  on  a  limited  number  of  measurements  is  impractical,
general experiences in the navigation environment allow for an esti-
mation of potential  waypoints.  For example,  a common guideline is
for  vessels  to  avoid  grounding.  We  represent  the  waypoint  that
remains  valid  in  the  future  time  span  by  a  random  constant
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S ∈ Rq tp
dS t = 0

S (tN) = S t ∈ [tN , tp)

,  where  is  an  unknown  time  depending  on  the  upcoming
measurements.  The random constant S is  defined such that ,

 for . Therefore, (3) can be expanded as
 

p(x f |y1:N) =
w

dsp(x f ,s|y1:N).

{Xt}
[tN , tp)

The  time-homogeneous  Itô  diffusion  in  (1)  satisfies  the
Markov property [11] within the time horizon . Thus, we have
 

p(x f |y1:N) =
w

ds f

w
dxN

w
dsN p(x f ,s f |xN ,sN)p(xN ,sN |y1:N)

=
w

ds f

w
dzN p(z f |zN)p(zN |y1:N) =

w
ds f p(z f |y1:N) (4)

Zt
△
= [Xt, S t] ∈ Rn+q

{Xt} p(x f |xN ,y1:N) =
p(x f |xN) {S t}

t ∈ [tN , tp)

where the augmented state variable .  The second
equation in (4) leverages the Markov property of : 

.  Additionally,  the  assumption  that  remains  a  random
constant for  is utilized.

ZtThe SDE for the augmented state variable  can be formulated as
follows:
 

dZt =

[
dXt
dS t

]
=

[
f(Xt,S t)

0

]
dt+
[

D(Xt,S t)
0

]
dWt

= g(Zt)dt+L(Zt)dWt (5)
g L(Zt) ∈ R(n+q)×m

{Wt}

f(Xt)
f(Xt,S t)

D(Xt) D(Xt,S t)

where  represents  the  new  drift  coefficient  and 
denotes  the  augmented  dispersion  matrix.  The  Wiener  process 
and  the  corresponding  observation  model  remain  consistent  with
those in (1) and (2), respectively. The distinction between  and

 lies in the treatment of S: in the former, it is a deterministic
constant, while in the latter, it is regarded as a random constant. This
distinction also applies to  and .

p(z)Lemma  1 [12]:  The  PDF  of  the  solution  to  (5)  satisfies  the
Kolmogorov forward equation
 ∑

i

∂

∂zi
[gi(z)p(z)]− 1

2

∑
i, j

∂2

∂zi∂z j
[(LLT )i, j(z)p(z)] = 0 (6)

p(z(t1)) t1with the initial condition  at time .
p(zN |y1:N) p(z f |y1:N)When considering  as the initial PDF,  can be

obtained by solving the partial differential eqaution (PDE) in (6).
p(xN ,sN |y1:N) = p(xN |y1:N)p(sN |y1:N)Assumption 1: .

S N
tN XN

S N XN

Remark 1: Assumption 1 implies that  depends on the measure-
ments up to time  and is independent on the state variable . The
independence  between  and  suggests  that  the  waypoints,
which reflect  the intentions of  the sailor  in  determining the vessel’s
control actions, are generally unaffected by the vessel’s current state.
Instead, they are influenced by more realistic features.

p(zN |y1:N)Accordingly,  can be expressed as
 

p(zN |y1:N) = p(sN |y1:N)p(xN |y1:N)

= p(sN |y1:N)
p(yN |xN)p(xN |y1:(N−1))

p(yN |y1:(N−1))
. (7)

p(xN |y1:(N−1))
p(x f |y1:N)

p(x1) p(s1)
p(sk |y1:k)

p(sk |y1:k)

The second equation in (7) illustrates the general  filtering process
where Bayes’ rule is applied. The relationship between 
and  is established by (4) and (7). This enables the predic-
tion  process  to  be  carried  out  by  recursively  computing  these  two
equations,  where  and  need  to  be  initialized,  along  with
the specification of the PDF  each time a new measurement
is  obtained.  Given  that  large  vessels  navigating  in  the  ocean  typi-
cally move slowly relative to the vast sea surface,  remains
constant over a relatively long time span.

z

Experiments: The  data  acquired  from  AIS  typically  comprises
five types of measurements: geodetic latitude (ϕ), geodetic longitude
(λ),  yaw  angle  (ψ),  SOG  (U),  and  COG  (χ).  The  yaw  angle,  also
referred to as heading, represents the Euler angle between the body-
fixed frame and the local geodetic frame along the -axis. The SOG
and COG are computed from the vessel’s  previous position,  current
position,  and  the  time  interval  between  them.  The  kinematic  equa-
tion is directly expressed in geodetic coordinates [13] 

 dϕ
dλ
dψ

 =


1
RM(ϕ)+h

0 0

0
1

[RN(ϕ)+h]cos(ϕ)
0

0
tan(ϕ)

RN(ϕ)+h
1


 un

ue
r

dt

RM(ϕ) =
a(1− e2)

(1− e2sin2(ϕ))
3
2

, RN(ϕ) =
a

(1− e2sin2(ϕ))
1
2

(8)

un
△
= Ucos(ψ+β) ue

△
= Usin(ψ+β)

β
△
= χ−ψ

tan(ϕ)/[RN(ϕ)+h]

where  and  represent  the  north-
ward  and  eastward  components  of  the  vessel’s  linear  velocity,
respectively. The angular velocity of the vessel is denoted as r. Here
the sideslip angle β is defined as . The presence of the term

 distinguishes  the geodesic  on the reference ellip-
soid from the misleading “straight line”. The units and range of mea-
surement values are detailed in Table I (see Supplementary Material).

dU = d1dW(1)
t {W(1)

t }Assumption  2: ,  where  represents  the  one-
dimensional standard Wiener process.

dβ = 0Assumption 3 [14]: .
Remark 2:  Assumption 2 implies  that  the  SOG U changes slowly

when the vessel is in a navigation state. Furthermore, Assumption 3
indicates  that  the  sideslip  angle β remains  small  and  constant  while
the vessel follows the path to waypoints.

[U,β,r]T
The dynamic model of r adopts the first-order Nomoto model [15].

The SDE for  is given as follows:
  dU

dβ
dr

 =


0
0

− 1
T

r+
K
T
δ

dt+

 d1 0
0 0
0 d2


[

dW (1)
t

dW (2)
t

]
(9)

{W(2)
t }where  the  one-dimensional  standard  Wiener  process  repre-

sents  the  noise  stemming  from  parameter  uncertainty  and  external
disturbances. The rudder angle δ is the control input that needs to be
designed for the model to follow the path to waypoints.

S = [ϕd,λd,αd]T

αd
S N |Y1:N ∼ N(ms,Ps)

The  random  constant S is  defined  as  the  vector ,
where the first two elements represent the desired latitude and longi-
tude, respectively, while  denotes the desired azimuth angle. It fol-
lows a Gaussian distribution given by . We con-
sider the problem of following a straight-line path to reach the desig-
nated state S.  The kinematic equations for line-of-sight (LOS) guid-
ance systems are detailed in (10), where the equilibrium point of the
cross-track  error  is  proven  to  be  uniformly  semiglobally  exponen-
tially  stable  (USGES) [14].  The  rudder  angle  command δ is  gener-
ated using a heading autopilot of PD type
 

ψd = αd − arctan
{

1
∆

[−xsin(αd)+ ycos(αd)]+β
}

δ = −Kp(ψ−ψd)−Kdr (10)
Kp Kd

ζ ≈ 0.53
ωb ≈ 0.05 rad/s

where  the  controller  gains  and  are  chosen  to  achieve  the
closed-loop  dynamics  with  a  damping  ratio  and  a  band-
width .  The  control  law  in  (10)  is  derived  from  the
linearized  version  of  kinematic  model  in  (8).  The  variables x and y
denote  the  coordinates  of  the  vessel’s  position  in  the  local  geodetic
frame,  where  the  frame’s  origin  is  located  at  the  waypoint S.  The
coordinates can be calculated as follows:
 

x = s12cos(α1), y = s12sin(α1)
α1, s12 = Inverse(ϕd,ϕ,λd −λ) (11)

where the algorithm referred to as “Inverse” corresponds to the sec-
ond algorithm detailed in [16]. The parameters occurred from (8) to
(11) are listed in Table II (see Supplementary Material).

Xt

Given  the  complexity  of  solving  (6),  we  prioritize  the  statistical
moments of  for prediction instead of directly handling its PDF. To
address computational challenges, we employ the Gaussian assumed
density  approximation  algorithm [17],  detailed  in  Algorithm  1  (see
Supplementary Material).

m−1
In  the  experimental  simulation,  the  first  measurement  is  used  to

determine the initial mean  with an assumption of angular veloc-
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r = 0
P−1

diag[( 10−4π
180 )2, ( 10−4π

180 )2, ( 10−1π
180 )2, ( 10−2

1.94384 )2, ( 10−1π
180 )2, ( 10−2π

180 )2]

Rk P−1

ity .  Given  that  the  measurement  value  is  accurate  to  the  last
decimal place, the initial covariance matrix  is constructed as fol-
lows: .
The  diagonal  elements  in  the  measurement  noise  covariance  matrix

 are assigned as the first five diagonal elements of .

{Xt}

In Fig.  1,  four  selected  measurements,  each  spanning  an  average
time of  over  10  minutes,  are  acquired  from a  cargo  ship  navigating
on the sea surface near the Tsing Ma Bridge in Hong Kong,  China.
The  distribution  of  random  constants,  representing  the  estimated
waypoints  based  on  the  sea-continent  constraint,  is  illustrated.  The
prediction time horizon is set to 15 minutes. Upon the arrival of mea-
surements,  the  mean value  of  the  Itô  diffusion ,  and the  1  stan-
dard  deviational  ellipse  is  displayed.  Before  obtaining  future  mea-
surements,  the confidence envelope curve for the ellipses is  plotted.
Fig.  1 illustrates  that  the  measurements  fall  within  the  predicted
ellipse  during  straight  navigation;  however,  they  lag  behind  the
ellipse after the ship turns left. The discrepancy arises from the omis-
sion of the vessel’s speed reduction dynamics during the turn in the
model represented by (9).

δ = 0

To demonstrate the superiority of our method, we compare it with
the EKF. In the comparative experiment, we maintain all parameters
unchanged, with the sole adjustment of setting . We introduce a
new metric called the geodesic error rate (GER), which is measured
in meters per minute and defined as
 

GER △=
1

N −1

N∑
k=2

s12(p̂k, pk)
tk − tk−1

p̂k pk

s12

where  and  represent the geodetic coordinate tuples of the pre-
dicted  position  and  measured  position,  respectively.  The  geodesic
error  (GE)  is  determined  by  the  algorithm  in  (11).  The  GER
assesses the prediction error in a temporal-spatial context, providing
an  accumulated  rate  of  the  error  over  time.  Additionally,  we  intro-
duce another metric called the ellipse area proportion index (EAPI),
which is defined as the ratio of the area of the predicted ellipse to the
product of the length and width of the ship. The GE, GER, and EAPI
for  each  measurement  are  detailed  in  Table  III  (see  Supplementary
Material).

Table  III  shows  that  the  proposed  method  outperforms  the  EKF
across all metrics, especially noticeable after left turns. This empha-
sizes  the  substantial  influence  of  representing  waypoints  as  random
constants.  Moreover,  the  EAPI  metric  highlights  that  the  predicted
ellipses are considerably smaller in the proposed method compared to
the EKF, indicating higher prediction precision.

Conclusion: We  present  a  probabilistic  approach  for  predicting
vessel  motion  over  an  extended period,  especially  in  scenarios  with
limited  data,  while  taking  into  account  the  navigation  environment.
Our approach leverages stochastic modeling and Bayes’ rule to pro-

vide a systematic solution to the prediction problem. Through numer-
ical  simulations  and  comparative  experiments  using  a  customized
stochastic  vessel  model,  we  validate  the  effectiveness  and  superior-
ity of the proposed method. In future research, we aim to establish a
more  precise  stochastic  framework  for  modeling  the  constraints  or
incentives that influence sailors’ decision-making processes, moving
beyond simple random constants for waypoints.
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Fig. 1. Position prediction.
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