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ABSTRACT Memory-augmented neural networks (MANNSs) require large external memories to enable
long-term memory storage and retrieval. Content-addressable memory (CAM) is a type of memory used for
high-speed searching applications and is well-suited for MANNSs. Recent advances in exploratory nonvolatile
devices have spurred the development of nonvolatile CAMs. However, these devices suffer from poor ON-OFF
ratio, large write voltages, and long write times. This work proposes a nonvolatile ternary CAM (TCAM)
using magnetoelectric field effect transistors (MEFETs). The energy and delay of various operations are
simulated using the ASAP 7-nm predictive technology for the transistors and a Verilog-A model of the
MEFET. The proposed structure achieves orders of magnitude improvement in search energy and >45x
improvement in search energy-delay product compared with prior works. The write energy and delay are
also improved by 8 x and 12 x, respectively, compared with CAMs designed with other nonvolatile devices.
A variability analysis is performed to study the effect of process variations on the CAM. The proposed
CAM is then used to build a one-shot learning MANN and is benchmarked with the Modified National
Institute of Standards and Technology (MNIST), extended MNIST (EMNIST), and labeled faces in the wild
(LFW) datasets with binary embeddings, giving >99% accuracy on MNIST, a top-3 accuracy of 97.11% on
the EMNIST dataset, and >97% accuracy on the LFW dataset, with embedding sizes of 16, 64, and 512,
respectively. The proposed CAM is shown to be fast, energy-efficient, and scalable, making it suitable for
MANN:E.

INDEX TERMS Content-addressable memory (CAM), ferroelectric field effect transistor (FeFET), magne-
toelectric field effect transistors (MEFETSs), magnetoelectric magnetic tunnel junction field effect transistor
(ME-MTIJ-FET), memory-augmented neural network (MANN), resistive random access memory (ReRAM),
ternary CAM (TCAM).

I. INTRODUCTION

EMORY-AUGMENTED neural networks (MANNs)
M [11, [2], [3], [4] are a class of neural networks that use
external memory to store and retrieve information. MANNS
are well-suited for tasks that require long-term memory,
such as language translation, question-answering, and image
recognition. External memory facilitates MANNSs to be used
for one-shot learning [5], [6], [7], where a model is trained to
learn a class from one or a few examples.

One-shot learning is a type of learning where a model
is trained to learn the similarities and differences between
the input data points, by training the model to generate
embeddings of the input data such that the embeddings of
the same class are close to each other and the embeddings
of different classes are far from each other. Once a model
is trained to generate ‘“‘good” embeddings; the model can

generate the representative embeddings of a class from one or
afew examples, hence the name one-shot learning. The model
can then classify the test data based on the distance from
the representative embeddings. This paradigm is well-suited
for tasks that require learning from a small dataset, such
as face recognition, signature verification, and fingerprint
recognition.

The representative embeddings used in MANNs must be
stored in memory, and the distance between the embeddings
must be computed to classify the test data. As the number
of classes to be classified increases, the memory size and
the number of distance computations increase, making it the
bottleneck compared with the computation of embedding
from the input data. Therefore, the memory used to store the
embeddings must be fast, energy-efficient, and scalable. One
such memory is the content-addressable memory (CAM),
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which is used for high-speed searching applications.

Traditional CAM uses modified static random access
memory (SRAM) cells [8]. However, such conventional
CAM has several disadvantages, such as high power con-
sumption, large area, and vulnerability to side-channel
attacks. CAM must be nonvolatile for a one-shot learning
MANN, as the representative embeddings must be stored for
a long time and ideally be updated infrequently.

The use of nonvolatile devices for memory applications
has gained a lot of attention in the last decade. Previous
works have discussed the design of nonvolatile memo-
ries for machine learning applications [9], [10], [11], [12],
[13]. Many works also proposed nonvolatile CAMs using
exploratory devices, such as: 1) spin—torque transfer (STT)
[14], [15], [16], [17], which have a poor ON-OFF ratio (~2);
2) phase-change memory (PCM) [18], [19], [20], which has
an ON-OFF ratio of ~102; 3) resistive random access memory
(ReRAM) [21], [22], [23]; 4) ferroelectric field effect transis-
tors (FeFETSs) [24], [25], [26], [27], which require high write
voltages and have long write time; and 5) magnetoelectric
magnetic tunnel junction (ME-MTJ) [28], [29], which also
have poor ON-OFF ratio.

The magnetoelectric field effect transistor (MEFET) [30],
[31], [32] is an emerging device that is predicted to require
very small voltages to switch its state (~100 mV) and to have
a large ON-OFF ratio (~10%). The write time of the MEFET
is also projected to be significantly smaller (~3 ps) than the
FeFET and the ME-MTJ and is estimated to have a very
high write endurance [45]. MEFET proposed by Nikonov,
Dowben, and colleagues is a four-terminal device that uses
the magnetoelectric effect to control the resistance of a 2-D
transistor channel. Fig. 1(a) shows a cross-sectional view
of the MEFET [31]. When a potential difference is applied
between the gate (G) and the back gate (BG), the resulting
electric field changes the alignment of the chromia spin vec-
tors in either the “up” or ““‘down” direction. This programs
the spin polarization of the narrow channel, which results in a
low or high resistance state. The circuit symbol of the MEFET
used in this article is shown in Fig. 1(b). The BG terminal is
omitted from the circuit symbol as it is typically connected to
the ground. Fig. 1(c) shows the calculated current through the
MEFET as a function of gate voltage [32]. The BG terminal
is assumed to be grounded. However, for this work, a simpler
piecewise linear model [31] is used to simulate the MEFET.

Previous works have proposed nonvolatile random access
memory (RAM) architectures using MEFETs [33], [34],
as shown in Fig. 2(a) and (b). The 2T-1M MEFET-based
RAM cell shown in Fig. 2(a) has separate transistors to
perform the read the write operations. The 1T-1M MEFET-
based RAM cell shown in Fig. 2(b) uses a single MEFET
to perform the read and write operations. The write oper-
ation is performed by applying a programming voltage to
the bitline (BL) when the word line (WL) is high and the
source line (SL) is grounded. The read operation is performed
by applying a sense voltage to the BL when WL is high
and SL is grounded. The sense current on SL is measured
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FIGURE 2. MEFET-based (a) 2T-1M RAM cell [33] and (b) 1T-1M
RAM cell [34].

to determine the resistance state of the MEFET. However,
during the write operation, the on-resistance of M| is in series
with the resistance of the MEFET, forming a voltage divider.
When the MEFET is in the low resistance state, the required
voltage at the BL increases, making it difficult to write the
data to the MEFET. This issue can be addressed either by
adding a large resistance to SL or by driving SL to the same
voltage as the BL during the write operation.

This work presents a nonvolatile ternary CAM (TCAM)
using the MEFET and benchmarks its performance for
one-shot learning MANNS. This article is organized as fol-
lows. Section II gives an overview of existing CAMs based
on non-volatile devices, Section III presents the proposed
MEFET-based CAM cell, Section IV shows the design of a
CAM array with the proposed CAM cell, Section V discusses
the effect of variability on the performance of the proposed
CAM array, and Section VI covers the one-shot learning
network structures along with system-level results obtained
using proposed TCAM. The word “transistor” in this article
refers to a CMOS transistor unless otherwise specified.
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FIGURE 3. Structure of CAM cell using (a) PCM [19],

(b) FeFET [25], (c) ME-MTJ [29], and (d) ON-OFF ratio, the time
required to change the state of the device, and the voltages
required for read, write, and search operations.

Il. OVERVIEW OF NONVOLATILE CAM TOPOLOGIES
The design of CAM using exploratory nonvolatile devices has
gained a lot of attention in the last decade. Fig. 3 shows the
structure of a CAM cell using (a) PCM, (b) FeFET, and (c)
ME-MT]J devices along with the ON-OFF ratio of the devices,
write delay, and their write/read/search voltages.

Early works in the literature have proposed CAMs using
STT devices [14], [15], [16], [17]. However, these devices
have a poor ON-OFF ratio (~2), leading to a strict requirement
on sense amplifiers. PCM has a larger ON-OFF ratio (~10%)
and can be used to design a CAM [19], as shown in Fig. 3(a).
The write operation is performed by applying a large voltage
(~2.5 V) to the write bitline (WBL) while maintaining the
corresponding write word line (WWL) high. It takes two
write cycles to store the data and its complement. The search
operation is performed by precharging the match line (ML) to
a small voltage (~0.75-1.2 V) and applying the search bit to
the search line (SL) and the complement of the search bit to
the complement search line (SLB). The ML is discharged
if the search bit does not match the stored bit. The ML is
connected to a sense amplifier to detect the match condition.

The FeFET is a three-terminal device that uses the change
in polarization of a ferroelectric material to control the current
through its channel. The FeFET has a large ON-OFF ratio
(~10°) and can be used to design a CAM [25] as shown in
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FIGURE 4. Proposed 4T-2M MEFET-based CAM cell.

Fig. 3(b). The bit ““1” is stored in an FeFET if its gate—source
voltage is high (~4 V) and the bit “0” is stored if the
gate—source voltage is low (~—4 V). The write operation
is performed by storing the data and its complement in two
FeFETs in two write cycles by applying the corresponding
voltages to the BL, the complementary bitline (BLB), and
the source line (ScL). The search operation is performed by
precharging the ML and applying the search bit to BLB and
its complement to BL. The ML is discharged if the search bit
does not match the stored bit.

The ME-MT]J is a three-terminal device that uses the
magnetoelectric effect to control the tunnel resistance of a
magnetic tunnel junction. The ME-MTIJ requires a small
voltage (~0.2 V) to change its resistance state and can be
used to design a CAM [29], as shown in Fig. 3(c). The write
operation is performed by applying a small voltage (~0.2 V)
to the BL and SL when the WL is high. The write operation
is done in a single cycle. The search operation is performed
by precharging the ML and applying the search bit to SL and
the complement of the search bit to SLB. With careful sizing
of the transistors, the ML is discharged if the search bit does
not match the stored bit.

lll. PROPOSED MEFET-BASED CAM

The 1T-1M MEFET-based RAM cell shown in Fig. 2(b)
can be extended to build a 4T-2M CAM cell. As the CAM
computes an XOR operation, the data and its complement must
be stored. Therefore, two MEFETSs are used to store these
data. The structure of the proposed CAM cell is shown in
Fig. 4. The cell consists of two MEFETs (ME; and ME),
two access transistors (M and M>), and two XOR transistors
(M3 and My).

A. WRITE OPERATION

The write operation of the proposed 4T-2M MEFET-based
CAM cell is performed by applying a programming voltage
(£Vy) to the BL when the WL is high. The required voltage
at the BL increases when the MEFET is in the low resistance
state to perform a successful write. Therefore, to minimize the
driving voltage of BL, the SL is driven to the same voltage
as the BL during the write operation. The complementary
data are written to the complementary MEFET using the BLB
and SLB. Table 1 shows the voltages of various lines during
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TABLE 1. 4T-2M MEFET-based CAM cell write operation.

[Data | WL | BL | SL [ BLB | SLB [ Rug, | Rume, |

0 Vbp —Vaw —Vuw Vuw Vw Ry Ry,
1 Vbbp Vaw Vw -V -V Rp Ry
X Vbbb —Vuw —Vaw —Vuw —Vw Ry Ry
Vpp = 700 mV, Vi, = 200 mV.
o7vi L
WLO . '
0 1
e
s
My [ ME, | TME, T M,
0—<I M3 M4:I I——0
ML O o S
: S 2 g
@ » 3 9
7] m
200 mV 4T [ 200mv{TL" _[L_$200mV 11_t200mv

FIGURE 5. Write operation of a single CAM cell. The devices in
lighter colors are OFF.

the write operation, along with the resistance states of the
MEFETS. Ry is the high resistance state when the resistance
of the MEFET is ~100 M. R; is the low resistance state,
when the resistance of the MEFET is ~1 k2. The do not
care state, “X,” is represented by storing the bit “0” in both
MEFETs. It is to be noted that the drain and source of the
access transistors reach negative voltages during the write
operation. However, V,, is chosen such that the body diode
of the access transistors is not forward biased.

Fig. 5 shows the write operation of a single CAM cell
if the bit “0” is being written. BL and SL are driven to
—200 mV, BLB and SLB are driven to 200 mV, while the
word is driven to Vpp. Since BL and SL are at —200 mV, the
gate of ME| would be at —200 mV. As the BG terminals of
the MEFETs are connected to the ground, ME; switches to
a high resistance state. Similarly, the gate voltage of ME; is
200 mV, and ME, switches to a low resistance state.

B. READ OPERATION

The read operation is performed by applying a sense volt-
age (Vi) to SL and SLB when WL is high. The BL and
BLB capacitances are discharged before the read operation.
A small current flows through the MEFETs, charging the BL
and BLB capacitances. A small MEFET resistance results in a
larger voltage on the bit lines, while a large MEFET resistance
results in a smaller voltage. These voltage levels are measured
by a sense amplifier to determine the resistance state of the
MEFETs. Table 2 shows the voltages of various lines during
the read operation.

Fig. 6 shows the read operation of a single CAM cell if
the bit stored is ““0.” Both SL and SLB are driven to 50 mV,
and the WL is driven to Vpp to read the data. As shown
in Fig. 6, the transistors M3 and M4 would be OFF, and the
MEFET ME; would be in the high resistance state. Since the
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TABLE 2. 4T-2M MEFET-based CAM cell read operation.

Stored Data ‘ WL ‘ SL ‘ SLB ‘ Condition
0 Vop | Vs Vs VL < VBLB
1 1%5¥5) Vs Vs VL > VBLB
X Vpop | Vs Vs Ver = VBLB

Vpp =700 mV, V5 = 50 mV.
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FIGURE 6. Read operation of a single CAM cell. The devices in
lighter colors are OFF.

BL and BLB are not driven in the read phase, the BL and BLB
capacitances would be charged through the MEFETS. Since
the resistance of ME; is high, BL would be charged to a much
lower voltage than BLB.

C. SEARCH OPERATION

The XOR transistors M3 and M4 in Fig. 4 are used to perform
the search operation, which is performed by applying the
search bit to the BLB and the complement of the search
bit to the BL while the WL is low. The ML capacitance is
discharged, and a sense voltage is applied to SL and SLB.
The ML capacitance will be charged if the search bit does not
match the stored bit. Table 3 shows the voltages of various
lines during the search operation. The ML voltage is O when
the search bit matches the stored bit and starts increasing
when the search bit does not match the stored bit. Therefore,
the voltage at ML would not increase if there is a perfect
match.

Fig. 7 shows the search operation in a single CAM cell.
The stored bit is “0” and the search bit is “1.”” The BL is
driven to O V, and the BLB is driven to Vpp while the WL
is low. The SL and SLB are driven to 50 mV. The transistor
M3 would be OFF, and the MEFET ME, would be in the low
resistance state. Since the transistor My is ON, there exists a
path from SLB to ML for the current to flow, charging the ML
capacitance. In the worst case of only one mismatch, the ML
voltage would be the same as the read operation. With more
mismatches, the ML would charge faster.

Fig. 8 shows the simulation results of the write, read, and
search operations of one cell in a CAM array. The simulation
was done in Cadence Spectre using the Verilog-A model of
the MEFET [31] and ASAP 7-nm predictive PDK [35] for the
access transistors and peripheral circuitry. The write voltage,
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TABLE 3. 4T-2M MEFET-based CAM cell search operation.

Search | Stored
Bit Data WL BL BLB | SL | SLB | VL
0 0 1%5¥5) 0 Vs Vs 0
0 1 0 1%5%5) 0 Vs Vs T
X 0 1%5¥5) 0 Vs Vs 0
0 0 0 Vbp | Vs | Vs )
1 1 0 0 Vbbb Vs Vs 0
X 0 0 Vop | Vs Vs 0
0 0 0 Vs | Vs 0
X 1 0 0 Vs Vs 0
X 0 0 Vs Vs 0
Vpp = 700 mV, V5 = 50 mV.
WLO 4 4
el e
L | L L
T m, ME, 1 ME, T My |
ID——I I:M3 My I—T
4
40 mv ¢M_L<E i 3 - 3 g g
= B ° 3 G
ov somvy_[_ _[_$50mVv LV

FIGURE 7. Search operation in a single CAM cell. The devices in
lighter colors are OFF.

Vi, 1s taken to be 200 mV, sense voltage, Vj, is taken to be
50 mV, and the supply voltage, Vpp, is taken to be 700 mV.

IV. CAM ARRAY
The proposed 4T-2M MEFET-based CAM cell is used to

build a CAM array, as shown in Fig. 9. The major blocks in the
peripheral circuitry are the word-line decoder and the sense
amplifier. The decoder is used to select the row of the CAM
array for the read and write operations. The sense amplifier
is used to detect the high and low sense voltages during the
read and search operations.

A. WORD-LINE DECODER

The word-line decoder is used to generate the word lines
based on the address to be selected for reading and writing
data. These lines must be synchronous and monotonically
increasing. Fig. 10 shows the dynamic NOR gate [36], [37]
used in the word line decoder. This gate has a monotonically
rising output with a race-based structure.

B. SENSE AMPLIFIER

The read and search operations require the measurement
of small voltages (<50 mV) on the bit lines and ML,
respectively. A sense amplifier is used to detect the voltage
levels on BL and BLB lines to determine the stored bit. The
reference voltage for the sense amplifier is generated using
a stack of 5 “ON”’-state CAM cells charging a dummy BL
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TABLE 4. Comparison of the proposed MEFET-based CAM with
the previous nonvolatile CAM structures.

. ME-MTJ | FEFET
Device MEFET SRAM [29]
[29] [25]
Technology 7 nm 14 nm 14 nm 14 nm
Word
A 0.7 0.7 0.7 0.7
Line (V)
Array Size 64 x 64 64 x 64 64 x 64 64 x 64
Cell Area
5 0.049 0.131 0.161 0.21
(pm?)
Write
0.2 0.2 4 0.7
Voltage (V)
Write
12.74 105 183 1510
Energy (fJ)
Write
0.08 1 10 1
Delay (ns)
Search
0.05 0.8 1 0.7
Voltage (V)
Search
4.12 1) 537 I 353 I 723 ]
Energy
Search
594 ps 433 ps 328 ps 420 ps
Delay
Search
2.45 232.52 115.78 303.66
EDP#* (fJ-ns)
Leakage
2.38 0.71 6.8 695
Power (nW)

*EDP: Energy-delay product.

capacitance. The sense amplifier is designed using offset
cancellation techniques [38] and a cascade of a preampli-
fier and a strongARM latch-based comparator structure [39],
as mentioned in [33].

Table 4 shows the simulation results of a 64 x 64 CAM
array using the typical process corner at 27°C and compares
it with other CAM structures. The write energy reported is the
energy required to write the data and its complement to one
CAM cell. The search energy reported is the energy required
per ML during the search operation, when there is a mismatch
in 50% of the cells in the row. The leakage power report is the
per-cell leakage power.

The SRAM-based structure in Table 4 is a 16T CMOS
structure taken from [29]. As shown in Table 4, the write
energy of the proposed MEFET-based CAM is 12.74 {J,
which is significantly lower than the write energy of prior
works. The write delay improvement of the proposed CAM
is >12x that of prior works, due to the quick switching
of the MEFET. The search energy of the proposed CAM is
two orders of magnitude lower than the search energy of the
ME-MTJ-based CAM and the FEFET-based CAM, due to
the low voltage requirement of the search operation (50 mV).
The energy-delay product of the proposed CAM is >45x
lower than that of the prior works.

V. VARIABILITY ANALYSIS
Fig. 11 shows the variation of the energy and delay of the
write, read, and search operations with temperature, process
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corners, and capacitance variation of the BL, SL, and ML.
The temperature is varied from —40 °C to 125 °C. The
process corners are typical, slow, and fast. The capacitances
of the BL, SL, and ML are varied by +10% from the nominal
capacitance of 100 fF and are indicated by the error bars in
Fig. 11. Itis noted that the energy and delay of the write, read,
and search operations are not affected by the variability of the
MEFET resistance.

The read and search delays do not vary (<0.2% variation)
with the capacitance variation of the BL, SL, and ML as the
sense amplifier senses the voltage levels in the clock low

36

phase. The final low and high voltages on the bit line and ML
during the read and search operations are not significantly
affected by the capacitance variation of BL and ML. The read
and search energy are also not affected by the capacitance
variation of BL, SL, and ML as the sense voltage is low
(50 mV). The write energy and delay, however, are affected
by the capacitance variation of BL as the required voltages at
the BL and BLB during the write are higher (200 mV).

VI. ONE-SHOT LEARNING
The one-shot learning paradigm is a type of learning where

a neural network model is used to learn from one or a few
examples. The model is trained to generate embeddings of
the input data such that the embeddings of the same class are
close to each other and the embeddings of different classes
are far from each other. The model is then used to classify
the input data based on the distance between the embeddings.
If the learned embeddings are binary, the classification can be
performed using a CAM to search for the closest match. The
network structure used in this work is a Siamese network [5],
which consists of two identical subnetworks that share the
same weights as shown in Fig. 12. The input data are passed
through the subnetworks to generate the embedding vectors.
The distance between the embeddings will be small if the
input data is from the same class and large if the input data is
from different classes.

The one-shot learning paradigm can be broken down
into three stages: training the network to learn the embed-
dings, generating the embeddings of a class with one or few
examples, and classifying the test data based on the distance
between the embeddings. Fig. 13 shows the overall one-shot
learning framework. In this work, two networks described in
Table 5 are used, targeting the Modified National Institute
of Standards and Technology (MNIST) [40] and extended
MNIST (EMNIST) datasets [41]. Nemp is the size of the
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FIGURE 12. Siamese network structure.

embedding vector.

To facilitate binarization of the embeddings, sigmoid acti-
vation is used in the output layer of the networks. The distance
metric used is the L1 distance, given by s the following
equation:

Nemb

dx,y) =D lx—yl. e
i=1

During evaluation, the embeddings are binarized using a
threshold of 0.5, which is equivalent to the sign function in
place of the sigmoid function. The L1 distance between the
binarized embeddings is the Hamming distance.

The training data provided in the dataset is split into train-
ing and validation sets for both networks. The training set is
used to train the network, and the validation set is used to
tune the hyperparameters in the step shown in Fig. 13(a). The
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TABLE 5. Details of the networks used for the two datasets.

Nemb is the size of

the embedding vector.

Dataset Layer ‘ Output Shape ‘ # Params
Conv 1 (28 x 28 x 8) 80
Maxpool | (14 x 14 x 8) -
st LSO 2 (14 x 14 x 16) 1168
Maxpool (7 x 7 x 16) -
FC 1 128 100, 608
Output Nemp 129 X Nemp
Conv 1 | (28x28x8) 80
Maxpool | (14 x 14 x 8) -
Conv 2 (14 x 14 x 16) 1168
EMNIST Maxpool (7 x 7 x 16) -
Conv 3 (7 x 7 x 32) 4640
Maxpool (3 x3x32) -
FC 1 256 73,984
Output Nemp 257 X Nemp

TABLE 6. Classification accuracy of the two datasets.

Embedding Size Accuracy (%)
MNIST | EMNIST | EMNIST (Top-3)
4 9820 | 30.46 82.04
8 98.82 | 64.03 94.35
16 99.06 | 72.19 96.57
3 99.08 | 77.09 96.74
64 99.05 | 75.35 97.11
128 99.08 | 79.03 97.32
256 99.00 | 79.17 97.02

trained network is then used to generate the embeddings of the
input data in the step shown in Fig. 13(b). The embeddings are
generated from one randomly selected example of each class
from the validation set. The embeddings are stored in memory
and then used to classify the test data in the step shown in
Fig. 13(c). The test data are passed through the network to
generate the embeddings, and the distance from the stored
embeddings is computed to classify the test data.

Table 6 shows the classification accuracies of the one-
shot learning paradigm for the MNIST and EMNIST datasets
for different embedding sizes. A classification accuracy of
>99% is achieved for the MNIST dataset with an embed-
ding size of 16. For the EMNIST dataset, a classification
accuracy of 79.03% is achieved with an embedding size
of 128. The EMNIST dataset is more challenging than the
MNIST dataset as it contains more classes and variations.
The top-3 accuracy of the EMNIST dataset is 97.11% with an
embedding size of 64. The top-3 accuracy is the percentage
of test data that has the correct class in the top-3 predictions.
The top-3 accuracy is targeted for the EMNIST dataset in this
work.

37



IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Dataset

-

Train the neural network

Neural

Network

embeddings

(a) (b)

Embeddings

Generate representative

Embedding Memory
(CMOS + MEFET)

03[0

T
Look-up

3 Predicted
Class

(CMOS)

Classify test images

(c)

FIGURE 13. One-shot learning framework with (a) training the network on a large dataset, (b) generation of representative embeddings
with one or few examples, and (c) classification of the test data based on the distance between the embeddings.

NN 7 IRNCH <) 2]
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FIGURE 14. Hamming distance of the embeddings for example
images from (a) MNIST dataset and (b) EMNIST dataset.

LE stands for learning examples, and TE stands for testing
examples. The maximum possible Hamming distance for MNIST
and EMNIST is 16 and 64, respectively.

Fig. 14 shows the Hamming distance of the embeddings,
for example, images from the MNIST and EMNIST datasets.
The embedding size for MNIST is 16, and the embedding
size for EMNIST is 64. As shown in Fig. 14(a), the Hamming
distance between the testing example (TE) “0” and the three
learning examples (LEs) “0” is 0, and the distance between
the TEs “2” and ““9” and the LEs “0” is 10 (the maximum
possible distance in this case is 16). As shown in Fig. 14(b),
the Hamming distance between the TE “C”” and the three LEs
“C” is 0. However, the distance between the TE ““¢’” and LEs
“C” is also small as they are visually similar. The distance
between the TE “0” and the LEs “C” is 34. (The maximum
possible distance in this case is 64.)

The paradigm is also tested on a more complex dataset,
labeled faces in the wild (LMW) [42], using a pretrained
model that generates embeddings from images of faces [6].
The pretrained model generates embeddings of size 512.
However, these embeddings are 32-bit floating-point num-
bers. The embeddings are binarized by simple sign-based
thresholding to fit into the proposed methodology. The clas-
sification accuracy postbinarization is 97.1%, which is less
than 1% worse than the floating-point embeddings.

The representative embeddings generated in Fig. 13(b) are
stored in the proposed MEFET-based CAM. The EMINST
dataset is chosen for simulation as it has 47 classes, and each
having 64-bit wide embeddings. One image from each class
is randomly picked, and the embeddings are stored in a 64 x
64 array. The same images are given as search patterns to
estimate the search energy. The average mismatch with these
patterns is 38.58%, resulting in a search energy of 3.18 fJ.
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This result shows that the search energy is a linear function
of the average mismatch as a mismatch of 50% in Table 4 had
a search energy of 4.12 fJ.

The number of rows in the CAM increases with the num-
ber of classes to be classified. The neural network used to
generate the embeddings in Fig. 13(c) can be implemented
in CMOS using hardware accelerator architectures [43], [44].
For alarge number of classes, the area, delay, and power of the
memory become the bottleneck instead of the neural network.
The proposed MEFET-based CAM can be used to store the
embeddings and classify the test data with low energy and
delay and with a smaller area than a CMOS CAM.

VIl. CONCLUSION

This work proposed a novel MEFET-based TCAM cell that
can perform read, write, and search operations with very low
programming voltages of <200 mV. The proposed MEFET-
based TCAM cell was used to build a 64 x 64 CAM array,
and the energy and delay of the read, write, and search
operations were evaluated via simulation. The improvement
in write energy and write delay of the proposed CAM array
were shown to be 8x and 12x, respectively, compared with
other nonvolatile device-based CAM structures. The search
energy of the proposed CAM array was shown to be orders
of magnitude lower than that of prior works, and the search
energy—delay product was shown to be 45 x lower than that of
prior works. The energy and delay of the array were evaluated
with temperature, process corners, and capacitance variation.
The proposed MEFET-based CAM array was used to store the
representative embeddings generated by a neural network in
the one-shot learning paradigm. The classification accuracies
of the one-shot learning paradigm for the MNIST, EMNIST,
and LMW datasets were evaluated for different embedding
sizes. The accuracy was found to be >99% for the MNIST
dataset with an embedding size of 16, the top-3 accuracy was
97.11% for the EMNIST dataset with an embedding size of
64, and the accuracy was 97.1% on the LMW dataset with an
embedding size of 512. The proposed MEFET-based CAM
array can be used to store the embeddings and classify the
test data with low energy and delay and with a smaller area
than a CMOS CAM. Future work would include improving
the search delay and developing better techniques to improve
the search margin.
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