

Letter

SDGNN: Symmetry-Preserving Dual-Stream Graph
Neural Networks

Jiufang Chen , Ye Yuan , and Xin Luo , Senior Member, IEEE

 Dear Editor,
This letter proposes a symmetry-preserving dual-stream graph neu-

ral network (SDGNN) for precise representation learning to an undi-
rected weighted graph (UWG). Although existing graph neural net-
works (GNNs) are influential instruments for representation learning
to a UWG, they invariably adopt a unique node feature matrix for
illustrating the sole node set of a UWG. Such a modeling strategy can
limit the representation learning ability due to the diminished feature
space. To this end, the proposed SDGNN innovatively adopts the fol-
lowing two-fold ideas: 1) Building a dual-stream graph learning
framework that tolerates multiple node feature matrices for boosting
the representation learning ability; 2) Integrating a symmetry regular-
ization term into the learning objective for implying the equality con-
straint among its multiple node feature matrices, which exemplifies a
graph’s intrinsic symmetry and prompts learning the multiple node
embeddings jointly. Experiments on six real-world UWG datasets
indicate that the proposed SDGNN has superior performance in
addressing the task of missing link estimation compared with the
state-of-the-art baselines.

An UWG is the most commonly seen type of graph data from real
application scenarios. Commonly, precise representation of a UWG
is the foundation of subsequent pattern analysis like missing link esti-
mation, anomaly detection, and cluster analysis, which has attracted
widespread attention.

Related work: GNNs [1]−[5] are the linchpin constituent to the
success of UWG representation learning. Given a UWG, a GNN
model learns its low-dimensional node embeddings via the iterative
aggregation of features describing its intrinsic neighborhoods. In
recent years, many sophisticated GNN models with high perfor-
mance have been proposed. For instance, Hamilton et al. [2] propose
a GraphSAGE model that leverages the node feature information to
efficiently generate node embeddings. Kong et al. [6] propose a
novel mixed GCN model that utilizes a gate module to mix the linear
and non-linear propagation information. Chen et al. [7] propose a
residual GCN model that adopts the residual principle for high repre-
sentation ability on a sparsely structured graph. He et al. [8] propose
a LightGCN model that propagates the node embeddings linearly
with the removal of feature transformations and nonlinear activa-
tions. Huang et al. [4] propose a GCN-RW model by modifying the
convolutional layer with random filters and adjusting the learning
objective using regularized least squares loss. Zou et al. [5] propose a
spectral-based GCN for directed graphs that employs classical singu-
lar value decomposition to signal decomposition of the asymmetric
adjacency matrix.

Despite the aforementioned GNN models’ efficiency in addressing
a UWG, they invariably adopt a unique node feature matrix for its
representation. Such a diminished feature space inevitably restricts
their representation learning ability. To break this bottleneck, this
paper proposes a SDGNN with the following two-fold ideas: 1)

Building a dual-stream graph learning framework that tolerates mul-
tiple node embeddings to boost the representation learning ability; 2)
Introducing a symmetry regularization term into the learning objec-
tive for elegantly imply the equality constraint among its multiple
node feature matrices, which can exemplify a graph’s intrinsic sym-
metry and prompts to learning the multiple node embeddings jointly.

∈
xi ∈ R f

X ∈ Rn× f

Problem statement: Given a UWG G = (V, E) as V denotes a set
of n nodes and E represents a set of m edges, it can be expressed by a
symmetric adjacency matrix A = [ai,c]n×n where ai,c is the non-zero
weight if ei,c E and zero otherwise. For efficient representation
learning to G, each node can be described by a feature vector ,
where is the f-dimensional feature matrix and f << n.

In particular, a GNN model learns the node embedding by propa-
gating its information of neighbors as follows:

z(l)
i = AGGFUN

(
z(l−1)

j | j ∈ N (i)
)

(1)

z0
i = xi

âi,c = ⟨zi, zc⟩
⟨ ⟩

where N(i) is the neighbor node set of node vi, l is the number of
GNN layers, zi is the embedding of node vi, and AGGFUN(·) is the
aggregation function defined by different GNN modeling strategies
such as GCN [9], GAT [10] and LightGCN [8]. Since a GNN model
sets the initial node embedding as the node features, i.e., , the
final node embedding for nodes vi and vc are zi and zc after L-layers’
propagation. As indicated by [11], [12], the estimation for the link
weight between two nodes can be represented by as
, denotes the inner product between two vectors.
The proposed SDGNN model: Now we introduce the proposed

SDGNN model, whose architecture is shown in Fig. 1. Note that it is
model-agnostic, i.e., it can be compatible with most existing GNN
variants, i.e., GCN, GAT, and LightGCN. Hence, in our context, we
choose the LightGCN model as the backbone to introduce the pro-
posed SDGNN due to its convenience of implementation [8].

l = 1
l = 2

l = L

l = 1
l = 2

l = L

Fig. 1. A framework of SDGNN.

X ∈ Rn× f

Y ∈ Rn× f

Propagation and layer combination: Note that the proposed
SDGNN contains a dual-stream graph learning structure. Hence, we
randomly initialize two independent feature matrices and

 for each stream. In LightGCN, the feature transformation
and nonlinear activation are neglected. Thus, the node embedding is

p(l)
i =

∑
j∈N(i)

1
|N (i)| p

(l−1)
j , q(l)

c =
∑

d∈N(c)

1
|N (c)|q

(l−1)
d (2)

p(0)
i = xi q(0)

c = yc

where pi and qc denote the embedding of nodes vi and vc in the first
and second stream, N(i) and N(c) refer to the directly connected
neighbor set of nodes vi and vc, respectively. Note that we have

 and denote the i-th and c-th row vectors corre-
sponding to X and Y.

Based on the layer combination rule of LightGCN, the node
embedding after L-layers GNN propagation is given as

pi =

L∑
l=0

αl p
(l)
i , qc =

L∑
l=0

αlq
(l)
c (3)

where αl ≥ 0 denotes the coefficient to balance the importance of
each layer and can be set uniformly as 1/(L+1). Since this paper

Corresponding authors: Ye Yuan and Xin Luo.
Citation: J. Chen, Y. Yuan, and X. Luo, “SDGNN: Symmetry-preserving

dual-stream graph neural networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no.
7, pp. 1717–1719, Jul. 2024.

J. Chen is with the College of Computer Science and Technology,
Chongqing University of Posts and Telecommunications, Chongqing 400065,
and the Chongqing Key Laboratory of Big Data and Intelligent Computing,
Chongqing Institute of Green and Intelligent Technology, Chinese Academy
of Sciences, Chongqing 400714, China (e-mail: d210201001@stu.cqupt.
edu.cn).

Y. Yuan and X. Luo are with the College of Computer and Information
Science, Southwest University, Chongqing 400715, China (e-mail: yuanyekl@
swu.edu.cn; luoxin@swu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2024.124410

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024 1717

adopts the missing link estimation as the downstream task to verify
the representation ability of SDGNN, the unknown link weight based
on the obtained node embedding is estimated as

âi,c = ⟨pi,qc⟩ (4)
âi,cwhere is the estimated missing link between node vi and vc.

Â âi,c âc,i

Â âi,c ⟨pi,qc⟩ âc,i
⟨pc,qi⟩

∀ ∈

Symmetry preserving: Note that the adjacency matrix A of a UWG
is symmetric, i.e., ai,c = ac,i for nodes vi and vc. Ideally, the estimated
adjacency matrix should be also symmetric, i.e., = . How-
ever, the dual-stream graph learning structure fails to preserve the
symmetry of because we commonly have = ≠ =

. On the other hand, symmetry is the intrinsic characteristic of
a UWG and should be treated carefully for building its precise repre-
sentation. To address this issue, this paper builds the equality con-
straint between the dual embeddings for the same node. In detail, for

vi V, it is equivalent to minimizing the equation

∥pi−qi∥2→ 0. (5)
Based on (2) and (3), the following deduction is obtained:

pi = α0 p(0)
i +α1

∑
j∈N(i)

1
|N (i)| p

(0)
j + · · ·+αl

∑
j∈N(i)

1
|N (i)|L

p(0)
j . (6)

Similarly, the expression of qi under the same situation is given as

qi = α0q(0)
i +α1

∑
j∈N(i)

1
|N (i)|q

(0)
j + · · ·+αl

∑
j∈N(i)

1
|N (i)|L

q(0)
j . (7)

From (6) and (7), we clearly see that the node embedding of the
same node vi in different streams is a linear combination of their
related node feature. Based on (5)−(7), we have
 ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

α0 p(0)
i +α1

∑
j∈N(i)

1
|N (i)| p

(0)
j + · · ·+αl

∑
j∈N(i)

1
|N (i)|L

p(0)
j

−

α0q(0)
i +α1

∑
j∈N(i)

1
|N (i)|q

(0)
j + · · ·+αl

∑
j∈N(i)

1
|N (i)|L

q(0)
j

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

→ 0. (8)

∀ ∈ V
Note that the initial node embedding is set to the node features.

Hence, for vi , (8) is equivalent to
 ∥∥∥∥p(0)

i −q(0)
i

∥∥∥∥2
= ∥xi− yi∥2→ 0. (9)

Based on the above analyses, a symmetry regularization (SR) term
is obtained for minimizing the distance between X and Y

S R = ∥X−Y∥2 (10)
where ‖· ‖2 denotes the calculation of L2 norm. With it, the intrinsic
symmetry of a UWG can be preserved elegantly.
Model training: Since the feature transformation is abandoned, the
only optimization parameter of the proposed SDGNN model is the
node embeddings of the 0th layer, i.e., the node feature matrices X
and Y. Hence, we build the following learning objective to jointly
train the dual node embeddings with the incorporation of the SR
term:

ε = L+
κ

2
S R =

∑
ai,c∈Λ

(
ai,c− âi,c

)2
+
κ

2
∥X−Y∥2 (11)

where Λ denotes the known weight set, κ denotes the regularization
coefficient of the SR term, respectively. We adopt a mini-batch
Adam algorithm for training the optimization parameters.

⌈ ⌉

Algorithm design and analysis: The algorithm of SDGNN is sum-
marized in Algorithm 1. Its computation is given as: 1) Initialization:
TS1 = Θ(2×|N|×f); and 2) Parameter training: TS2 = Θ(|Λ| × f × L ×
|N|/batch size ×t), which sum up to

T = TS 1+TS 2 ≈ Θ
(
|Λ| × f ×L×

⌈
|N|

batch size

⌉
× t

)
. (12)

On the other hand, its storage cost mainly depends on its modules
S1 and S2, which sum up to

S = S S 1+S S 2 =Θ (2 |N | × f)+Θ (Λ)+Θ (Λ) = 2Θ (Λ+ |N | × f) . (13)
Experiments: The experiments were performed on a platform with

a 2.4 GHz Intel Xeon 4214R CPU and four NVIDIA RTX 3090
GPUs with 128 GB RAM. Six UWG datasets are adopted in Table 1.
The target is to testify the estimation accuracy for missing link
weight by the involved models, which can be quantified by the root
mean squared error (RMSE) and mean absolute error (MAE) [13]

RMSE =

√√√√ ∑
ai,c∈Γ

(
ai,c− âi,c

)2

/
|Γ|, MAE =

 ∑
ai,c∈Γ

∣∣∣ai,c− âi,c
∣∣∣
abs

/
|Γ|.

Table 1. Details of Adopted Graph
No. Networks Nodes Edges Density
D1 Collins [14] 1 000 8 246 1.65%
D2 Plants [14] 1 600 10 965 0.86%
D3 Plantsmargin [14] 1 600 12 741 1.00%
D4 Yeast [14] 1 484 31 175 2.83%
D5 JapaneseVowels [14] 9 961 65 572 0.13%
D6 Worms20 [14] 20 055 120 413 0.06%

Algorithm SDGNN
Input: Λ

/*Initialization*/

1:
Initialize: node feature matrix X and Y, propagation layer L = 3.
Initialize: η, κ, batch size, iteration count t = 0 and max-iteration-count T.

S1

/*Learning Operation*/
2: Ã Ã ÂDCalculate according to = D−0.5 −0.5;
3: while not converging and t ≤ T do
4: ⌈ ⌉　for batch = 1 to |N|/batch size
5: 　　for l = 1 to L
6: 　　　Update P(l) and Q(l) according to (2);
7: 　　Calculate P and Q according to (3);
8: 　　Sample a batch size × |N| Λbatch form Λ;

S2
9: 　　for s = 1 to batch size
10: 　　　for n∈Λ(s)
11: âi,c　　　　Calculate according to (4);
12: 　　　Calculate the loss using (11);
13: 　　Accumulate the losses in Λbatch;

14: 　　Calculate the gradients through backpropagation;
15: 　　Update all the variables according to the gradients;

/*Operation Ending*/
Output: X and Y

We compare the proposed SDGNN with several state-of-the-art
and related models: MF [13], NeuMF [15], GCN [1], GC-MC [16], LR-
GCCF [7], LightGCN [8], DGCN_HN [17], SGL_ED [18], HMLET
[6], LightGCNr-AdjNorm [19] and GDE [20]. To ensure fair compar-
isons, all models adopt the Adam optimizer with a fixed batch size of
2048. We conduct a grid search to tune the optimal results, i.e., the
learning rate η is tuned amongst {5E−5, 1E−4, 5E−4, 1E−3, 5E−3,
0.01, 0.05} and the regularization coefficient κ is amongst {1E−5,
5E−5, 1E−4, 5E−4, 1E−3, 5E−3, 0.01, 0.05, 0.1, 0.5, 1}. The node
feature dimension is f = 128 and the propagation layer of SDGNN is
fixed at L = 3 according to [8].
Comparison results: All models were repeatedly trained ten times
with random initializations to achieve the final averaged results.
Table 2 presents the average RMSE and MAE of compared models,
along with statistical results, i.e., win/loss counts, Friedman rank, and
Wilcoxon test p-values. We have the following findings.

1) SDGNN obtains a more accurate representation learning to a
UWG than its peers do. As shown in Table 2, it significantly outper-
forms the rival models on eleven testing cases out of twelve in total.
However, the situation is different on D1, since SDGNN is outper-
formed by NeuMF in RMSE. Kindly note that D1 is the smallest
dataset in our experiments, where the risk of overfitting for SDGNN
is the largest. In general, SDGNN’s performance gain has statistical
significance across the experiments according to the Friedman rank
and p-value results.

2) SDGNN utilizes two node feature matrices instead of increasing
the node feature dimension to break through the limit of representa-
tion learning ability. As shown in Fig. 2, when implementing a dual-
stream graph learning framework, the RMSE and MAE are always
lower than the one with a unique node feature matrix. Specifically,
the SDGNN model with the dual-stream settings still outperforms the
model without dual-stream even if its feature dimension is set at 2×f.
For instance, on D2, the RMSE with the dual-stream is 0.090 82 with
f = 128, while the RMSE without the dual-stream is 0.097 72 with f =
256, as shown in Fig. 2(a). The main reason is that the representation
ability does not increase continuously as the node feature dimension
increases, as shown in Fig. 2(a). Hence, the strong learning ability of
SDGNN brought by its dual-stream is vital for its high representa-
tion accuracy.
Symmetry verification: Fig. 3 shows the data distribution of score
estimation on D2 w/o the SR term. From it, we find that only partial
symmetry of the target UWG is captured without the SR term. In con-
trast, as depicted in Fig. 3(b), SDGNN with the SR term enables the

 1718 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 11, NO. 7, JULY 2024

symmetry representation more precisely.
Effect of parameters: Fig. 4 records the SDGNN’s performance as κ
values. From it, we evidently see that RMSE and MAE change sig-
nificantly as κ varies. Specifically, MAE decreases as κ increases
continuously. Hence, κ should be tuned with care.

Conclusions: This letter proposes the SDGNN model to imple-
ment the precise representation of a UWG. It achieves significant
improvements in missing link estimation within a UWG than state-
of-the-art models do. We plan to investigate the theoretical evidence
regarding the reason why the proposed dual-stream graph learning
structure can break the limit of representation learning ability next.

Acknowledgments: This work was supported in part by the Nati-
onal Natural Science Foundation of China (62372385, 62002337)
and the Chongqing Natural Science Foundation (CSTB2022NSCQ-
MSX1486, CSTB2023NSCQ-LZX0069).

References

 M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv: 1609.02907, 2016.

[1]

 W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Proc. Syst., 2017,
pp. 1024−1034.

[2]

 P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn. Represen-
tations, 2018, pp. 1−12.

[3]

 C. Huang, M. Li, F. Cao, et al., “Are graph convolutional networks with
random weights feasible?” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 45, no. 3, pp. 2751−2768, 2023.

[4]

 C. Zou, A. Han, L. Lin, M. Li, and J. Gao, “A simple yet effective
framelet-based graph neural network for directed graphs,” IEEE Trans.
Artif. Intell., vol. 5, no. 4, pp. 1647−1657, 2024.

[5]

 T. Kong, T. Kim, J. S. Jeon, J. W. Choi, Y. C. Lee, N. Park, and S. W.
Kim, “Linear, or non-linear, that is the question!” in Proc. 15th ACM
Int. Conf. Web Search and Data Min., 2022, pp. 517−525.

[6]

 L. Chen, L. Wu, R. Hong, et al., “Revisiting graph based collaborative
filtering: A linear residual graph convolutional network approach,” in
Proc. AAAI Conf. Artif. Intell., 2020, pp. 27−34.

[7]

 X. He, K. Deng, X. Wang, et al., “LightGCN: Simplifying and
powering graph convolution network for recommendation,” in Proc.
43rd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., 2020, pp. 639−648.

[8]

 X. Liu, M. Yan, L. Deng, et al., “Sampling methods for efficient
training of graph convolutional networks: A survey,” IEEE/CAA J.
Autom. Sinica, vol. 9, no. 2, pp. 205−234, 2022.

[9]

 T. He, S. O. Yew, and B. Lu, “Learning conjoint attentions for graph
neural nets,” in Proc. Adv. Neural Inf. Process. Syst., 2021, pp. 2641−
2653.

[10]

 Z. G. Liu, X. Luo, and M. Zhou, “Symmetry and graph bi-regularized
non-negative matrix factorization for precise community detection,”
IEEE Trans. Autom. Sci. Eng., vol. 21, no. 2, pp. 1406−1420, 2024.

[11]

 F. Bi, T. He, Y. Xie, and X. Luo, “Two-stream graph convolutional
network-incorporated latent feature analysis,” IEEE Trans. Serv.
Comput., vol. 16, no. 4, pp. 3027−3042, 2023.

[12]

 X. Luo, D. Wang, M. Zhou, and H. Yuan, “Latent factor-based
recommenders relying on extended stochastic gradient descent
algorithms,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 2, pp. 916−
926, 2021.

[13]

 T. A. Davis and Y. F. Hu, “The university of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1−25, 2011.

[14]

 X. He, L. Liao, H. Zhang, et al., “Neural collaborative filtering,” in
Proc. Int. Conf. World Wide Web, 2017, pp. 173−182.

[15]

 R. V. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix
completion,” arXiv preprint arXiv: 1706.02263, 2017.

[16]

 W. Guo, Y. Yang, Y. Hu, et al., “Deep graph convolutional networks
with hybrid normalization for accurate and diverse recommendation”, in
Proc. Workshop Deep Learning Practice for High-Dimensional Sparse
Data With KDD, 2021.

[17]

 J. Wu, X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie, “Self-
supervised graph learning for recommendation,” in Proc. 44th Int. ACM
SIGIR Conf. Res. Dev. Inf. Retr., 2021, pp. 726−735.

[18]

 M. Zhao, L. Wu, Y. Liang, et al., “Investigating accuracy-novelty
performance for graph-based collaborative filtering,” in Proc. 45th Int.
ACM SIGIR Conf. Res. Dev. Inf. Retr., 2022, pp. 50−59.

[19]

 S. Peng, K. Sugiyama, and T. Mine, “Less is more: Reweighting
important spectral graph features for recommendation,” in Proc. 45th
Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., 2022, pp. 1273−1282.

[20]

Table 2. The Comparison Results on RMSE/MAE(±std), Where ✪ Shows That SDGNN is Outperformed by its Peers
No. Metric MF NeuMF GCN GC-MC LR-GCCF LightGCN DGCN_HN SGL_ED HMLET LightGCNr-AdjNorm GDE SDGNN

D1
RMSE 0.13821±2E−4 ✪ 0.11112±7E−4 0.12478±3E−3 0.11808±4E−3 0.11774±1E−3 0.13008±9E−5 0.14507±1E−4 0.15465±6E−4 0.14364±1E−3 0.13754±8E−5 0.16916±2E−3 0.11262±2E−4

MAE 0.08419±1E−4 0.07849±4E−4 0.08506±1E−3 0.08240±3E−3 0.08242±8E−4 0.08393±1E−4 0.09589±5E−5 0.09991±2E−4 0.09054±1E−3 0.08444±5E−5 0.12407±6E−3 0.07157±3E−4

D2
RMSE 0.10245±9E−5 0.09569±9E−4 0.09630±1E−3 0.09889±1E−3 0.09343±2E−4 0.09705±5E−5 0.10192±4E−5 0.10346±4E−4 0.10049±2E−4 0.10224±2E−4 0.10677±3E−4 0.09082±1E−4

MAE 0.05343±5E−5 0.05528±8E−4 0.05479±1E−3 0.05792±1E−3 0.05308±3E−4 0.05188±3E−4 0.05315±8E−5 0.05494±4E−4 0.05172±2E−4 0.05331±1E−4 0.06088±7E−4 0.04868±1E−4

D3
RMSE 0.04113±7E−5 0.03756±3E−4 0.03844±7E−5 0.03866±5E−4 0.03920±2E−4 0.03886±3E−4 0.03911±8E−5 0.04300±6E−4 0.03974±1E−4 0.04085±1E−4 0.04399±2E−4 0.03658±7E−5

MAE 0.02301±2E−5 0.02270±3E−4 0.02285±2E−4 0.02291±3E−4 0.02272±8E−5 0.02213±3E−5 0.02218±3E−5 0.02627±2E−4 0.02179±5E−5 0.02278±4E−5 0.02633±2E−4 0.02117±7E−5

D4
RMSE 0.08806±7E−5 0.08540±2E−4 0.08585±6E−4 0.07973±2E−3 0.08590±1E−3 0.08132±7E−5 0.08009±9E−5 0.09020±4E−4 0.08379±3E−4 0.08717±9E−5 0.09383±6E−4 0.07131±1E−4

MAE 0.04519±2E−5 0.05378±3E−4 0.05208±4E−4 0.05010±1E−3 0.04888±2E−4 0.04375±8E−5 0.04177±3E−5 0.04687±7E−5 0.04372±3E−5 0.04668±9E−5 0.05999±3E−4 0.04061±1E−4

D5
RMSE 0.12670±3E−4 0.11887±4E−4 0.11943±7E−4 0.11926±2E−4 0.11637±2E−5 0.11921±4E−5 0.11884±3E−5 0.12005±4E−5 0.12062±1E−4 0.12379±8E−5 0.12269±5E−5 0.11467±3E−5

MAE 0.06237±4E−5 0.05939±8E−4 0.06566±4E−5 0.06759±1E−3 0.06364±3E−4 0.05995±3E−4 0.05929±5E−5 0.05882±3E−5 0.05912±1E−4 0.05958±9E−5 0.06418±2E−4 0.05802±4E−5

D6
RMSE 0.22869±2E−4 0.19475±2E−3 0.19707±2E−3 0.20195±6E−4 0.19382±3E−4 0.21161±5E−5 0.22547±8E−5 0.22616±7E−4 0.22625±2E−4 0.22550±1E−4 0.23305±4E−4 0.18877±2E−4

MAE 0.13741±4E−4 0.13981±2E−3 0.12838±1E−3 0.14098±8E−4 0.13464±1E−4 0.13375±5E−5 0.14593±7E−5 0.14059±1E−4 0.13937±2E−4 0.13830±2E−4 0.15952±2E−3 0.11653±6E−5

Win/Loss — 12/0 11/1 12/0 12/0 12/0 12/0 12/0 12/0 12/0 12/0 12/0 —

Rank* — 8.50 5.00 6.42 6.75 4.92 4.67 6.08 9.17 6.17 7.58 11.67 1.08

p-value** — 2.44E−4 1.22E−3 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 —

*A lower Friedman rank value indicates a higher accuracy. **The accepted hypotheses with a significance level of 0.05 are highlighted.

(a) RMSE (b) MAE

0.
09

18
1

0.
09

13
4

0.
09

12
2

0.
09

08
2

0.
09

14
1

0.
09

23
2

0.
09

30
6

0.
09

45
80.
09

61
2

0.
09

60
2

0.
09

64
6

0.
09

70
5

0.
09

77
2

0.
09

84
4

0.
09

92
4

0.
10

03
7

0.085

0.090

0.095

0.100

0.105

2112102928272625

ES
M

R

Dimension f

 With dual-stream graph learning
Without dual-stream graph learning

24

0.
05

09
9

0.
04

96
8

0.
04

88
7

0.
04

86
8

0.
04

84

0.
04

81
3

0.
04

83
8

0.
04

91
3

0.
05

65
4

0.
05

64
7

0.
05

65
2

0.
05

18
8

0.
05

17
7

0.
05

19
9

0.
05

20
9

0.
05

22

0.040

0.045

0.050

0.055

0.060

0.065

E
A

M

Dimension f

 With dual-stream graph learning
Without dual-stream graph learning

24 25 26 27 28 29 210 211

Fig. 2. Error with/without dual-stream graph learning on D2 as f varies.

(a) Without SR term (b) With SR term

−0.2 0.0 0.2 0.4 0.6
−0.2

0.0

0.2

0.4

0.6

En
tir

es
 (j

, i
) i

n
lo

w
-r

an
k

m
at

rix

Entires (i, j) in low-rank matrix
−0.2 0.0 0.2 0.4 0.6

−0.2

0.0

0.2

0.4

0.6

En
tir

es
 (j

, i
) i

n
lo

w
-r

an
k

m
at

rix

Entires (i, j) in low-rank matrix

âFig. 3. Data distribution in on D2.

(a) RMSE (b) MAE

κ=1E−5κ=1E−4κ=1E−3κ=1E−2κ=1E−1 κ=1
0.0907

0.0908

0.0909

0.0910

0.0911

0.
09

1
0.

09
1

0.
09

1
0.

09
09

9
0.

09
09

8
0.

09
09

6
0.

09
09

9
0.

09
10
2

0.
09

10
6

0.
09

10
2

0.
09

08
2

0.
09

08
3

κ=0

ES
M

R

Error of SDGNN as κ varies
κ=1E−5κ=1E−4κ=1E−3κ=1E−2κ=1E−1 κ=1

0.0484

0.0486

0.0488

0.0490

0.0492

0.0494

0.
04
93
2

0.
04
93
2

0.
04
93
2

0.
04
93
2

0.
04
92

9
0.

04
92

7
0.

04
92
2

0.
04
92

1
0.

04
91
4

0.
04

90
4

0.
04

87
5

0.
04

86
8

κ=0

E
A

M

Error of SDGNN as κ varies

Fig. 4. Errors of SDGNN on D2 as κ varies.

CHEN et al.: SDGNN: SYMMETRY-PRESERVING DUAL-STREAM GRAPH NEURAL NETWORKS 1719

