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ABSTRACT High-performance edge artificial intelligence (Edge-AI) inference applications aim for
high energy efficiency, memory density, and small form factor, requiring a design-space exploration
across the whole stack—workloads, architecture, mapping, and co-optimization with emerging technology.
In this article, we present a system–technology co-optimization (STCO) framework that interfaces
with workload-driven system scaling challenges and physical design-enabled technology offerings. The
framework is built on three engines that provide the physical design characterization, dataflow mapping
optimizer, and system efficiency predictor. The framework builds on a systolic array accelerator to
provide the design–technology characterization points using advanced imec A10 nanosheet CMOS
node along with emerging, high-density voltage-gated spin–orbit torque (VGSOT) magnetic memories
(MRAM), combined with memory-on-logic fine-pitch 3-D wafer-to-wafer hybrid bonding. We observe
that the 3-D system integration of static random-access memory (SRAM)-based design leads to 9%
power savings with 53% footprint reduction at iso-frequency with respect to 2-D implementation for
the same memory capacity. Three-dimensional nonvolatile memory (NVM)-VGSOT allows 4× memory
capacity increase with 30% footprint reduction at iso-power compared with 2-D SRAM 1×. Our
exploration with two diverse workloads—image resolution enhancement (FSRCNN) and eye tracking
(EDSNet)—shows that more resources allow better workload mapping possibilities, which are able to
compensate peak system energy efficiency degradation on high memory capacity cases. We show that
a 25% peak efficiency reduction on a 32× memory capacity can lead to a 7.4× faster execution with
5.7× higher effective TOPS/W than the 1× memory capacity case on the same technology.

INDEX TERMS 3-D partitioning, edge artificial intelligence (Edge-AI), nonvolatile memory (NVM),
system–technology co-optimization (STCO), systolic array, voltage-gated spin–orbit torque (VGSOT),
W2W HB.

I. INTRODUCTION

DENSER CMOS technologies have been a catalyst for
continuous miniaturization, driving large volumes at

low cost and enabling unprecedented system-level innova-
tions. Technology scaling across logic, memory, and 3-D
enables higher compute, memory, and bandwidth density

and is a key factor toward scalable system design. In the
more than Moore era, system–technology co-optimization
(STCO) is a promising paradigm for leveraging the synergy
between emerging technology and application-driven archi-
tectures to achieve higher efficiency and performance at cost
parity.
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Hardware performance improvements have at large relied
on technology scaling and the introduction of scaling
boosters following a design–technology co-optimization
(DTCO) approach, which is challenged by next-generation
artificial intelligence (AI) applications and domain-specific
architectures, necessitating a cross-stack codesign. As CMOS
scaling stagnates and systems are constantly challenged by
memory and power density/thermal bottlenecks, specialism
in the form of domain specific architecture and technology
(DSAT) tied to an application is taking prominence. Given the
multifaceted demands of AI-driven system design, encom-
passing diverse workloads and architectures, STCO appears
as the viable solution based upon cross-stack codesign with
technology innovations (Fig. 1).
Workload-driven design-space exploration (DSE) frame-

works, especially for Edge-AI inference architectures, such
as ZigZag [1], TimeLoop [2], and Maestro [3], provide
codesign opportunities to optimize the memory hierarchy and
compute blocks of deep neural network (DNN) accelerators
considering its large spatiotemporal mapping. However, these
frameworks are largely agnostic of emerging technologies,
inherently leading to suboptimal design choices.

FIGURE 1. STCO: bridging the gap between application-driven
systems and technology.

In this article, we present a comprehensive STCO frame-
work for system efficiency insights on high-performance
Edge-AI inference architectures driven by emerging,
technology-dependent physical design parameters. Our
proposed framework enables fast architectural exploration
for different workloads, sweeping both compute and memory
capacities. In particular, the contributions of this article can
be summarized as follows.

1) An STCO framework for system efficiency predictor,
considering Edge-AI inference architecture template
and mapping of relevant AI workloads, representative
of extended reality (XR) applications.

2) Advanced technology annotation of the framework
with design evaluation on system scalability is as
follows: 1) logic—imec A10 gate-all-around (GAA)
nanosheet process design kit (PDK); 2) heteroge-
neous memory—A10 nanosheet static random-access
memory (SRAM) and A10 voltage-gated spin–orbit
torque (VGSOT) magnetic memories (MRAM)-based
nonvolatile memory (NVM) macros; and 3) advanced

3-D integration using concurrent 3-D IC flow and
wafer-to-wafer (W2W) hybrid bonding (HB) at 1.12-
µm pitch.

Finally, we demonstrate that within the complex landscape
of Edge-AI systems, using advanced technologies does not
inherently ensure superior performance. Instead, it requires
a comprehensive codesign across the stack (i.e., workload,
mapping, memory hierarchy, and technology). Our proposed
STCO framework helps in early decision-making driving
technology development toward optimal system design.

This article is further structured as follows. Section II
highlights the motivation for STCO, focusing on XR relevant
applications and architecture mapping. Section III introduces
our proposed STCO framework, based on systolic array
architecture, workload mapping, 3-D functional partitioning,
and implementation. The results are discussed in Section IV,
providing insights into 2-D versus 3-D architecture/design
tradeoffs and power, performance, and area (PPA) metrics.
The conclusions are drawn in Section V.

II. MOTIVATION FOR STCO
As technology scaling stagnates, improving system per-
formance faces several bottlenecks—memory, power, and
bandwidth walls. STCO is intended to mitigate them co-
optimizing on two axes: technology and system design. The
impact of technology scaling is assessed at the block level
through DTCOmethodology, synergizing design and process
technology to enhance performance, power efficiency, and
cost-effectiveness [4]. On the other hand, current system
design research is primarily based on new architectures for a
target application and design constraints, largely abstracting
the impact of underlying technology [5].

A. EMERGING TECHNOLOGIES
Logic DTCO innovations ranging from materials, processes,
device architectures, and power delivery mechanisms help
maintain area scaling for the next generation of CMOS
nodes—progression of FinFET devices to other GAA
devices, such as nanosheet and CFET [6], [7] (see Fig. 2).

The progress in 3-D integration in large systems offers
potential improvements in PPA compared with traditional
2-D implementations. Technologies, such as microbumps
(µBumps) and W2W-HB, have enabled high-density 3-D
interconnects, achieving the densities of 10 K and 1 M
interconnect/mm2, respectively [8]. Functional partitioning
of the design and stacking the repartitioned dies vertically
lead to footprint and total signal wirelength reduction,
impacting power and timing. The technology and physical
design implications of multidies partitioning, in face-to-face
(F2F), face-to-back (F2B), or a combination of both, have
been further elaborated in [9] and [10].

As SRAM scaling stagnates, beyond FinFET, MRAM-
based NVMs have emerged as a possible candidature for on-
chip usage with footprint and leakage power advantages [11].
Spin-transfer torque (STT) and spin–orbit torque (SOT)
show significantly smaller bitcell area and standby energy
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reduction and, however, incur a tradeoff with inherent
higher access delay, requiring the system-level architec-
ture modifications to incorporate such characteristics. STT
MRAM has been noted for its density advantage over
SOT memories, yet it exhibits slower operational speeds.
Conversely, SOT memories offer rapid switching times, but
their design necessitates two transistors per bit stored in
the magnetic tunnel junction (MTJ), leading to a larger
area requirement. The emerging VGSOT technology [12],
however, shows promise in achieving fast switching at lower
currents compared with SOT and uniquely allows for the
sharing of a write transistor across multiple MTJ pillars,
which can lead to configurations, such as five transistors per
4-bit MTJ, enhancing area efficiency. This leads to shorter
interconnect paths, with potential benefits for larger array
configurations over SRAM.

There have been several frameworks reporting on opti-
mizing across different logic nodes with design, workload,
thermal, and turnaround time (TAT) considerations, but
have primarily focused at a block level, excluding system–
architecture-level considerations [13], [14].

FIGURE 2. Technology scaling boosters. (a) Device scaling from
FinFET to CFET. (b) MRAM-based memory cells for denser
memories. (c) Wafer backside functionality with buried power
tail (BPR). (d) Chiplet approach with interposers. (e) Die-on-die
3-D integration.

B. EDGE-ARCHITECTURE DESIGN CONSIDERATIONS
Edge-AI accelerator design imposes strict boundary condi-
tions with respect to desired performance, power, form factor,
and cost tradeoffs [15]. System-wide optimization, as shown
in Fig. 1, requires investigation into various aspects.

1) Application: AI vision workloads involving GEMM/
GEMV kernels (e.g., CNNs).

2) Architecture: Integrating compute core and memory
hierarchy along with other components.

3) Mapping (Spatial and Temporal): Architecture-
dependent data movement and utilization.

XR-driven applications drive high-performance computing
on edge architectures and have funneled a plethora of neural
networks (NNs) for different functionalities, such as vision
processing, body movement tracking, depth estimation, and
eye tracking among others [16], [17].

Such DNN workloads heavily rely on matrix multi-
plications, which can be accelerated through array-based
accelerators. This capability has been demonstrated through
several AI-focused accelerators, many of which are inspired
by the Google TPU [18], employing systolic array (SA) with
weight-stationary dataflow and dedicated SRAM buffers.
Subsequent works, such as Eyeriss [19], proposed a
row-stationary, highly energy-efficient design. Also, Meta
introduced an augmented reality (AR)/virtual reality (VR)
accelerator [20] with an array of 16× 32 processing elements
(PEs) in an output-stationary dataflow, along with 3-D
stacked on-chip SRAM buffers for activations and weights.

Due to the data-intensive nature of DNN workloads,
multiple DSE frameworks [1], [2], [3] have been proposed
to jointly optimize architecture and data movement, taking
into consideration different data reuse schemes. Furthermore,
optimized mapping schemes for concurrent execution of
multiple DNNs on SAs or on segmented versions to optimize
for performance and energy have been reported in [21].
Fundamentally, these frameworks rely on dataflow optimiza-
tion for different workloads to minimize either the energy
or latency for a given execution, considering the available
compute and memory budget on a given technology node.
Distinction From SoTA: Table 1 summarizes related work

and presents a characteristic comparison with our proposed
STCO-driven framework. A DTCO study on GPU was per-
formed in [22], whereas [23] focuses on custom accelerators
without considering AI workloads. UTOPIA [13] presents
a technology–design–system co-optimization approach for
mobile SoCs. A workload-aware architectural exploration is
presented in [1] without technology implications. Maestro [3]
takes a similar approach, incorporating component-level
characterization in 28-nm library. The work presented
in [24] performs a system-level analysis on systolic array
accelerator using BEOL compatible RRAM and CNFETs
in 130-nm technology library. However, to the best of
authors’ knowledge, none of these reported works propose a
comprehensive system efficiency predictor that considers het-
erogeneous memory technologies and advanced 3-D bonding
with partitioning schemes along with workload–architecture
design-space exploration for AI accelerators.

TABLE 1. Summary of the related work.
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III. A SYSTEM–TECHNOLOGY CO-OPTIMIZATION
FRAMEWORK
Our proposed STCO framework enables holistic co-
optimization, as illustrated in Fig. 3, built upon ZigZag DSE
tool [1] and calibrated with PPA metrics extracted from
physical design experiments on a template architecture. This
leads to a technology-annotated DSE for system efficiency
predictor connecting different design knobs. The framework
is divided into three engines as follows: 1) the place and route
(PnR)-based design–technology characterization generating
PPA metrics, feeding to the other two engines; 2) DSE
mapping; and 3) system-level efficiency predictor. We bridge
the physical characterization with the high-level DSE
optimization through a demonstrative accelerator architecture
using both a register transfer level (RTL) description and
performance model.

FIGURE 3. Proposed STCO framework for design-space
exploration of edge architectures leveraging dense emerging
technologies across abstraction levels of the computing stack.

A. ACCELERATOR TEMPLATE ARCHITECTURE
We propose DenseXR, a single-core configurable squared
SA-based accelerator, as illustrated in Fig. 4(a). As the main
application focus is on Edge-AI workloads, the array is
composed of 32 × 32 PEs with one multiply-accumulate
(MAC) operation per PE. We adopted a squared SA inspired
on commercial products, such as [18] and [20]. Although
nonsquared SAs could be optimized for certain workloads,
the unmatched bandwidth requirements would increase the
complexity of both system design and dataflow mapping.
This choice relies on the versatility of SA-based accelerators
on executing general matrix–matrix multiplication (GEMM)
operations, the backbone of NN workloads.

It uses 8-bit signed integer (INT8) arithmetic for both
activations and weights, with accumulation in 32-bit signed
integer (INT32) format. Each PE element utilizes a double-
buffered weight-stationary dataflow, allowing data prefetch-
ing. To handle the 32-bit partial sums, a 16-kB block of
double-buffered 32-bit accumulators is connected to the
systolic array [the Accum block in Fig. 4(a)]. This 16-kB
memory is divided into 32 accumulator units, each equipped
with 2 memory banks, with 128 words of 32 bits.

Motivated by Eyeriss [19], the accelerator has a two-
level memory hierarchy to store the on-chip data: a
shared multiport L2-like scratchpad memory configured

with multiple banks, and two L1-like scratchpad memories
to store the activations and weights. These memories can
be configured to use either SRAM or NVM technologies
(discussed in Section III-B). All memories are configured
for maximum bandwidth (32 × 8b = 256b) per channel,
connected through a crossbar to route the data transfers.

Given that memories can have different latencies as they
might be slower than the logic, each memory block can be
configured to operate based on time multiplexing using a
round-robin scheduling. Each memory bank is divided into
smaller banks with pipelined control signals, ensuring that
the maximum throughput will be available after the initial
ramp-up phase. With proper scheduling and a reasonable
multiplexing factor, the initial latency will be negligible on
the overall workload execution.

B. DESIGN–TECHNOLOGY CHARACTERIZATION
We perform a block-level characterization to obtain the
PPA metrics in the associated technology, running PnR
experiments using Cadence tools. This helps to extract block-
level energy metrics to annotate the DSE tool.

For 3-D circuit integration, the more mature memory-on-
logic (MoL) flow, having memory macros on top and remain-
ing logic at the bottom die, is considered. For our memory-
dominated template architecture, the bottom die contains a
mix of logic and memory macros, as its size matched the top
die for W2W integration considerations. The top die contains
most of the L2 sub-banks, while the bottom die contains
the remaining L2 banks, all L1 banks, and the compute
logic. We have used a delay-annotated post-signoff netlist to
simulate the design. The simulation generated a stimuli file
to back-annotate the implementation database, allowing the
power estimation based on the execution of a real workload.
This approach allows a precise characterization of the energy
cost per data movement and computation, streamlining the
integration with the system exploration. The PnR flows are
described in Section IV of the Supplementary Material.

C. DESIGN-SPACE EXPLORATION TOOL AND SYSTEM
PERFORMANCE PREDICTION ENGINE
We employ ZigZag [1] as the core DSE mapping engine
due to its configurability and extensibility. It takes as input
the target workloads specified in Open Neural Network
Exchange (ONNX) format and an architecture template
describing the memory subsystem and compute capabilities,
using such information to find the optimal spatial and
temporal operation mapping. The DSE engine supports
energy-, latency-, or energy-delay product (EDP)-driven opti-
mizations that rely on the design–technology characterization
engine.

ZigZag is originally technology-agnostic, so it reports
execution cycles and energy per access metrics, which might
overlook the design implementation challenges. Hence,
we customized the DSE tool to consider technology char-
acterizations for compute logic or memory levels into its
mapping optimization engine and extend it further to do the
following: 1) estimate the system performance and efficiency
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FIGURE 4. DenseXR systolic array. (a) System overview with PE array with high-bandwidth, multilevel memory hierarchy. (b) Array
organization with a double-buffered weight-stationary PE architecture.

considering the system frequency and 2) provide a statistical
prediction for energy efficiency-related metrics evalua-
tion considering different architectural design points. This
approach enables technology-driven, fast architectural explo-
rations for early system efficiency-related design sweeps.

For its first task, the prediction engine assumes the
lowest operating frequency point obtained from the design–
technology characterization as the baseline iso-frequency
performance point. If the selected memory–compute con-
figuration has an annotation point, the engine computes the
design peak TOPS/W and estimates the effective TOPS/W,
considering the effects of nonideal operation scheduling.
However, if the memory–compute configuration is not
present, the engine uses a regression-based analysis to
estimate the characterization points at iso-frequency, scaling
the power and performance according to the compute array
size and total memory capacity. The prediction engine is
conceived in amodular fashion to support different estimation
methods. Further details can be found in Section I of the
Supplementary Material.

The framework evaluation comes from the combination of
these three engines, which provide optimization knobs at the
application, architecture, and technology parameters. Among
all the possible optimization knobs, we selected a subset of
them as listed in the following sections.

1) APPLICATION KNOB CONSIDERATIONS
We selected FSRCNN and EDSNet workloads, both based
on convolution neural network (CNN), to demonstrate the
framework capabilities, having vastly different memory and
compute requirements, and their functionality is generic
enough to be integrated into XR systems.

The FSRCNN workload [25] is an image enhancer that
upscales low-resolution images to high-resolution ones with
higher fidelity than traditional algorithms. For this exper-
iment, we considered three input resolutions (256 × 256,
512 × 512, and 1024 × 1024) with a 2× upscaling factor.
We also considered the EDSNet workload [26], a neural
network tailored for eye-tracking purposes. The network is
based on top of MobileNet-V2 with an input resolution of
320 × 320 pixels. More details on the inference compute
and memory requirements for each workload are described
in Section II of the Supplementary Material.

Selected application knob values are as follows.
1) FSRCNN: Super-resolution with various resolutions.
2) EDSNet: Eye segmentation with single resolution.

2) ARCHITECTURE KNOB CONSIDERATIONS
Workloads have distinct compute/memory resource demands,
and the optimal design point requires careful architectural
exploration. We consider different compute and memory
capacities by changing the on-chip memory and SA sizes
based on the underlying template architecture. For the
remaining of this article based on physical design explo-
rations, i.e., PnR runs, will be named physical. All the PPA
numbers obtained from the prediction engine will be marked
as prediction.

Selected architecture knob values are as follows.
1) Memory: Sweep total on-chip capacity from 1× to 4×

(physical), extending to 32× (prediction).
2) Compute: Use a 32 × 32 array size (physical), consid-

ering 16 × 16 and 64 × 64 array sizes (prediction).

3) TECHNOLOGY KNOB CONSIDERATIONS
Although increasing on-chip memory capacity usually leads
to better system efficiency due to the reduction of off-chip
memory access, the additional on-chip resources can signif-
icantly degrade the chip PPA due to the increase in footprint
and wirelength, also at an increased die cost. We mitigate
this impact by leveraging two technology approaches as
follows: 1) moving into the third dimension and 2) integrating
emerging memory technology on the same design.

We selected the MoL 3-D partitioning approach assuming
advanced W2W HB technology in an F2F configuration,
as shown in Fig. 5. This configuration allows for tight
3-D interconnect pitch, at 1.12 µm, as a multiple of the last
metal layer pitch of the considered technology (14× 0.08µm
pitch) that guarantees low RC insertion [27].

Complementary to this approach, we evaluated the partial
replacement of SRAM-based memory macros by VGSOT-
based macros with the same capacity to benchmark the
potential benefits and drawbacks of NVMs on edge devices.
All memory macros have an identical capacity of 32 kB,
and they are stitched together to create higher capacity
memory subsystems. We considered a four-pillar bitcell,
as proposed in [11], combined with the memory pipelining
scheme described in the previous section to cope with
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FIGURE 5. Design partitioning experiments. (a) Illustrative 2-D–3-D floor planning with replacement of SRAM macros by NVM.
(b) Cross section illustration of F2F 3-D die partitioning, where the top die is composed only of memory macros.

TABLE 2. Overview of PnR experiments.

the 4× access delay increase at the macro level when
compared with an SRAM implementation. More details on
the macro characteristics can be found in Section V of the
Supplementary Material.

Selected technology knob values are as follows.
1) Partitioning Scheme: Conventional 2-D (single die)

and 3-D MoL with two dies and 1.12-µm pitch.
2) Memory Technology: SRAM and VGSOT macros with

the same macro capacity.

IV. RESULTS AND DISCUSSION
As the main purpose of our framework is to bring together
the technology and system exploration, we adopt a two-
step evaluation methodology, starting with PnR experiments
followed by DSE analysis. For the first part, we characterize
the architecture components of our demonstrative systolic
array-based system using an advanced nanosheet CMOS
PDK. Once this characterization is finished, we annotate the
PPA back into the DSE tool, which enables the performance
assessment of different workloads as well as the performance
prediction for different architecture parameters.

A. TECHNOLOGY CHARACTERIZATION
For the framework calibration, we adopted imec A10
nanosheet CMOS PDK for all PnR experiments. This PDK
has 13 back-end-of-line (BEOL) metal layers, and it also
offers power delivery through BPR. We combined the archi-
tecture and technology knobs defined in Section III, leading
to the experiments listed in Table 2. In all explorations,
we fixed the SA array size into 32× 32 and kept the activation
memory capacity constant.

We chose to sweep the L2 and WMEM memories for
two reasons as follows: 1) they are more tolerant to higher
memory latency given the weight-stationary dataflow of the
systolic array, with potential for data prefetching and 2) the
ACTMEM memory contents could be partially offloaded

to the L2. We use NVM macros on these memories for
benchmarking purposes, although this is not a limiting factor,
since the framework can be extended to other dataflows with
the same characterization data points.

The results presented in Fig. 6 include maximum per-
formance and iso-frequency targets. The first target aims
to evaluate the effect of technology knobs, while the iso-
frequency design configurations facilitate a fairer system
energy efficiency comparison (TOPS/W). All comparisons
are normalized with respect to the baseline configuration with
1× memory capacity with SRAM macros in a single die.
Employing 3-D partitioning improves the maximum

achieved frequency, particularly with SRAM-based imple-
mentations. For instance, at 1× memory capacity, the
SRAM 3-D configuration increases the maximum achieved
frequency by 32%, with diminishing gains to 10% and 2% at
2× and 4×memory capacities, respectively. This is attributed
to the design’s expansion and extra logic cells accompanying
L2 and WMEM macros, requiring longer wires. This is
a hint that more than two dies may be considered as an
alternative to further improve scaling. In the case of NVM,
the 3-D configurations show an approximate 1% increase in
frequency compared with 2-D across all memory capacities.
This near-constant performance is attributed to the multicycle
path constraints (three clock cycles) applied during the
implementation of all NVM configurations due to the slower
VGSOT macro access time (near 3 ns).

While 3-D NVM does not significantly increase the
achieved frequency, it has a significant reduction in total
power with approximately 13% power savings across all
capacities, compared with 2-D NVM. These memories show
a near-linear reduction in power for both 2-D and 3-D
configurations, as thememory capacity increases, attributable
to the lower achieved frequencies at such capacities. This
trend is not present in SRAM-based 3-D implementations,
as larger memory capacities (2× and 4×) have higher
achieved frequency (10% and 2%, respectively) when
compared with their 2-D counterparts while also offering
power savings of 10% and 14%, respectively.

For a broader understanding of how the technology choices
affect the design peak energy efficiency (TOPS/W), we evalu-
ate the target design at iso-frequency (625 MHz), as shown in
Fig. 6. At iso-frequency, 3-D partitioning provides significant
switching power reduction due to the signal wirelength
reduction. For instance, comparing the SRAM 2× 2-D and
3-D implementations, the 3-D configuration achieves an 18%
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FIGURE 6. PPA characterization for different PnR configurations. Normalized to the baseline configuration adopting a 2-D partitioning
scheme.

reduction in total power due to a 76% decrease in switching
power. This is explained by the 44% reduction in signal
wirelength and 36% reduction in the repeaters count.

NVM-based implementations provide better scaling
opportunities in terms of energy efficiency and footprint,
especially at high on-chip memory capacities. For edge
systems where the footprint is also a crucial factor,
we observe that the 2-D NVM implementation rivals the
3-D-based SRAM implementation, which can potentially
represent cost savings due to the less complex integration
scheme. As the memory capacity grows from 1× to 4×, the
silicon area gap to the SRAM 2-D implementation grows
from 38% to 54%, respectively.

B. SYSTEM-LEVEL ANALYSIS
As each workload has different memory and compute
requirements, the effective mapping into the hardware will be
greatly affected by the available resources. From the previous
section, the more the on-chip resources are available, the
higher the degradation on the design PPA and, consequently,
the energy efficiency. Yet, looking only at design PPA may
hide system-level improvements that workload-dependent.
Hence, we assess the system performance considering
multiple workloads with different compute/memory charac-
teristics. This evaluation is done for the calibrated designs
of Section III-B, and we predict the potential performance
for other array sizes and memory capacity, as described in
Section III-C.2.
Fig. 7 shows how the workload impacts the effective

system energy efficiency at iso-frequency when we take
into account the dataflow mapping improvements as a
consequence of architectural factors, such as on-chipmemory
capacity and available compute capability. The overall
trend is that more resources can lead to better system
utilization even though the system peak performance is lower,
as the mapping can better utilize the available memory
and compute. As the resources are better utilized, the
effective system energy efficiency comes closer to the peak
performance estimated for that given architecture.

The experiments in Fig. 7 take the technology-aware
framework and estimate the efficiency when more on-chip
memory is available. Assuming the downward trend on
the peak energy efficiency shown in the previous section,
we observe that these mapping gains can offset the worse
design PPA. On the EDSNet workload, for instance, the
effective TOPS/W decreases until 4× capacity, as the
mapping gains are negligible with respect to the PPA
degradation, although this trend is reversed at 8× onward,
as the mapping gains are much higher than the PPA
degradation. Such nonlinear behavior can be explained by the
heuristics of the optimizer. However, other workloads have
different optimal points, as the mapping optimization is not
enough to compensate for the lower peak efficiency.

A complementary look at this analysis is shown in
Fig. 8, where the technology assumptions are fixed to
a 3-D-based implementation with NVM memories while
varying the available compute and memory resources at
iso-frequency. The trends per workload are quite diverse,
as the EDSNet implementation sometimes is compute-bound,
and sometimes, it is memory-bound. Focusing on the 32×
memory capacity for the 64 × 64 array, it shows a 25%
peak system efficiency degradation with respect to the 1×
configuration, yet the workloads can execute faster (2.6×
on EDSNet and 7.4× on FSRCNN) with better effective
system energy efficiency, with improvements ranging from
2× (EDSNet) to 5.7× (FSRCNN).

C. OFF-CHIP MEMORY ANALYSIS
The major premise around increasing on-chip memory is
to reduce the DRAM access, since it often has a lower
bandwidth and a very high energy/bit access cost. Hence,
we provide some early insights on how the relative off-chip
access can be minimized by increasing the on-chip memory
and the potential impact on the system energy efficiency.
We assume a relative approach to measure the additional
accesses needed to handle the memory spillover, i.e., the
temporary storage of partial activations in the main memory
and the fetching of the same input/weight data from off-chip.
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FIGURE 7. Iso-compute analysis: system efficiency evaluation for multiple workloads at different memory and technology selections,
estimating the system energy efficiency up to 32× memory capacity.

FIGURE 8. Iso-technology analysis: system efficiency evaluation for compute and memory scale-up considering NVM memories and
3-D integration.

Assuming a dataflow optimizer configured to minimize the
compute latency at any cost and a similar DRAM memory
bandwidth as on-chip memory bandwidth, we can estimate
the extra off-chip memory accesses needed. Focusing on
the FSRCNN (large) model for the 64 × 64 compute
engine, the 32× memory capacity is the only configuration
able to hold the entire model on-chip. Considering the 1×
memory capacity, it would need 18× more off-chip accesses,
significantly offsetting the overall system energy efficiency.

V. CONCLUSION
This work is a first of its kind to provide a framework for
workload- and technology-aware design-space exploration,
considering a template AI accelerator, 3-D exploration at
the fine-grained pitch with NVM, and advanced nanosheet
A10 CMOS technology. It shows the feasibility of STCO as
a methodology for evaluating system implications of future
technology decisions and vice versa. Other works [28], [29]
highlighted the potential benefits of adopting such advanced
3-D integration over diverse architectures. Results show that
increasing the memory capacity leads to worse peak energy
efficiency due to the increase of on-chip resources. However,
the workloads and mapping engine have a crucial role
in the effective system efficiency, and they can compensate
for the adverse effects on PPA. For instance, we demonstrated
that for a 64 × 64 array, increasing the memory from 1×
to 32× has a 25% degradation on peak efficiency, yet the
effective system energy efficiency increases 2× with 2.6×
lower execution time on the EDSNet workload with similar
findings to other cases. Future work will aim to improve
the framework, incorporating detailed cost analysis for off-
chip main memory access, adoption of emerging technology
elements (advanced logic, MRAM, 3-D bonding, and other
DTCOdesign knobs), and thermal assessment into the system
efficiency analysis.
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