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 Dear Editor,
This letter proposes a symmetry-preserving dual-stream graph neu-

ral network (SDGNN) for precise representation learning to an undi-
rected  weighted  graph  (UWG).  Although  existing  graph  neural  net-
works (GNNs) are influential instruments for representation learning
to  a  UWG,  they  invariably  adopt  a  unique  node  feature  matrix  for
illustrating the sole node set of a UWG. Such a modeling strategy can
limit the representation learning ability due to the diminished feature
space. To this end, the proposed SDGNN innovatively adopts the fol-
lowing  two-fold  ideas:  1)  Building  a  dual-stream  graph  learning
framework that tolerates multiple node feature matrices for boosting
the representation learning ability; 2) Integrating a symmetry regular-
ization term into the learning objective for implying the equality con-
straint among its multiple node feature matrices, which exemplifies a
graph’s  intrinsic  symmetry  and  prompts  learning  the  multiple  node
embeddings  jointly.  Experiments  on  six  real-world  UWG  datasets
indicate  that  the  proposed  SDGNN  has  superior  performance  in
addressing  the  task  of  missing  link  estimation  compared  with  the
state-of-the-art baselines.

An UWG is the most commonly seen type of graph data from real
application  scenarios.  Commonly,  precise  representation  of  a  UWG
is the foundation of subsequent pattern analysis like missing link esti-
mation,  anomaly detection,  and cluster analysis,  which has attracted
widespread attention.

Related  work: GNNs [1]−[5] are  the  linchpin  constituent  to  the
success  of  UWG  representation  learning.  Given  a  UWG,  a  GNN
model  learns  its  low-dimensional  node  embeddings  via  the  iterative
aggregation  of  features  describing  its  intrinsic  neighborhoods.  In
recent  years,  many  sophisticated  GNN  models  with  high  perfor-
mance have been proposed. For instance, Hamilton et al. [2] propose
a GraphSAGE model  that  leverages the node feature  information to
efficiently  generate  node  embeddings.  Kong et  al. [6] propose  a
novel mixed GCN model that utilizes a gate module to mix the linear
and  non-linear  propagation  information.  Chen et  al. [7] propose  a
residual GCN model that adopts the residual principle for high repre-
sentation ability on a sparsely structured graph. He et al. [8] propose
a  LightGCN  model  that  propagates  the  node  embeddings  linearly
with  the  removal  of  feature  transformations  and  nonlinear  activa-
tions. Huang et al. [4] propose a GCN-RW model by modifying the
convolutional  layer  with  random  filters  and  adjusting  the  learning
objective using regularized least squares loss. Zou et al. [5] propose a
spectral-based GCN for directed graphs that employs classical singu-
lar  value  decomposition  to  signal  decomposition  of  the  asymmetric
adjacency matrix.

Despite the aforementioned GNN models’ efficiency in addressing
a  UWG,  they  invariably  adopt  a  unique  node  feature  matrix  for  its
representation.  Such  a  diminished  feature  space  inevitably  restricts
their  representation  learning  ability.  To  break  this  bottleneck,  this
paper  proposes  a  SDGNN  with  the  following  two-fold  ideas:  1)

Building a dual-stream graph learning framework that tolerates mul-
tiple node embeddings to boost the representation learning ability; 2)
Introducing  a  symmetry  regularization  term into  the  learning  objec-
tive  for  elegantly  imply  the  equality  constraint  among  its  multiple
node feature matrices, which can exemplify a graph’s intrinsic sym-
metry and prompts to learning the multiple node embeddings jointly.

∈
xi ∈ R f

X ∈ Rn× f

Problem statement: Given a UWG G = (V, E) as V denotes a set
of n nodes and E represents a set of m edges, it can be expressed by a
symmetric  adjacency  matrix A = [ai,c]n×n where ai,c is  the  non-zero
weight  if ei,c  E and  zero  otherwise.  For  efficient  representation
learning to G, each node can be described by a feature vector ,
where  is the f-dimensional feature matrix and f << n.

In particular,  a  GNN model learns the node embedding by propa-
gating its information of neighbors as follows:
 

z(l)
i = AGGFUN

(
z(l−1)

j | j ∈ N (i)
)

(1)

z0
i = xi

âi,c = ⟨zi, zc⟩
⟨ ⟩

where N(i)  is  the  neighbor  node  set  of  node vi, l is  the  number  of
GNN layers, zi is the embedding of node vi,  and AGGFUN(·) is the
aggregation  function  defined  by  different  GNN  modeling  strategies
such as GCN [9], GAT [10] and LightGCN [8]. Since a GNN model
sets the initial node embedding as the node features, i.e., , the
final node embedding for nodes vi and vc are zi and zc after L-layers’
propagation.  As  indicated  by [11], [12],  the  estimation  for  the  link
weight  between  two  nodes  can  be  represented  by  as
,  denotes the inner product between two vectors.
The  proposed  SDGNN  model: Now  we  introduce  the  proposed

SDGNN model, whose architecture is shown in Fig. 1. Note that it is
model-agnostic,  i.e.,  it  can  be  compatible  with  most  existing  GNN
variants, i.e., GCN, GAT, and LightGCN. Hence, in our context, we
choose  the  LightGCN  model  as  the  backbone  to  introduce  the  pro-
posed SDGNN due to its convenience of implementation [8].
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Fig. 1. A framework of SDGNN.
 

X ∈ Rn× f

Y ∈ Rn× f

Propagation  and  layer  combination: Note  that  the  proposed
SDGNN contains a dual-stream graph learning structure.  Hence, we
randomly  initialize  two  independent  feature  matrices  and

 for  each  stream.  In  LightGCN,  the  feature  transformation
and nonlinear activation are neglected. Thus, the node embedding is
 

p(l)
i =

∑
j∈N(i)

1
|N (i)| p

(l−1)
j , q(l)

c =
∑

d∈N(c)

1
|N (c)|q

(l−1)
d (2)

p(0)
i = xi q(0)

c = yc

where pi and qc denote the embedding of nodes vi and vc in the first
and  second  stream, N(i)  and N(c)  refer  to  the  directly  connected
neighbor  set  of  nodes vi and vc,  respectively.  Note  that  we  have

 and  denote  the i-th  and c-th  row  vectors  corre-
sponding to X and Y.

Based  on  the  layer  combination  rule  of  LightGCN,  the  node
embedding after L-layers GNN propagation is given as
 

pi =

L∑
l=0

αl p
(l)
i , qc =

L∑
l=0

αlq
(l)
c (3)

where αl ≥  0  denotes  the  coefficient  to  balance  the  importance  of
each  layer  and  can  be  set  uniformly  as  1/(L+1).  Since  this  paper
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adopts  the  missing link estimation as  the  downstream task to  verify
the representation ability of SDGNN, the unknown link weight based
on the obtained node embedding is estimated as
 

âi,c = ⟨pi,qc⟩ (4)
âi,cwhere  is the estimated missing link between node vi and vc.

Â âi,c âc,i

Â âi,c ⟨pi,qc⟩ âc,i
⟨pc,qi⟩

∀ ∈

Symmetry preserving: Note that the adjacency matrix A of a UWG
is symmetric, i.e., ai,c = ac,i for nodes vi and vc. Ideally, the estimated
adjacency matrix  should be also symmetric, i.e.,  = . How-
ever,  the  dual-stream  graph  learning  structure  fails  to  preserve  the
symmetry  of  because  we  commonly  have  =  ≠  =

. On the other hand, symmetry is the intrinsic characteristic of
a UWG and should be treated carefully for building its precise repre-
sentation.  To  address  this  issue,  this  paper  builds  the  equality  con-
straint between the dual embeddings for the same node. In detail, for

vi  V, it is equivalent to minimizing the equation
 

∥pi−qi∥2→ 0. (5)
Based on (2) and (3), the following deduction is obtained:

 

pi = α0 p(0)
i +α1

∑
j∈N(i)

1
|N (i)| p

(0)
j + · · ·+αl

∑
j∈N(i)

1
|N (i)|L

p(0)
j . (6)

Similarly, the expression of qi under the same situation is given as
 

qi = α0q(0)
i +α1

∑
j∈N(i)

1
|N (i)|q

(0)
j + · · ·+αl

∑
j∈N(i)

1
|N (i)|L

q(0)
j . (7)

From  (6)  and  (7),  we  clearly  see  that  the  node  embedding  of  the
same  node vi in  different  streams  is  a  linear  combination  of  their
related node feature. Based on (5)−(7), we have
 ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

α0 p(0)
i +α1

∑
j∈N(i)

1
|N (i)| p

(0)
j + · · ·+αl

∑
j∈N(i)

1
|N (i)|L

p(0)
j


−

α0q(0)
i +α1

∑
j∈N(i)

1
|N (i)|q

(0)
j + · · ·+αl

∑
j∈N(i)

1
|N (i)|L

q(0)
j



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

→ 0. (8)

∀ ∈ V
Note  that  the  initial  node  embedding  is  set  to  the  node  features.

Hence, for vi , (8) is equivalent to
 ∥∥∥∥p(0)

i −q(0)
i

∥∥∥∥2
= ∥xi− yi∥2→ 0. (9)

Based on the above analyses, a symmetry regularization (SR) term
is obtained for minimizing the distance between X and Y
 

S R = ∥X−Y∥2 (10)
where  ‖· ‖2 denotes  the  calculation  of L2 norm.  With  it,  the  intrinsic
symmetry of a UWG can be preserved elegantly.
Model  training: Since  the  feature  transformation is  abandoned,  the
only  optimization  parameter  of  the  proposed  SDGNN  model  is  the
node  embeddings  of  the  0th  layer,  i.e.,  the  node  feature  matrices X
and Y.  Hence,  we  build  the  following  learning  objective  to  jointly
train  the  dual  node  embeddings  with  the  incorporation  of  the SR
term:
 

ε = L+
κ

2
S R =

∑
ai,c∈Λ

(
ai,c− âi,c

)2
+
κ

2
∥X−Y∥2 (11)

where Λ denotes the known weight set, κ denotes the regularization
coefficient  of  the SR term,  respectively.  We  adopt  a  mini-batch
Adam algorithm for training the optimization parameters.

⌈ ⌉

Algorithm design and analysis: The algorithm of SDGNN is sum-
marized in Algorithm 1. Its computation is given as: 1) Initialization:
TS1 =  Θ(2×|N|×f);  and  2)  Parameter  training: TS2 =  Θ(|Λ|  × f × L ×
|N|/batch size ×t), which sum up to

 

T = TS 1+TS 2 ≈ Θ
(
|Λ| × f ×L×

⌈
|N|

batch size

⌉
× t

)
. (12)

On the other hand, its storage cost mainly depends on its modules
S1 and S2, which sum up to
 

S = S S 1+S S 2 =Θ (2 |N | × f )+Θ (Λ)+Θ (Λ) = 2Θ (Λ+ |N | × f ) . (13)
Experiments: The experiments were performed on a platform with

a  2.4  GHz  Intel  Xeon  4214R  CPU  and  four  NVIDIA  RTX 3090
GPUs with 128 GB RAM. Six UWG datasets are adopted in Table 1.
The  target  is  to  testify  the  estimation  accuracy  for  missing  link
weight by the involved models, which can be quantified by the root
mean squared error (RMSE) and mean absolute error (MAE) [13] 

RMSE =

√√√√  ∑
ai,c∈Γ

(
ai,c− âi,c

)2


/
|Γ|, MAE =

 ∑
ai,c∈Γ

∣∣∣ai,c− âi,c
∣∣∣
abs


/
|Γ|.

  

Table 1. Details of Adopted Graph
No. Networks Nodes Edges Density
D1 Collins [14] 1 000 8 246 1.65%
D2 Plants [14] 1 600 10 965 0.86%
D3 Plantsmargin [14] 1 600 12 741 1.00%
D4 Yeast [14] 1 484 31 175 2.83%
D5 JapaneseVowels [14] 9 961 65 572 0.13%
D6 Worms20 [14] 20 055 120 413 0.06%

 

  
Algorithm SDGNN
Input: Λ

/*Initialization*/

1:
Initialize: node feature matrix X and Y, propagation layer L = 3.
Initialize: η, κ, batch size, iteration count t = 0 and max-iteration-count T.

S1

/*Learning Operation*/
2: Ã Ã ÂDCalculate  according to  = D−0.5 −0.5;
3: while not converging and t ≤ T do
4: ⌈ ⌉　for batch = 1 to |N|/batch size
5: 　　for l = 1 to L
6: 　　　Update P(l) and Q(l) according to (2);
7: 　　Calculate P and Q according to (3);
8: 　　Sample a batch size × |N| Λbatch form Λ;

S2
9: 　　for s = 1 to batch size
10: 　　　for n∈Λ(s)
11: âi,c　　　　Calculate  according to (4);
12: 　　　Calculate the loss using (11);
13: 　　Accumulate the losses in Λbatch;

14: 　　Calculate the gradients through backpropagation;
15: 　　Update all the variables according to the gradients;

/*Operation Ending*/
Output: X and Y

 

We  compare  the  proposed  SDGNN  with  several  state-of-the-art
and related models: MF [13], NeuMF [15], GCN [1], GC-MC [16], LR-
GCCF [7], LightGCN [8], DGCN_HN [17], SGL_ED [18], HMLET
[6],  LightGCNr-AdjNorm [19] and  GDE [20].  To  ensure  fair  compar-
isons, all models adopt the Adam optimizer with a fixed batch size of
2048.  We conduct  a  grid search to tune the optimal  results,  i.e.,  the
learning  rate η is  tuned  amongst  {5E−5,  1E−4,  5E−4,  1E−3,  5E−3,
0.01,  0.05}  and  the  regularization  coefficient κ is  amongst  {1E−5,
5E−5,  1E−4,  5E−4,  1E−3,  5E−3,  0.01,  0.05,  0.1,  0.5,  1}.  The  node
feature dimension is f = 128 and the propagation layer of SDGNN is
fixed at L = 3 according to [8].
Comparison  results: All  models  were  repeatedly  trained  ten  times
with  random  initializations  to  achieve  the  final  averaged  results.
Table 2 presents the average RMSE and MAE of compared models,
along with statistical results, i.e., win/loss counts, Friedman rank, and
Wilcoxon test p-values. We have the following findings.

1)  SDGNN  obtains  a  more  accurate  representation  learning  to  a
UWG than its peers do. As shown in Table 2, it significantly outper-
forms the rival models on eleven testing cases out of twelve in total.
However,  the  situation  is  different  on  D1,  since  SDGNN is  outper-
formed  by  NeuMF  in  RMSE.  Kindly  note  that  D1  is  the  smallest
dataset in our experiments, where the risk of overfitting for SDGNN
is the largest.  In general,  SDGNN’s performance gain has statistical
significance  across  the  experiments  according  to  the  Friedman  rank
and p-value results.

2) SDGNN utilizes two node feature matrices instead of increasing
the node feature dimension to break through the limit of representa-
tion learning ability. As shown in Fig. 2, when implementing a dual-
stream  graph  learning  framework,  the  RMSE  and  MAE  are  always
lower  than  the  one  with  a  unique  node  feature  matrix.  Specifically,
the SDGNN model with the dual-stream settings still outperforms the
model without dual-stream even if its feature dimension is set at 2×f.
For instance, on D2, the RMSE with the dual-stream is 0.090 82 with
f = 128, while the RMSE without the dual-stream is 0.097 72 with f =
256, as shown in Fig. 2(a). The main reason is that the representation
ability does not increase continuously as the node feature dimension
increases, as shown in Fig. 2(a). Hence, the strong learning ability of
SDGNN  brought  by  its  dual-stream  is  vital  for  its  high  representa-
tion accuracy.
Symmetry verification: Fig.  3 shows the  data  distribution  of  score
estimation on D2 w/o the SR term. From it, we find that only partial
symmetry of the target UWG is captured without the SR term. In con-
trast, as depicted in Fig. 3(b), SDGNN with the SR term enables the
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symmetry representation more precisely.
Effect of parameters: Fig. 4 records the SDGNN’s performance as κ
values.  From it,  we evidently see that  RMSE and MAE change sig-
nificantly  as κ varies.  Specifically,  MAE  decreases  as κ increases
continuously. Hence, κ should be tuned with care.

Conclusions: This  letter  proposes  the  SDGNN  model  to  imple-
ment  the  precise  representation  of  a  UWG.  It  achieves  significant
improvements  in  missing  link  estimation  within  a  UWG than  state-
of-the-art models do. We plan to investigate the theoretical evidence
regarding  the  reason  why  the  proposed  dual-stream  graph  learning
structure can break the limit of representation learning ability next.
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D3
RMSE 0.04113±7E−5 0.03756±3E−4 0.03844±7E−5 0.03866±5E−4 0.03920±2E−4 0.03886±3E−4 0.03911±8E−5 0.04300±6E−4 0.03974±1E−4 0.04085±1E−4 0.04399±2E−4 0.03658±7E−5

MAE 0.02301±2E−5 0.02270±3E−4 0.02285±2E−4 0.02291±3E−4 0.02272±8E−5 0.02213±3E−5 0.02218±3E−5 0.02627±2E−4 0.02179±5E−5 0.02278±4E−5 0.02633±2E−4 0.02117±7E−5

D4
RMSE 0.08806±7E−5 0.08540±2E−4 0.08585±6E−4 0.07973±2E−3 0.08590±1E−3 0.08132±7E−5 0.08009±9E−5 0.09020±4E−4 0.08379±3E−4 0.08717±9E−5 0.09383±6E−4 0.07131±1E−4

MAE 0.04519±2E−5 0.05378±3E−4 0.05208±4E−4 0.05010±1E−3 0.04888±2E−4 0.04375±8E−5 0.04177±3E−5 0.04687±7E−5 0.04372±3E−5 0.04668±9E−5 0.05999±3E−4 0.04061±1E−4

D5
RMSE 0.12670±3E−4 0.11887±4E−4 0.11943±7E−4 0.11926±2E−4 0.11637±2E−5 0.11921±4E−5 0.11884±3E−5 0.12005±4E−5 0.12062±1E−4 0.12379±8E−5 0.12269±5E−5 0.11467±3E−5

MAE 0.06237±4E−5 0.05939±8E−4 0.06566±4E−5 0.06759±1E−3 0.06364±3E−4 0.05995±3E−4 0.05929±5E−5 0.05882±3E−5 0.05912±1E−4 0.05958±9E−5 0.06418±2E−4 0.05802±4E−5

D6
RMSE 0.22869±2E−4 0.19475±2E−3 0.19707±2E−3 0.20195±6E−4 0.19382±3E−4 0.21161±5E−5 0.22547±8E−5 0.22616±7E−4 0.22625±2E−4 0.22550±1E−4 0.23305±4E−4 0.18877±2E−4

MAE 0.13741±4E−4 0.13981±2E−3 0.12838±1E−3 0.14098±8E−4 0.13464±1E−4 0.13375±5E−5 0.14593±7E−5 0.14059±1E−4 0.13937±2E−4 0.13830±2E−4 0.15952±2E−3 0.11653±6E−5

Win/Loss — 12/0 11/1 12/0 12/0 12/0 12/0 12/0 12/0 12/0 12/0 12/0 —

Rank* — 8.50 5.00 6.42 6.75 4.92 4.67 6.08 9.17 6.17 7.58 11.67 1.08

p-value** — 2.44E−4 1.22E−3 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 2.44E−4 —

*A lower Friedman rank value indicates a higher accuracy. **The accepted hypotheses with a significance level of 0.05 are highlighted.
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Fig. 2. Error with/without dual-stream graph learning on D2 as f varies.
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âFig. 3. Data distribution in  on D2.
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Fig. 4. Errors of SDGNN on D2 as κ varies.

CHEN et al.: SDGNN: SYMMETRY-PRESERVING DUAL-STREAM GRAPH NEURAL NETWORKS 1719 


