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ABSTRACT Ferroelectric transistors (FeFETs)-based crossbar arrays have shown immense promise
for computing-in-memory (CiM) architectures targeted for neural accelerator designs. Offering CMOS
compatibility, nonvolatility, compact bit cell, and CiM-amenable features, such as multilevel storage and
voltage-driven conductance tuning, FeFETs are among the foremost candidates for synaptic devices. How-
ever, device and circuit nonideal attributes in FeFETs-based crossbar arrays cause the output currents to
deviate from the expected value, which can induce error in CiM of matrix-vector multiplications (MVMs).
In this article, we analyze the impact of ferroelectric thickness (TFE) and cross-layer interactions in FeFETs-
based synaptic crossbar arrays accounting for device-circuit nonidealities. First, based on a physics-based
model of multidomain FeFETs calibrated to experiments, we analyze the impact of TFE on the characteristics
of FeFETs as synaptic devices, highlighting the connections between the multidomain physics and the
synaptic attributes. Based on this analysis, we investigate the impact of TFE in conjunction with other design
parameters, such as number of bits stored per device (bit slice), wordline (WL) activation schemes, and
FeFETs width on the error probability, area, energy, and latency of CiM at the array level. Our results show
that FeFETs with TFE around 7 nm achieve the highest CiM robustness, while FeFETs with TFE around 10 nm
offer the lowest CiM energy and latency. While the CiM robustness for bit slice 2 is less than bit slice 1, its
robustness can be brought to a target level via additional design techniques, such as partial wordline activation
and optimization of FeFETs width.

INDEX TERMS Computing-in-memory (CiM), crossbar array, error probability, ferroelectric thickness,
ferroelectric transistors.

I. INTRODUCTION

COMPUTING-IN-MEMORY (CiM) is a promising
technique to eliminate the overheads of memory-

processor transactions. In the context of deep neural net-
works (DNNs), CiM has been mainly utilized for the
computation of the most dominant kernel, i.e., matrix-
vector multiplications (MVMs) or dot products between
the synaptic weights and the neuron activations. The most
common approach relies on simultaneous assertion of mul-
tiple rows in a crossbar memory array (storing the synaptic
weight matrix) by applying the input voltage vector on
the word-lines (WLs), leading to seamless and massively
parallel computation of dot products on the sense-lines
(SLs) [1].

While promising in enhancing the energy efficiency of
DNN accelerators, CiM based on synaptic crossbar arrays

poses its own challenges. As an example, standard 6T
static random access memory (SRAM)-based CiM leads to
severe stability concerns and aggravated design conflicts.
This requires the design of more stable SRAMs, such as 8T
SRAMs [2] (albeit with reduced area efficiency) or utilizing
nonvolatile memory (NVM) technologies for crossbar array
design. Various NVM device candidates have been explored
in this context, which include spin-based memories [3],
resistive RAMs (ReRAMs) [4], phase change memory [5],
ferroelectric transistors (FeFETs) [6], and so on. While each
technology has its own pros and cons, hafnium zirconium
oxide (HZO)-based FeFETs have demonstrated a particu-
larly great potential for synaptic crossbar design by virtue
of their CMOS compatibility, electric-field driven program-
ming, multilevel storage, and compact bit cell [7] (details in
Supplementary S1).
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The analyses in the works [6], [8], [9], [10], [11] have
shown a large promise of FeFETs in realizing energy-efficient
synaptic arrays. However, several design aspects have not
been systematically analyzed and need to be studied to under-
stand the benefits and limitations of FeFETs-based synaptic
arrays. One such aspect is the analysis of device-circuit inter-
actions. In other words, there is a need to comprehensively
study how the unique device-level attributes of FeFETs inter-
act with the circuit-level properties of the crossbar arrays,
which, in turn, dictate the CiM energy, latency, area, and
computational robustness.

Such a cross-layer analysis has been performed in this
context of other memory technologies, such as SRAMs [12],
spin-orbit torque magnetic RAMs (SOT-MRAMs) [3], and
ReRAMs [4]. These works have highlighted the importance
of accounting for device-circuit nonidealities (such as wire
resistance, driver/sink loads, and device nonlinearities) to
study their impact on computational errors and system accu-
racy.More details on non-idealities in crossbar arrays for CiM
can be found in Supplementary S2. However, such studies
for FeFETs are limited and often ignore important device or
circuit properties.

In this article, we fill this gap by performing the
device-circuit analysis for FeFETs-based synaptic crossbar
arrays. Based on a cross-layer simulation flow (calibrated
to device experiments), we analyze the implications of dif-
ferent device-circuit design knobs, including ferroelectric
thickness (TFE), number of bits stored per device (bit slice),
WL activation schemes and FeFETs width (W ) on array-
level robustness, area, energy, and latency of CiM. The key
contributions of this work are as follows.

1) We analyze the impact of TFE on the characteristics
of FeFETs based on a physical model calibrated with
experiments and phase-field simulations.

2) We establish a cross-layer simulation flow to evaluate
CiM robustness, area, energy, and latency for FeFETs
crossbar arrays, which capture the interactions between
the unique device attributes of FeFETs and nonideali-
ties in crossbar array circuits.

3) We perform the design space exploration and
co-optimization of key design knobs of FeFETs-based
crossbar arrays considering the tradeoffs among CiM
robustness, area, energy, and latency, and establishing
the connection between the device-level attributes to
the array characteristics.

II. CROSS-LAYER SIMULATION FLOW FOR
FEFET-BASED CROSSBAR ARRAYS
We establish a cross-layer simulation flow based on which we
perform a comprehensive analysis on the impact of various
design knobs associated with FeFETs-based crossbar array
on CiM robustness, area, energy, and latency considering
device-circuit nonidealities. First, based on the experimental
results of metal–ferroelectric–insulator–metal (MFIM) struc-
tures, we calibrate our in-house phase-field model of MFIM.
Then, utilizing the trends obtained from MFIM phase-field

simulations, we develop our in-house compact model of
FeFETs calibrated with experiments. Next, we integrate the
FeFETs compactmodel into the FeFETs-based crossbar array
in HSPICE and perform extensive circuit simulations con-
sidering parasitic resistances and capacitances in the array.
Utilizing this flow, we evaluate CiM robustness, area, energy,
and latency of the FeFETs-based crossbar array and analyze
the impact of various device-circuit design knobs. Next, we
will elaborate each step in details.

A. PHASE-FIELD MODELING OF MFIM AND FEFET
To extensively capture the physics that govern the mul-
tidomain interactions in HZO, we utilize our in-house
phase field model [13], which solves 2-D time-dependent
Ginzburg–Landau (TDGL) equations self-consistently with
the Poisson and semiconductor charge equations. Our frame-
work captures TFE-dependent multidomain properties includ-
ing domain interactions and their role in determining domain
patterns and polarization (P) switching via domain nucleation
and domain growth. These properties, in turn, affect the
macroscopic properties of HZO, such as memory window
(MW), minor polarization–voltage (P–V ) loop formations,
permittivity, and so on.

Fig. 1(a) shows the calibration of the phase-field model
with the experimental data [13] capturing the trends of Q–V
characteristics for an MFIM structure (10-/7-/5-nm HZO +

5-nm Al2O3). Here, we would like to point out two important
properties, which play an important role in the operation of
FeFETs-based synaptic crossbar arrays. First, as observed in
the experimental characteristics and phase-field simulations
in Fig. 1(a), the effective dielectric permittivity of HZO (εD)
in the MFIM stack increases with the decrease in TFE. These
trends are plotted in Fig. 1(b). (Note that εD is associated
with the slope of charge-density versus electric field in the
region where no polarization switching takes place.) This
phenomenon is related to the multidomain interactions in
HZO [13] (details in Supplementary S4).

The second important effect is related to the coercive volt-
age (VC) of the FeFETs as a function of TFE. As pointed out
in several earlier works [13], VC decreases with TFE scaling.
However, this dependence is not linear and needs to be prop-
erly captured. Our phase field model predicts the nonlinear
dependency of the hysteretic window with respect to TFE,
as shown in Fig. 1(c). This nonlinear trend accounts for the
TFE-dependent domain patterns and polarization switching
mechanisms in HZO. Specifically, in addition to the linear
effect of geometry scaling on VC, the nonlinear relation-
ship is dictated by an increase in domain density with TFE
scaling [13] and the consequent change on how the polar-
ization switches (i.e., combined effect of domain nucleation
and domain wall motion for large TFE versus domain wall
motion-dominated switching for scaled TFE). The nonlinear
dependence of VC on TFE affects the set voltage (VSET),
i.e., how much programming voltage needs to be applied
to achieve a target polarization switching. If a simple linear
assumption is made between VC and TFE and VSET is scaled
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FIGURE 1. (a) Q–V characteristics of MFIM stack (phase-field simulation matches with experiment). The method of identification of εD
and VC can be found in Supplementary S3. Dependence of (b) εD and (c) VC on TFE for MFIM stack and gate-stack of FeFET. εD
decreases and VC increases as TFE increases.

using that assumption, there will be some deviation from
target values, potentially leading to incorrect computations.
In this work, we obtain VSET accounting for the nonlinear
dependence of VC on TFE and based on some targets for the
device currents, the details of which are presented later.

Now, based on the trends obtained fromMFIM simulations
(calibrated to the experiments), we model the TFE depen-
dency of εD and VC for the gate-stack of FeFETs. For this,
we utilize the experimentally calibrated parameters for HZO
(obtained from the MFIM analysis) and couple HZO with
0.5-nm SiO2 (interfacial oxide in FeFETs) in our simulation
framework. The trends for εD and VC as a function of TFE for
the gate-stack of FeFETs are shown in Fig. 1(b) and (c).

B. COMPACT MODELING OF FEFET
The values for εD and VC with respect to TFE scaling
obtained from the phase-field model (Fig. 1) are utilized in a
circuit-compatible model of FeFETs to carry out the simula-
tions of synaptic crossbar arrays. The overall compact model
of FeFETs is shown in Fig. 2(a). Our compact model [14]
of multidomain FeFETs is based on modified Miller’s equa-
tions [15], which capture the multidomain effects including
minorP–V loop formation in ferroelectrics. FeFETs are mod-
eled by integrating Miller’s model with MOSFET following
the approach in [14]. Predictive technology models (45-nm
PTM HP) are used in modeling the underlying MOSFET in
FeFET. The total capacitance of the gate-stack of FeFETs
consists of two components: dielectric capacitance (CDE)
and capacitance induced from polarization switching (CFE).
We also consider a resistor (RFE) as in [14] in series with CFE
to capture the delay associated with polarization switching.

The major P–V loop of FE is modeled by Miller’s
equation [15], which yields the maximum charge density
(QM) at a particular applied electric field across FE (EFE)

Q±

M=PS

[
tanh

(
EFE ∓ EC (TFE)

2δ

)]
+ εD(TFE) ε0EFE (1)

δ = α ×

[
ln

[
PS + PR
PS − PR

]]−1

(2)

where PR is the remnant polarization, PS is the saturated
polarization, EC is the coercive electric field, ε0 is the vacuum

FIGURE 2. (a) Compact model of FeFET integrating modified
Miller’s model with MOSFET. (b) Major and minor Q–E loop in
ferroelectrics. (c) Simulated FeFET transfer characteristics
show a reasonably good match with experiment [11].

permittivity, and α controls the slope of QM versus EFE,
where polarization switching occurs.

The minor loops are modeled based on trends from the
experiments and phase-field simulations. One limitation of
the original Miller’s model for minor loops is that it predicts
a polarization increase for multiple voltage pulses with the
same voltage amplitude. This is observed neither in the exper-
iments nor in the phase-field models of FeFETs. Therefore,
to alleviate this limitation, we model the charge density (Q)
evolution in a minor loop in response to the electric field (E)
by first obtaining ETH+(−) for a minor loop, as illustrated in
Fig. 2(b). This is defined as the positive (negative) threshold
field below (above) which no polarization switching takes
place, i.e., HZO shows a dielectric response. For this, we start
with the remnant charge density (QR) of that minor loop
and follow its dielectric response in the positive (negative)
directions till it intersects with the major loop [given by (1)
and (2)]. This point of intersection gives ETH+(−). Once we
have these threshold values, we model Q = QR + εDE for
ETH− < E < ETH+. For |E| > |ETH+/−|, then Q follows
the major Q–E loop. The parameters in the model have
been calibrated with experiments [11] and validated using
self-consistent phase-field simulations [13]. As shown in
Fig. 2(c), a reasonably good fit of the transfer characteristics
of FeFETs in the region of interest for this analysis (VGS
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TABLE 1. Parameters in FeFET compact model.

between 0 and 1 V) is observed between simulations and
experiments [11]. Note that some overestimation in simula-
tions is observed at higher gate voltages and could be due
to assumptions in our phase-field model of FeFETs, such as
homogeneous strain in FE and absence of charge traps as
well as the abstraction of the parameters from the phase-field
models to Miller’s model (to make it circuit-compatible).

Based on the insights from phase-field simulations,
we capture the effect of TFE-dependent dielectric permittivity
and MW by obtaining EC (TFE) = VC (TFE)/TFE and εD
(TFE) from Fig. 1(b) and (c) (for FeFETs gate-stack) and
using them in (1) and (2). The parameters used in the FeFETs
compact model are summarized in Table 1. It is noteworthy
that apart from VC and εD, other parameters in (1) and (2)
may also be a function of TFE; however, here, we focus on the
TFE-dependency of εD and VC to highlight the corresponding
effects on the synaptic device behavior and crossbar array
characteristics.

C. FEFET-BASED CROSSBAR ARRAY MODELING
To perform scalar multiplication of 1-bit input and 2-bit
weight utilizing FeFETs, input bit stream is applied at the
gate of FeFETs, with bits 0 and 1 corresponding to 0 and 1 V,
respectively. The synaptic weight is encoded as the conduc-
tance of FeFETs, which can be programmed to different
states utilizing the standard write technique: 1) reset voltage
(VRESET = −5 V) is applied to the gate of FeFETs to write
weight = 0 and 2) then, VSET is applied to the gate of
FeFETs to program weight = 1, 2, or 3. A more detailed
elaboration on the write operation of FeFETs can be found
in Supplementary S5.

The output of scalar product of input andweight is obtained
by sensing the FeFETs current (IDS) with VDS = 0.25 V.
We define ILRS,k as IDS when input = 1 and weight = k
(k = 1–3), IHRS as IDS when input = 1 and weight = 0,
and IOFF as IDS when input = 0. IHRS and IOFF should be
close to 0 (ideal values of corresponding scalar products
being 0). However, in reality, the nonzero values of IHRS and
IOFF in FeFETs lead to nonidealities and can degrade CiM
robustness, especially when they are not negligible compared
to ILRS,1 (more details later). We design the 64× 64 FeFETs-
based crossbar array (Fig. 3) at 45-nm technology node. Our
design employs input stream of 1 bit, weight slices of 1 or
2 bits, and the current-based sensing scheme. The compact
FeFET bit cell is designed with a single FeFET by virtue of
its self-selecting functionality. The gate terminals of FeFETs
in a row are connected to WL running horizontally, while
the drain (source) terminals in a column are connected to BL
(SL) running vertically. The vertical height of the layout of

FIGURE 3. FeFETs-based crossbar array with dummy column.
Layout of FeFET bit cell with height of one GP and width of two
MP. The subtractor and ADC are implemented by utilizing
behavioral models.

TABLE 2. Parameters in FeFET-based crossbar arrays.

the FeFET bit cell is one gate pitch (GP). Based on SCMOS
layout rules, we determine that the horizontal dimension of
the layout of FeFET bit cell is determined by the metal pitch
(MP) whenW is no more than 3 ∗WMIN (WMIN = 67.5 nm).
This is important forW optimization, as we will discuss later.

The parameters used in the HSPICE simulations of
FeFETs-based crossbar arrays are shown in Table 2. The par-
asitic resistance of peripheral circuits, such as driver (RLOAD),
their parasitic capacitance (CLOAD), wire resistance (RW),
and wire capacitance (CW), are considered in the circuit sim-
ulations of the crossbar array. We estimate the wire lengths
for the WLs, BLs, and SLs based on the width and height
of the layout of FeFET bit cell. This is used to obtain RW
and CW for each cell, which are used in a distributed fashion,
as illustrated in Fig. 3. At the 45-nm technology node, RW is
3.3 �/µm [16] and CW is 0.2 fF/µm [16]. We also consider
the loading effect of the peripheral circuits, such as driver by
using series-connected RLOAD. These resistances (in addition
to RW) lead to computational errors.

Note that IHRS is not negligible compared to ILRS,1 espe-
cially for FeFET with TFE = 5 nm, which can lead to error in
CiM. Specifically, multiple HRS cells can produce total cur-
rent, which is more than ILRS,1, erroneously giving an output
of 1 (when the output should be 0). To mitigate this effect,
we follow the design in [1] to use a dummy column, in which
all cells store weight 0. By subtracting the current through
dummy column (ISL,D) from the current through SL (ISL),
the multiply–accumulate (MAC) output can be obtained from
ISL − ISL,D. Therefore, the ideal scalar product when weight
is 0 corresponds to IHRS (from real column) − IHRS (from
dummy column) ∼ 0, thus mitigating the effect of high IHRS.
(In reality, the wire resistances lead to a nonzero output for
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this case, which we consider in our analysis.)When input is 0,
the scalar product corresponds to the difference between the
off-currents of the real and dummy columns, which is quite
small. The scalar product when weight is k = 1, 2, or 3 and
input is 1 is represented by (ILRS,k − IHRS). By tuning VSET,
the ratio of (ILRS,3 − IHRS):(ILRS,2 − IHRS):(ILRS,1 − IHRS)
is designed to be 3:2:1 to achieve good device linearity. For a
fair comparison, ILRS,1−IHRS of FeFET for TFE = 5/7/10 nm
is designed to be the same (∼3.3µA), which defines the ideal
current quantum corresponding between neighboring MAC
output states. To get the same ILRS,1 − IHRS for different
TFE values, we optimize VSET with IHRS, ILRS,1, ILRS,2, and
ILRS,3 evaluated at fixed VGS = 1 V and VDS = 0.25 V. The
values of VSET for different weights and TFE are shown in
Table S1 in the Supplemental Material. Linearly separated
reference levels are utilized in analog-to-digital converters
(ADCs) to convert ISL into digital values and the reference
current (IREF,n) to distinguishMAC output= n− 1 andMAC
output = n is set as

IREF,n = (ILRS,1 − IHRS) × (n− 0.5). (3)

The ideal sense margin is (ILRS,1− IHRS)/2, but due to cross-
bar nonidealities, the sense margin and the CiM robustness
are degraded, which are discussed next.

D. EVALUATION OF CIM ROBUSTNESS
In order to evaluate the CIM robustness, we use error proba-
bility (PE) as a statistical metric to quantify the computational
robustness of crossbar arrays. The steps to obtain PE are as
follows.

1) First, we obtain the distribution of MAC output by
profiling the output of the MVM operations (>10 000)
of 1-bit 1 × 64 input vectors (subset of CIFAR-10
dataset) and 64× 64 1-bit/2-bit weight matrices (subset
of weight submatrices corresponding to ResNet20 net-
work). Higher MAC output has a lower probability of
occurrence due to the sparsity in the input vectors and
weight matrices. We use exponential distribution to fit
the histogram of MAC output [Fig. 4(b)], which yields
the occurrence probability of MAC output (PO).

2) From HSPICE circuit simulations of FeFETs-based
crossbar arrays, we obtain ISL for theMAC output. Due
to various nonidealities in the FeFETs-based crossbar
array, such as IR drop on wire resistances and nonzero
IOFF and IHRS, different permutations of the input and
weight vectors lead to different ISL, despite correspond-
ing to the same ideal output (detailed discussions can
be found in [1]). To model the distribution of currents
for each state of the MAC output, we use the follow-
ing process. For MAC output > 0, we find that the
Gaussian distribution offers a reasonable fit [Fig. 4(a)
and (c)] and can be attributed to the central limit the-
orem [17]. For MAC output = 0, a combination of
exponential model and Gaussian model is utilized to
fit the histogram of ISL [Fig. 4(d)]. Note that due to
high input and weight sparsity, a large percentage of

FIGURE 4. Taking FeFETs-based crossbar arrays (TFE = 5 nm,
64 WLs activated, bit slice 1, W = WMIN, and s = 0.1) as an
example. (a) Histogram of ISL corresponding to nonzero MAC
output and their respective normal distribution fit. (b) Histogram
of MAC output (n) with fit of exponential distribution. (c) Typical
histogram of ISL corresponding to nonzero output with fit of
Gaussian model. (d) Typical histogram of ISL corresponding to
output = 0 with fit of combination of exponential model and
Gaussian model. (e) PO, PSE, and PO × PSE versus MAC
output.

the currents are closer to 0. Furthermore, the dummy
column used in our design reduces the effect of nonzero
IHRS, leading to a further increase in this percentage.
This necessitates the use of exponential function in
conjunction with the Gaussian function for output =

0. We define fn as the probability density function of
ISL corresponding to MAC output = n.

3) In addition to this range of currents due to different
permutations of the input and weight bits, we consider
process variations in our analysis. For that, we use
the Gaussian function (fPV) to model the probability
distribution function of ISL with variations (IPV). The
mean of fPV is ISL,n which is ISL for MAC output =

n (without variations) and is obtained by sampling fn.
The standard deviation (σn) of fPV models the device-
to-device variation, where n refers to the MAC output.
Let us define ILRS,1 − IHRS for FeFETs with WMIN
as I1 (which, recall, is matched for all TFE). We also
define I0 as the maximum of IHRS and IOFF for FeFETs
with WMIN. For our analysis in Section III, we assume
σn = s ∗ I1 ∗

√
n ∗

√
(W/WMIN) for n > 0. Here, s is a

factor representing the relative deviation in the current.
The erroneous MAC output value is sensed in ADC
when ISL,n is not between IREF,n and IREF,n+1. The
error probability for a given ISL,n (n > 0) is calculated
as

P
(
ISL,n, σn

)
=1−

∫ IREF,n+1

IREF,n
fPV

(
IPV, ISL,n, σn

)
dIPV.

(4)
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For n = 0, we assume σn = s ∗ I0 ∗
√
(W/WMIN), and

erroneous MAC output value is sensed in ADC when
ISL,0 is more than IREF,1. The error probability for ISL,0
is calculated as

P
(
ISL,0, σn

)
= 1 −

∫ IREF,1

0
fPV

(
IPV, ISL,0, σn

)
dIPV.

(5)

4) Last, we combine all the probabilities to calculate the
overall error probability. The sensing error probability
for MAC output = n is

PSE (n, σn) =

∫
∞

−∞

P
(
ISL,n, σn

)
× fn

(
ISL,n

)
dISL,n.

(6)

Total error probability (PE) can be calculated as

PE(σn) =

max(n)∑
n=0

PSE(n, σn) × PO(n) (7)

where PSE(n, σn) and PO(n) are the sensing error prob-
ability for MAC output = n, respectively, and max(n)
is the maximum MAC output obtained from crossbar
array simulations. Note that max(n) is less than the
theoretical maximum MAC output due to the sparsity
in input vectors and weight matrices. Fig. 4(e) shows
an example of the values of PO, PSE, and their product
(PO × PSE) for each n. On the one hand, PO decreases
as n increases. On the other hand, as n increases, PSE
increases due to the increase of nonidealities from IR
drop. The two opposing effects lead to the nonmono-
tonic trend between the product (PO × PSE) and n.

Due to the inherent error tolerance of DNNs, DNNs exhibit
negligible impact on system accuracy as long as error prob-
ability in partial sums is reasonably low [18]. Following
the method in [18], we perform system-level simulations
(CIFAR-10 dataset and ResNet20 network) by introducing
errors in the partial sums based on the error probability
obtained from our PE analysis. Our study shows that PE <

0.03 has little impact on theDNNs accuracy (<0.5% accuracy
degradation). Thus, 0.03 is set as the threshold PE and CiM
with PE < 0.03 is considered as a robust design in our
comparison. It is worth mentioning that the magnitude of
threshold PE is dependent on the dataset and network.

III. DESIGN SPACE EXPLORATION OF FEFET-BASED
CROSSBAR ARRAY
In this section, we comprehensively analyze the impact of TFE
on CiM robustness (PE), area, energy, and latency in conjunc-
tion with other design parameters, such as bit slice, number
of activated WLs, and W . The analysis in this section will
highlight the cross-layer interactions and the design tradeoffs
associated with different design knobs.

FIGURE 5. (a) FeFET transfer characteristics for different weight
(0, 1, 2, 3) and TFE (10, 7, and 5 nm) at VDS = 0.25 V (L = 45 nm
and W = 67.5 nm). (b) Sensitivity of IDS to VDS. (c) Sensitivity of
IDS to VGS for different weights (1, 2, 3) and TFE (10, 7, and 5 nm)
at VDS = 0.25 V and VGS = 1 V. SDS and SGS for TFE = 10 nm,
weight = 1 is normalized as 1.

A. IMPACT OF FERROELECTRIC THICKNESS
We first analyze the impact of TFE on I–V characteristics of
FeFETs. The transfer characteristics of FeFETs, which store
four states (weight = 0/1/2/3) for TFE = 10, 7, and 5 nm, are
compared in Fig. 5(a). We observe two important trends with
respect to TFE scaling.

1) As TFE decreases (i.e.,CFE increases), the MW reduces
as the effect of the series dielectric/channel capacitance
increases, which increases the depolarization fields and
reduces the polarization switching. Thus, the threshold
voltage shift due to polarization switching decreases,
reducing the MW. This, in turn, means that for the
same ILRS, IHRS increases as TFE is scaled (due to lower
threshold voltage shift).

2) With TFE scaling, IOFF decreases since the gate capac-
itance of FeFETs increases with TFE scaling leading
to the reduction in short channel effects and leakage.
Note that this effect captures the dependence of εD on
TFE [Fig. 1(b)]. Specifically, the reduction in IOFF with
TFE scaling obtained from our analysis is more than
the scenario, in which εD is assumed to be a constant.
This is because as εD increases with TFE, it leads to a
larger improvement in short-channel effects compared
to simple geometric scaling of TFE.

Another important factor affecting the nonidealities is the
sensitivity of IDS to the IR drops. IR drop on parasitic resis-
tance in the crossbar array yields the deviation of the drain
voltage (VD) and the source voltage (VS) of FeFETs from their
ideal value (VD = 0.25 V and VS = 0), which in turn results
in the variations of IDS. To understand this, we evaluate the
sensitivity of IDS to VDS and VGS. Higher sensitivity leads
to more impact of IR drop on the output current. We define
SDS as the sensitivity of IDS to VDS and SDS is calculated as
(dIDS/dVDS)/(ILRS/VDS). Here, dIDS/dVDS is the slope of
FeFETs IDS–VDS curve at VDS = 0.25 V. Similarly, we define
SGS as the sensitivity of IDS to VGS and SGS is calculated as
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FIGURE 6. PE versus energy–latency–area product comparison
for TFE = 5, 7, and 10 nm, bit slice 1, 2, 64 WLs activated, W =

WMIN. (a) s = 0.05 and (b) s = 0.1.

(dIDS/dVGS)/(ILRS/VGS). Here, dIDS/dVGS is the slope of
FeFETs IDS–VGS curve at VGS = 1 V. As shown in Fig. 5(b)
and (c), SDS decreases and SGS increases with TFE scaling
because the gate capacitance of FeFETs increases with TFE
scaling. In other words, FeFETs with lower TFE show better
gate control and are more sensitive to the deviation in VGS.
In contrast, FeFETs with larger TFE are more sensitive to the
deviation in VDS due to short-channel effects. Note that the
sensitivities are also impacted by the dependence of εD on
TFE, which we account for in our analysis.

It is important to note that IHRS and IOFF show opposing
trends with TFE scaling, i.e., the former increases while the
latter decreases (when ideally, both should be zero). In addi-
tion, SDS and SGS show opposing trends with TFE scaling, i.e.,
the former decreases while the latter increases. The question,
therefore, is: what the overall impact of TFE scaling is on CiM
robustness. We explore this question next.

As shown in Fig. 6, among different TFE, PE for TFE =

7 nm is the minimum. We can understand this from the trend
of IOFF, IHRS, SDS, and SGS with TFE scaling. On the one hand,
IOFF and SDS decrease as TFE scales. On the other hand, IHRS
and SGS increase as TFE scales. Note that the subtraction of
current through dummy column [1] partially compensates the
impact of high IHRS, but this compensation is not complete
due to different IR drop in the real and dummy columns.
It turns out that TFE = 7 nm is the sweet spot with mini-
mum PE considering the two-opposing trend of IOFF/IHRS
and SDS/SGS with TFE scaling. We also observe that the
energy–latency–area product increases with TFE scaling. The
reason is that the gate capacitance of FeFETs increases as
TFE decreases leading to higher energy for charging WLs.
The procedure to evaluate the CiM energy can be found in
Supplementary S6.

B. IMPACT OF BIT SLICE
Bit slice is an important design knob (recall, bit slice m
implies m bits stored per bit cell). Increasing bit slice can
increase the memory density and parallelism in CiM. How-
ever, previouswork shows that ReRAMswith bit slice beyond
2 degrade accuracy significantly [4]. Hence, we consider bit
slice 1 and 2 in FeFETs in our analysis. To maintain sufficient
sense margin, the conductance for weight = 0 and weight =

1 is kept the same while designing 1-bit and 2-bit FeFETs.
Compared to ILRS,1 in bit slice 1, high ILRS,2 and ILRS,3 in bit
slice 2 leads to an increase in ISL and thus worsens the IR drop

FIGURE 7. PE versus energy–latency–area product comparison
for TFE = 5/7/10 nm, bit slice 2, s = 0.1, (a) 64, 32, and 16 WLs
activated, W = WMIN and (b) W = WMIN, 2 ∗ WMIN, 3 ∗ WMIN,
64 WLs activated.

in the crossbar array. From Fig. 6, we observe that the PE for
bit slice 2 is higher than bit slice 1 due to the worsening of IR
drop. As bit slice increases from 1 to 2, energy–latency–area
product decreases because a lower number of crossbar arrays
are needed to perform MVM. The area of crossbar array for
bit slice 1 is twice that of bit slice 2.

For bit slice 1,PE for TFE = 5 nm ismore thanPE for TFE =

10 nm, while for bit slice 2, PE for TFE = 5 and 10 nm is
comparable. The reason is that the weight sparsity in bit slice
1 is higher than bit slice 2. In other words, compared with
bit slice 2, an array with bit slice 1 encounters more cases
for IHRS (input = 1 and weight = 0) and less cases for IOFF
(input = 0 and weight = 1). Hence, the impact of IHRS on
nonidealities is more dominant than IOFF for bit slice 1. Since
IHRS is higher for TFE = 5 nm than TFE = 10 nm, PE for
TFE = 5 nm is also higher for bit slice 1. For bit slice 2,
the impact of IHRS is reduced, leading to comparable PE
for TFE = 5 and 10 nm. To account for process variations,
we consider relative deviation in the current s = 0.05 (5%)
and 0.1 (10%) in our analysis. As shown in Fig. 6, PE is less
than 0.03 (the threshold value with<0.5% inference accuracy
drop) for bit slice 1 at both values of s across all TFE. However,
for bit slice 2, PE > 0.03 at s = 0.1 (but <0.03 for s =

0.05). Therefore, if the variations are large, bit slice 2 may
not meet accuracy targets. To further reduce PE for bit slice 2,
we analyze other design knobs viz. number of activated WLs
and FeFETs width next.

C. IMPACT OF NUMBER OF ACTIVATED WLs
With full WL activation (FWA) in which all WLs in the
crossbar array are asserted simultaneously during CiM, min-
imum energy and latency can be achieved, due to maximum
parallelism. However, PE can be high for FWA, especially for
bit slice 2. To reduce PE in CiM, we can utilize the partial WL
activation (PWA) [19] technique, in which a subset of WLs
are activated in one cycle and multiple cycles are employed to
performMVMoperations. For example, if kWLs are asserted
in one cycle, then m/k cycles are needed for CiM for m × m
crossbar arrays.

Fig. 7(a) shows the comparison of PE and normalized
energy–latency–area product for different numbers of acti-
vated WLs. As the number of activated WLs decreases, PE
decreases due to the reduction in ISL and IR drop. On the
other hand, energy–latency–area product increases due to the
loss in parallelism. By reducing the number of activated WLs
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from 64 to 32, PE in CiM can be reduced to below 0.03,
albeit with the penalty of increasing energy and latency. Note
that PE for TFE = 5/7/10 nm becomes comparable when the
number of activated WLs decreases. Recall for FWA, TFE =

7 nm yields minimum PE; but when the number of activated
WLs is reduced to 16, the PE values are almost equal for the
three TFE. This is because the reduction of IR drop in PWA
results in less variations of VDS and VGS of FeFETs in the
crossbar array. Therefore, the impact of the difference of SDS
and SGS for different TFE is reduced. In other words, while
opposing SDS and SGS trends yield minimum PE for TFE =

7 nm for FWA, reduced IR drop in PWA diminishes the role
of SDS and SGS, reducing the difference in PE for the three
TFE values.

D. IMPACT OF FEFET WIDTH
The on-resistance of a bit cell is an important design vari-
able from the perspective of CiM robustness since it has a
direct impact on ISL [1], [3]. FeFETs width is an important
design knob to control the on-resistance. However, it may also
impact the bit-cell area. As discussed earlier, the horizontal
dimension of FeFET bit cell is determined by the MP and
not by W when W < 3∗WMIN. In other words, W can be
increased up to 3 ∗ WMIN without any impact on the bit-cell
area. Therefore, for this analysis, we sweep W from WMIN
(=67.5 nm) to 3 ∗ WMIN to understand the effect of W at
isoarea. From Fig. 7(b), we observe that PE with respect to
W shows a nonmonotonic trend. 2 ∗ WMIN is the optimal
W with the minimum PE. As W increases, ISL increases,
which has the following opposing effects. On the one hand,
it exacerbates the nonidealities due to IR drop on parasitic
resistances. On the other hand, the current quantum between
two neighboring output states is enhanced, then augmenting
the sense margin for the ADC. In addition, the random device
process variation (σ/µ) decreases as W increases, which
reduces the sensing errors. Considering the tradeoff between
these opposing effects, W = 2 ∗ WMIN is the sweet spot
with minimum PE (<0.03). Among different TFE, TFE =

7 nm yields the lowest PE due to the reasons discussed in
Section III-A.

As shown in Fig. 7(b), the CiM energy–latency–area prod-
uct increases asW increases. This is due to (a) an increase in
the gate and drain capacitance, which leads to higher energy
for charging BLs and WLs and (b) larger IBL.

E. ISO-ROBUSTNESS ENERGY–LATENCY–AREA
COMPARISON
By utilizing PWA (32 WLs activated) or optimizingW (W =

2 ∗ WMIN), PE for bit slice 2 can be reduced below the
threshold (0.03) with the penalty of increasing energy and
latency. We perform isorobustness (PE < 0.03) comparison
of energy–latency–area product for three cases: 1) bit slice 1,
FWA, W = WMIN; 2) bit slice 2, PWA (32 WLs activated),
W=WMIN; and 3) bit slice 2, FWA,W= 2 ∗WMIN. As shown
in Fig. 8, case 3) achieves the lowest energy–latency–area
product. Among TFE = 5/7/10 nm, TFE = 10 nm is optimal in

FIGURE 8. Isorobustness array-level energy–latency–area
product comparison. Energy–latency–area product is
normalized as 1 for the condition TFE = 10 nm, bit slice 2,
full-WL activation, W = WMIN, and s = 0.1.

the context of energy–latency–area product due to the lowest
capacitance.

It is worth mentioning that here, we focus only on the
area, energy, and latency of the crossbar array (excluding the
peripheral circuits), with an objective to illustrate the effect
of various device-array design knobs on CiM robustness and
array-level area/energy/latency. However, it is worthwhile to
mention the tradeoffs between bit slices 1 and 2 considering
the ADC and other overheads. While bit slice 1 requires
lower precision ADCs (the output being from 0 to m for an
m × m array) compared to bit slice 2 (with output ranging
from 0 to 3m), the number of ADCs needed for bit slice 2 is
half that of bit slice 1. Overall, theADC costs for bit slice 2 are
higher. However, bit slice 2 allows for larger number of DNN
model parameters to be stored. This can reduce the off-chip
dynamic random access memory (DRAM) access, leading to
significant energy and latency reduction. Thus, the overall
choice of the bit slice needs to consider such macro/system-
level aspects along with the device-array co-design strategies
presented in this work.

IV. CONCLUSION
In this article, we perform a design space exploration
of FeFET-based crossbar arrays for CiM considering
device-circuit nonidealities and cross-layer interactions.
Based on the physics-based model of FeFETs, we analyze
the TFE dependence of εD in FeFETs, which also accounts
for the trends of IOFF, IHRS, SGS, and SDS with TFE scaling.
We compare the CiM robustness, area, energy, and latency for
FeFETs-based crossbar arrays with different design knobs.
We show that TFE around 7 nm is optimal in the context of
CiM robustness, while TFE around 10 nm offers the lowest
CiM energy and latency. Compared with bit slice 2, bit slice
1 achieves higher CiM robustness at the cost of higher CiM
energy–latency–area product. By utilizing PWA or optimiza-
tion of FeFETs width, CiM robustness for bit slice 2 can be
improved at the cost of increasing energy and latency.
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