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Abstract— In this paper, we deal with a network of agents
that want to cooperatively minimize the sum of local cost
functions depending on a common decision variable. We
consider the challenging scenario in which objective func-
tions are unknown and agents have only access to lo-
cal measurements of their local functions. We propose a
novel distributed algorithm that combines a recent gradi-
ent tracking policy with an extremum seeking technique
to estimate the global descent direction. The joint use of
these two techniques results in a distributed optimization
scheme that provides arbitrarily accurate solution esti-
mates through the combination of Lyapunov and averag-
ing analysis approaches with consensus theory. We per-
form numerical simulations in a personalized optimization
framework to corroborate the theoretical results.

I. INTRODUCTION

In recent years, distributed optimization over networks has
become a key research topic, see, e.g., [1]–[3] for an overview,
also in the setting with partially unknown cost function [4].
Examples include data analytics in machine learning [5] as
well as automatic controller tuning [6], [7].

We organize the literature review in two blocks: collab-
orative/distributed extremum seeking and distributed zeroth-
order/derivative-free optimization. Early references on dis-
tributed extremum seeking for the so-called consensus opti-
mization framework are [8] for a discrete-time setting and [9]
for a continuous-time one. A proportional-integral extremum
seeking design technique is proposed in [10], while, in [11],
the gradient is approximated through a real-time protocol.
In [12], authors propose the use of the sliding mode to generate
the dither signal at the base of the extremum seeking. More
recently, in [13], a distributed stochastic extremum seeking
scheme is proposed for a source localization problem, while
in [14] a distributed scheme approximating a Newton method
is proposed. As for constraint-coupled distributed optimiza-
tion, in [15], a distributed extremum seeking control, based on
evolutionary game theory, is designed for real-time resource
allocation. In [16], instead, a distributed, continuous-time
scheme based on sign-based consensus is designed. In [17],
a Lie bracket technique and extremum seeking are used for
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problems with linear constraints. In [18], resource allocation
problems are addressed by an extremum seeking scheme.

As for distributed zeroth-order/derivative-free optimization,
authors in [19] develop a zeroth-order scheme based on a 1-
point estimator and a gradient tracking policy. The work [20]
instead proposes a zeroth-order algorithm based on a two-point
estimator with a distributed gradient descent strategy and an-
other one based on an n-point estimator with a gradient track-
ing policy. Authors in [21] propose a continuous-time gradient-
free approach emulating a distributed gradient algorithm for
which optimal asymptotic convergence is guaranteed. In [22],
a sampled version of [21] is proposed. In [23], a continuous-
time distributed algorithm based on random gradient-free
oracles is proposed for convex optimization problems. In [24],
the randomized gradient-free oracles introduced in [23] are
used to build a gradient-free distributed algorithm in directed
networks. Randomized gradient-free algorithms are used also
in [25], where sequential Gaussian smoothing is used for non-
smooth distributed convex constrained optimization. In [26],
gradient-free optimization is addressed with the additional
constraint that each agent can only transmit quantized in-
formation. The work in [27] instead develops a “directed-
distributed projected pseudo-gradient” descent method for
directed graphs. Paper [28] combines the gradient-free strategy
of [23] with a saddle-point algorithm. Authors in [29] address
an online constrained optimization problem by relying on
the Kiefer-Wolfowitz algorithm to approximate the gradients,
and [30] combines the estimation of the gradient via a “simul-
taneous perturbation stochastic approximation” technique with
the so-called matrix exponential learning optimization method.
In [31], a randomized gradient-free method is combined with
a state-of-the-art distributed gradient descent approach for
directed networks. In [32], an overview of zeroth-order meth-
ods based on a Frank-Wolfe framework is provided. Authors
in [33] propose a distributed random gradient-free protocol to
solve constrained optimization problems by using projection
techniques. All the cited papers but [30] prove stability of the
proposed schemes by using arguments not based on Lyapunov
theory. We also note that [30] proposes an algorithm neither
based on gradient tracking nor using extremum seeking.

This paper proposes a novel algorithm to solve a distributed
optimization problem in which network agents can only eval-
uate their local cost function at a given point, but not its gra-
dient. The proposed solution consists of a distributed protocol
in which the (unavailable) local gradients are approximated
through an extremum seeking scheme. The approximations of
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the gradients are used to feed a suitable tracking mechanism
which, in turn, allows for steering the local solution estimates
along approximations of the global descent direction. The
distributed algorithm uses a further consensus action on the
local solution estimates. The convergence of our scheme is
proved through Lyapunov and averaging theories for discrete-
time systems. It is worth mentioning that our scheme, together
with the ones in [34], [35], is the only distributed extremum
seeking scheme proposed in discrete-time with the following
distinctive features. The work [34] (i) does not address a
consensus optimization problem and (ii) relies on consensus
dynamics estimating the global cost, while ours estimates the
global gradient. Instead, in [35], (i) the addressed consensus
optimization problems have scalar decision variables and (ii)
an extremum seeking technique is combined with a distributed
gradient algorithm, i.e., without a tracking mechanism. As
for the literature on distributed zeroth-order/derivative-free
methods, the closest work is [19] in which extremum seeking
is not used and the global gradient is approximated via a
randomized 1-point policy. Consistently with the comparison
table provided in [19], we highlight that there are no other
distributed algorithms in the literature using 1-point gradient
estimators. Indeed, although the distributed scheme in [36]
uses 1-point gradient estimators, we remark that it is tailored
for partition-based optimization, i.e., a simplified setup in
which each local function depends only on the neighbors’
decision variables, see [3]. Also, our Lyapunov-based tools
combined with averaging theory for discrete-time systems
represent a distinctive feature in the algorithm analysis.

The paper unfolds as follows. Section II introduces the
problem and the proposed algorithm. The main result is
provided in Section III and proved in Section IV. In Section V,
we test the proposed algorithm via numerical simulations.

Notation: Given N vectors x1, . . . , xN ∈ Rn, we denote
by col(x1, . . . , xN ) their column stacking. Given N scalars
d1, . . . , dN , we denote by diag(d1, . . . , dN ) the diagonal
matrix with i-th entry di. The Kronecker product is denoted
by ⊗. The identity matrix in Rn×n is In. The column vector
of N ones is denoted by 1N and we define 1 := 1N ⊗ In.
Dimensions are omitted whenever they are clear from the
context. Finally, for r > 0, we let Br = {x ∈ Rn : ∥x∥ ≤ r}.

II. PROBLEM FORMULATION

We consider a network of N agents communicating ac-
cording to an undirected graph G = (V, E ,A), where V =
{1, . . . , N} is the set of agents, E ⊆ V×V is the set of edges,
and A = [aij ] ∈ RN×N is the weighted adjacency matrix.
Agent i and j can exchange information only if (i, j) ∈ E .
Accordingly, it holds aij ≥ 0 if (i, j) ∈ E and aij = 0
otherwise. We denote as Ni = {j ∈ V | (i, j) ∈ E} the
set of neighbors of agent i. Moreover, we also associate to
the graph the Laplacian matrix L := D −A ∈ RN×N , where
D := diag(deg1, . . . , degN ) ∈ RN×N is the so-called degree
matrix in which degi :=

∑
j∈Ni

aij is the degree of agent i.
The next assumption specifies the class of considered graphs.

Assumption 1: The graph G is connected and the adjacency
matrix A ∈ RN×N is symmetric. □

In the proposed distributed setup, each agent i is equipped
with a sensor only providing measurements of the local cost
function fi : Rn → R and aims at solving the problem

min
w∈Rn

N∑

i=1

fi(w). (1)

We enforce the following assumptions about the problem.
Assumption 2: For all i ∈ {1, . . . , N}, the function fi is

L-strongly convex for some L > 0. □
Assumption 3: Each cost fi is C3 and has Li-Lipschitz

continuous gradients. We denote L := max{L1, . . . , LN}. □
Assumption 2 ensures the existence of a unique solution
x⋆ ∈ Rn to problem (1). Our aim is to iteratively find it
via a distributed algorithm. Namely, given the iteration index
t ∈ N and by denoting with wt

i ∈ Rn the i-th agent’s estimate,
at iteration t, of the solution to problem (1), our goal is to
design a distributed protocol able to steer all these estimates
to the minimizer x⋆. The peculiar challenge of this paper is
that each agent i cannot access either the gradients ∇fi(wt

i)
(as in standard gradient-based methods) or the cost functions
in arbitrary points (as in standard zeroth-order methods). More
in detail, we assume that agent i can only use the single
measurement fi(wt

i) properly combined with the so-called
dither signal dti ∈ Rn and the amplitude parameter δ > 0.
The role of dti and δ will become clearer in the next section.

III. EXTREMUM SEEKING TRACKING:
ALGORITHM INTRODUCTION AND CONVERGENCE

Being the gradients ∇fi not available, we replace them with
an estimation based on a proper elaboration of the local costs
excited via suitable dithering signals dti. The arising distributed
method, termed Extremum Seeking Tracking, is described in
Algorithm 1, from agent i perspective. In Algorithm 1, γ > 0
represents the step size while the parameter δ > 0 represents
the amplitude of the dither signal dti defined as

dti = col

(
sin

(
2πt

τi1
+ ϕi1

)
, . . . , sin

(
2πt

τin
+ ϕin

))
, (2)

where τip ∈ N and ϕip ∈ R such that, given p, q, r ∈
{1, . . . , n}, p ̸= q, q ̸= r, p ̸= r, it holds

τper−1∑

t=0

sin
(

2πt
τip

+ ϕip

)
=0 (3a)

τper−1∑

t=0

sin
(

2πt
τip

+ ϕip

)
sin

(
2πt
τiq

+ ϕiq

)
=
τper

2
(3b)

τper−1∑

t=0

sin
(

2πt
τip

+ϕip

)
sin

(
2πt
τiq

+ϕiq

)
sin

(
2πt
τir

+ϕir

)
=0, (3c)

for all i ∈ {1, . . . , N}. Here, τper ∈ N is the least common
multiple of all periods τip . Sinusoidal dither functions are
useful in practical applications to guarantee smooth inputs
to the plant. However, other possibilities, e.g., as square or
triangular waves, are possibile [37].

The local gradient estimates generated by fi(w
t
i)d

t
i

2δ are suit-
ably interlaced with (i) the term

∑
j∈Ni

ℓij(w
t
j−δdtj) to force

consensus among the quantities wt
i − δdti and (ii) a tracking
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Algorithm 1 Extremum Seeking Tracking (agent i)
initialization: x0i ∈ Rn and z0i = 0
for t = 0, 1, . . . do

wt+1
i = wt

i − γ
∑

j∈Ni

ℓij(w
t
j − δdtj)− γsti + δ(dt+1

i − dti)

(4a)

st+1
i = sti −γ

∑

j∈Ni

ℓijs
t
j +

2

δ
(fi(w

t+1
i )dt+1

i − fi(w
t
i)d

t
i)

(4b)

end for

mechanism to reconstruct the (estimated) global gradient. In
detail, the consensus step is performed by using the entries
ℓij the (i, j)-entry of the Laplacian matrix L associated to
the graph G, while the tracking mechanism is implemented by
equipping each agent i with an auxiliary variable sti ∈ Rn.
In this algorithm, agents exchange with their neighbors the
information col(wt

i − δdti, s
t
i) involving 2n components.

Remark 1: The main distinctive features of our method are
as follows. First, errors in our method are given by third-
order residuals as opposed to second-order ones in finite-
difference methods. Second, gradient estimation is based on a
single-function query per agent. This could be advantageous
in scenarios in which multiple queries per agent are expensive
or even not allowed. Third and final, the estimation policy
updates, and so the convergence guarantees, are purely deter-
ministic. □

The next theorem formalizes the convergence properties
of Extremum Seeking Tracking. To this end, for all i ∈
{1, . . . , N} and given r > 0, we define the set Di,r ⊂ R2n as

Di,r :=
{
col(wi, si) ∈ R2n |∥wi − x⋆∥ ≤ r, si = 2fi(wi)/δ

}
.

Theorem 1: Consider (4) and let Assumptions 1, 2, and 3
hold. Then, for any r, ρ̄ > 0, there exist γ⋆, δ⋆, k1 > 0, ϵ ∈
(0, ρ̄/2), and k2 ≥ (ρ̄/2 − ϵ) such that, for any γ ∈ (0, γ⋆),
δ ∈ (0, δ⋆), and col(w0

i , s
0
i ) ∈ Di,r for all i ∈ {1, . . . , N},

the trajectories of (4) are bounded and satisfy
∥∥wt

i − x⋆
∥∥ ≤ ρ̄, (5)

for all i ∈ {1, . . . , N} and t ≥ t⋆ :=− 1
γk1

ln((ρ̄/2−ϵ)/k2),
i.e., the convergence to the set {wi ∈ Rn | ∥wt

i−x⋆∥ ≤ ρ̄} is
linear. □

The proof of Theorem 1 is provided in Section IV-C. The-
orem 1 provides a semi-global, practical exponential-stability
result restricted to the set Dr := D1,r × · · · × DN,r. Indeed,
it is semi-global because the parameters γ⋆ and δ⋆ depend on
the initial radius r and it is practical because they also depend
on the arbitrary small final radius ρ̄ > 0.

IV. EXTREMUM SEEKING TRACKING:
STABILITY ANALYSIS

In this section, we analyze Extremum Seeking Tracking.
Assumptions 1, 2, and 3 hold throughout the whole section.

First, let the coordinates xti, z
t
i ∈ Rn be defined as

xti := wt
i − δdti, zti := sti −

2fi(w
t
i)d

t
i

δ
, (6)

for all i ∈ {1, . . . , N}, which allow us to rewrite (4) as

xt+1
i = xti − γ

( ∑

j∈Ni

ℓijx
t
j + zti +

2fi(x
t
i + δdti)d

t
i

δ

)
(7a)

zt+1
i = zti − γ

∑

j∈Ni

ℓij

(
ztj +

2fj(x
t
j + δdtj)d

t
j

δ

)
. (7b)

Remark 2: The new variables xti and zti allow us to interpret
Extremum Seeking Tracking as an approximated discrete-
time version of the continuous-time gradient tracking method
proposed in [38]. Indeed, if the case gradients were available,
the distributed algorithm (7) would become

xt+1
i = xti − γ

∑

j∈Ni

ℓijx
t
j − γ

(
zti +∇fi(xti)

)
(8a)

zt+1
i = zti − γ

∑

j∈Ni

ℓij
(
ztj +∇fj(xtj)

)
. (8b)

The analysis required to prove Theorem 1 will also require
the investigation of the convergence properties of (8) (see
Lemma 3 and Remark 3). □
Then, we aggregate the local updates in (7) obtaining the
compact algorithm description

xt+1 = xt − γ
(
Lxt + zt + fd(t, x

t)
)

(9a)

zt+1 = zt − γ
(
Lzt + Lfd(t, x

t)
)
, (9b)

where we introduced L := L ⊗ In, xt := col(xt1, . . . , x
t
N ),

zt := col(zt1, . . . , z
t
N ), dt := col(dt1, . . . , d

t
N ), and the

function fd : N× RNn → RNn defined as

fd(t, x) :=




2f1(x1 + δdt1)d
t
1/δ

...
2fN (xN + δdtN )dtN/δ


 , (10)

where we decomposed x according to x := col(x1, . . . , xN )
with xi ∈ Rn for all i ∈ {1, . . . , N}. We point out that
system (9) can be conceived as an extremum seeking scheme
with output map f(x+ δdt), see also Fig. 1.

st = col(2f1(w
t
1)d

t
1/δ1, . . . , 2fN (wt

N )dtN/δN )

xt+1 = (I − γL)xt − γ
(
zt + std

)

zt+1 = (I − γL)zt − γLstd

dt

+ ×

δ

st

stdxt

wt

Fig. 1. Block scheme of the proposed Extremum Seeking Tracking
algorithm in the (x, z) coordinates.

We now give an overview of the main steps of the stability
analysis carried out to prove Theorem 1:

(i) We perform two change of variables to describe the
dynamics (9) in terms of the mean value (over the agents)
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z̃avg of z and the orthogonal part z̃⊥ (both in error coor-
dinates). Then, by relying on averaging theory (see [39]
for discrete-time systems or [40, Ch.10] and [41] for
continuous-time ones), we introduce a suitable auxiliary
system named averaged system. The latter is obtained
by averaging the original algorithm dynamics over a
common period. The averaged system is shown to be
driven by the cost gradients with additive estimation
errors.

(ii) When neglecting these errors, the averaged system cor-
responds to an equivalent form of (8). Based on this
observation, we rely on existing stability properties of the
continuous gradient tracking to demonstrate that the tra-
jectories of the averaged system exponentially converge
to an arbitrarily small neighborhood of col(1x⋆, z̃eq

⊥ ) for
some z̃eq

⊥ arising from the analysis.
(iii) Finally, we prove Theorem 1 by exploiting the steps

above and by using averaging theory to show the close-
ness between the trajectories of (9) and those of its
averaged system.

Step (i) is performed in Section IV-A, step (ii) is carried out
in Section IV-B, while Section IV-C is devoted to step (iii).

A. Coordinate changes and averaged system

We start by introducing a change of coordinates to highlight
the error dynamics of (9) with respect to col(x⋆,−G(1x⋆)),
i.e., the point in which each xti coincides with the optimal
problem solution x⋆ and perfect tracking is achieved via zti
(see [38]). To this end, let G : RNn → RNn be defined as

G(x) := col(∇f1(x1), . . . ,∇fN (xN )). (11)

Then, let the error coordinates x̃, z̃ ∈ RNn be defined as

x̃ := x− 1x⋆, z̃ = z +G(1x⋆), (12)

and let us introduce ϕxz : N× RNn × RNn → R2Nn as

ϕxz(t, x̃, z̃):=

[
−Lx̃− z̃ − fd(t, x̃+ 1x⋆) +G(1x⋆)
−Lz̃ − L(fd(t, x̃+ 1x⋆)−G(1x⋆))

]
.

Then, by using the new coordinates, we rewrite (9) as
[
x̃t+1

z̃t+1

]
=

[
x̃t

z̃t

]
+ γϕxz(t, x̃

t, z̃t), (13)

where we have used the property L1 = 0. As in [38], we take
advantage of the initialization z0i = 0 for all i ∈ {1, . . . , N}.
To this end, we introduce the novel coordinates z̃m ∈ Rn and
z̃⊥ ∈ R(N−1)n representing the average of the variables z̃ti
(over the agents) and the orthogonal counterpart, namely

[
z̃m
z̃⊥

]
:=

[
1⊤

N
R⊤

]
z̃, (14)

where we introduced the matrix R ∈ RNn×(N−1)n such that
R⊤1 = 0, R⊤R = I . Further, given nξ := (2N − 1)n, let us
also introduce ξ ∈ Rnξ defined as

ξ :=
[
x̃⊤ z̃⊤⊥

]⊤
. (15)

Since 1⊤L = 0 in light of Assumption 1 and 1⊤G(1x⋆) =∑N
i=1 ∇fi(x⋆) = 0, we use (14) and (15) to rewrite (13) as

ξt+1 = ξt + γϕξ(t, col(x̃
t,1z̃tm +Rz̃t⊥)) (16a)

z̃t+1
m = z̃tm, (16b)

where we introduced ϕξ : N× R2Nn → Rnξ defined as

ϕξ(t, col(x̃, z̃)) :=

[
I 0
0 R

]
ϕxz(t, x̃, z̃). (17)

The equation (16b) implies that z̃tm = z̃0m for all t ∈ N. Then,
since z0i = 0 for all i ∈ {1, . . . , N} and 1⊤G(1x⋆) = 0, it
holds z̃0m = 0 which allows us to ignore (16b) and rewrite (16)
according to the equivalent, reduced system

ξt+1 = ξt + γϕ(t, ξt), (18)

where ϕ : N×Rnξ → Rnξ is introduced to compactly describe
system (16a) with z̃tm = 0 for all t ∈ N, i.e., ϕ is defined as

ϕ(t, ξ) := ϕξ(t, col(x̃, Rz̃⊥)) (19)
(a)
=

[
I 0
0 R

][
−Lx̃−Rz̃⊥ − fd(t, x̃+ 1x⋆) +G(1x⋆)
−LRz̃⊥ − L(fd(t, x̃+ 1x⋆)−G(1x⋆))

]
,

where in (a) we used the definition of ϕξ (cf. (17)).
We resort to the averaging theory [39] to analyze the time-

varying system (18). As customary when this tool is employed,
we introduce an auxiliary scheme typically named averaged
system, obtained by averaging the time-varying vector field
ϕ(t, ξ) over τper samples by freezing the system state. In detail,
the averaged system associated with (18) is

ξt+1
avg = ξtavg + γϕavg(ξ

t
avg), (averaged system) (20)

with ξ0avg = ξ0, where ϕavg : Rnξ → Rnξ is defined as

ϕavg(ξ) :=
1

τper

t+τper∑

k=t+1

ϕ(k, ξ), for any t ≥ 0. (21)

Notice that, since ϕ(k, ξ) is periodic with period τper on the
first argument, the function ϕavg(ξ) (cf. (21)) is time-invariant.

The next lemma shows that the gradient of each fi can be
approximated by averaging each block of fd (cf. (10)) over
the period τper on the first argument. For this reason, the next
lemma will be useful to explicitly write ϕavg (cf. (21)) in terms
of G(x), (i.e., the stack of the gradients ∇fi(xi), see (11)).

Lemma 1 (Gradient estimation): For all i ∈ {1, . . . , N},
there exists ℓi : Rn → Rn such that, for any given xi ∈ Rn

and all t ∈ N, it holds

2

δτper

t+τper∑

k=t+1

fi(xi + δdki )d
k
i = ∇fi(xi) + δ2ℓi(xi). (22)

Moreover, given any compact set Si ⊂ Rn, if δ ∈ (0, 1], there
exists Li,Si

> 0 such that

∥ℓi(xi)∥ ≤ Li,Si
, (23)

for all xi ∈ Si and i ∈ {1, . . . , N}. □
The proof of Lemma 1 is in Appendix A.

We note that the quantity on the right-hand side of (22) is
time-invariant because dki is periodic, with period τper, and the
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left-hand side of (22) is averaged over the period τper. Now,
let us introduce the function ℓ : RNn → RNn stacking all the
approximation errors ℓi(xi) used in (22), namely

ℓ(x) := col (ℓ1(x1), . . . , ℓN (xN )) . (24)

Then, by using (22), the definitions of fd in (10), G(x) as the
stack of the gradients ∇fi(xi) in (11), and ℓ(x) as the stack
of the approximation errors ℓi(xi) in (24), it holds

1

τper

t+τper∑

k=t+1

fd(k, x) = G(x) + ℓ(x), (25)

for all x ∈ RNn and t ∈ N. Hence, by introducing ξavg :=
col(x̃avg, z̃⊥,avg) and by combining the definition of ϕavg
in (21), ϕ in (19), and (25), we obtain

ϕavg(ξavg)=

[
−Lx̃avg −Rz̃⊥,avg −G(x̃avg + 1x⋆) +G(1x⋆)
−R⊤LRz̃⊥,avg−R⊤L(G(x̃avg + 1x⋆)−G(1x⋆))

]

+

[
−ℓ(x̃avg + 1x⋆)

−R⊤Lℓ(x̃avg + 1x⋆)

]
. (26)

We define

ϕGT (ξavg) :=

[
−Lx̃avg −Rz̃⊥,avg −G(x̃avg + 1x⋆) +G(1x⋆)
−R⊤LRz̃⊥,avg−R⊤L(G(x̃avg+1x⋆)−G(1x⋆))

]

B :=

[
−I

−R⊤L

]
, u(ξavg) := ℓ(x̃avg + 1x⋆)

to short (26) as

ϕavg(ξavg) = ϕGT (ξavg) + δ2Bu(ξavg),

which, in turn, allows us to rewrite (20) as

ξt+1
avg = ξtavg +γϕGT (ξ

t
avg)+γδ

2Bu(ξtavg) (averaged system).
(27)

B. Averaged System Analysis
In this subsection, we analyze the averaged system (27).

To this end, we first consider an additional nominal system
in which the term γδ2Bu(ξtavg) (i.e., the term describing the
gradients’ estimation error) is neglected. Then, by using such
a nominal system analysis as a building block, we provide the
result concerning system (27). Therefore, we start by studying

ξt+1
avg = ξtavg + γϕGT (ξ

t
avg), (28)

which corresponds to system (27) in the case of
γδ2Bu(ξtavg) = 0. The next lemma proves the global
exponential stability of the origin for (28).

Lemma 2: There exist P = P⊤ ∈ Rnξ×nξ and
a1, a2, c1, γ0 > 0 such that, for any γ ∈ (0, γ0), along the
trajectories of (28) it holds

a1I ≤ P ≤ a2I (29a)

ξt+1
avg

⊤
Pξt+1

avg − ξtavg
⊤
Pξtavg ≤ −γc1

∥∥ξtavg

∥∥2 , (29b)

for all ξtavg ∈ Rnξ . □
The proof of Lemma 2 is in Appendix B.

Remark 3: Notice that Lemma 2 proves that algorithm (8)
linearly converges to the minimizer of (1), since (28) is an
equivalent formulation of (8). □

With this result at hand, we analyze the impact of u(·) thus
obtaining the stability properties of the averaged system (27).

Lemma 3: Consider the averaged system (27). Then, for
any rξ > 0 and ρ ∈ (0, rξ), there exist c3 ∈ (0, c1) and
δ⋆1 ∈ (0, 1] such that, for any γ ∈ min{γ0, 1}, δ ∈ (0, δ⋆1), and∥∥ξ0avg

∥∥ ≤ rξ, it holds
(i) ξtavg ∈ B√

a2/a1rξ
for all t ∈ N,

(ii)

∥ξtavg∥ ≤
√
a2/a1 exp (−tγc3) ∥ξ0avg∥, (30)

for all
∥∥ξtavg

∥∥ ≥ ρ. □
The proof of Lemma 3 is in Appendix C.

Remark 4: The result of Lemma 3 only involves the aver-
aged system (27). In the next section, such a result will be
used as a building block to study the original dynamics, i.e.,
system (18) and, thus, to conclude the proof of Theorem 1.
However, it is a per se result that can be used to show robust
stability for the distributed algorithm (8). □

C. Proof of Theorem 1

Despite averaging tools for discrete-time systems are al-
ready present in the literature, see [39] for example, we got
the inspiration from continuous-time averaging [40, Ch. 10]
and [41] for elaborating the proof of Theorem 1 to make
clear how γ affects the closeness of the trajectories of (18)
and (27). Since Assumptions 1, 2, and 3 hold, we apply
Lemma 2 to claim that there exist P = P⊤ ∈ Rnξ×nξ and
a1, a2, c1, γ0 > 0 such that, if γ ∈ (0, γ0), the conditions (29)
are satisfied. Then, we evaluate the norm of the initial condi-
tions of system (18) and (27), i.e.,

∥∥ξ0
∥∥ =

∥∥ξ0avg

∥∥. By using
the definition of ξ (cf. (15)), the changes of variables (12)
and (14), and the triangle inequality, we get
∥∥ξ0

∥∥ ≤
∥∥x0 − 1x⋆

∥∥+
∥∥R⊤(z0 +G(1x⋆))

∥∥

+

∥∥∥∥
1⊤

N
(z0 +G(1x⋆))

∥∥∥∥
(a)

≤ r
√
N + ∥R∥ ∥G(1x⋆)∥ ,

where in (a) we combine the initialization
∥∥x0i − x⋆

∥∥ ≤ r
and z0i = 0 for all i ∈ {1, . . . , N} with the fact that
1⊤G(1x⋆) =

∑N
i=1 fi(x

⋆) = 0. Hence, by defining rξ :=
r
√
N + ∥R∥ ∥G(1x⋆)∥, we claim that

∥∥ξ0
∥∥ =

∥∥ξ0avg

∥∥ ≤ rξ.

Once the initial distance from the origin has been evaluated,
we choose any ρ̄ > 0, set c2 :=

√
a2/a1, and choose any

ϵ ∈ (0, ρ̄(1 + c2)/2). Then, we pick ρ ∈ (0, (ρ̄/2 − (1 +
c2)ϵ)/c2), c′1 ∈ (0, c1), and use the matrix P satisfying (29) to
apply Lemma 3. Specifically, we claim that there exist c3 > 0,
δ⋆1 ∈ (0, 1], and γ0 > 0 such that, for any δ ∈ (0, δ⋆1) and
γ ∈ (0,min{γ0, 1}), it holds ξtavg ∈ Bc2rξ for all t ∈ N and

∥∥ξtavg

∥∥ ≤ c2 exp(−tγc3)
∥∥ξ0avg

∥∥ , (31)

for all ξtavg such that
∥∥ξtavg

∥∥ ≥ ρ. Now, we proceed by finding a
bound γ1 > 0 such that, for any γ ∈ (0, γ1), we guarantee the
ϵ-closeness between the state ξtavg of the averaged system (20)
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and the one of the original system (18), i.e., that ∥ξt−ξtavg∥ ≤ ϵ
holds true for all t ∈ N. To this end, let us introduce

υ(t, ξavg) :=

t−1∑

k=0

(ϕ(k, ξavg)− ϕavg(ξavg)) .

By using this definition and the one of ϕavg (cf. (21)), it holds

υ(t+ 1, ξt+1
avg )− υ(t, ξtavg)

= ϕ(t, ξt+1
avg )− ϕavg(ξ

t+1
avg ) + υ(t, ξt+1

avg )− υ(t, ξtavg). (32)

Then, let r′ξ := c2rξ and define ∆ := δ
√
Nn. Under the

assumption of ξt ∈ Br′ξ+ϵ for all t ∈ N (later verified
by a proper selection of γ), we claim that the arguments
of the functions fi and their derivatives (embedded into the
definitions of ϕ(t, ·) and ϕavg(·) and their derivatives) lie into
the compact set Br′ξ+ϵ+∆. Thus, since the functions fi and its
derivatives are continuous (cf. Assumption 3) and the functions
ϕ(·, ·) and ν(·, ·) are periodic in the first argument, we define

Lϕ := sup
ξ∈Br′

ξ
+ϵ

t∈[0,τper]

{
∥ϕ(t, ξ)∥ , ∥ϕavg(ξ)∥ ,

∥∥∥∥
∂ϕ(t, ξ)

∂ξ

∥∥∥∥ ,

∥∥∥∥
∂ϕavg(ξ)

∂ξ

∥∥∥∥ ,
∥∥∥∥
∂ν(t, ξ)

∂ξ

∥∥∥∥
}
. (33)

Consequently, for all ξ, ξ′ ∈ Br′ξ+ϵ and t ∈ N, it holds

∥υ(t, ξ)∥ ≤ 2Lϕτper (34a)
∥ϕ(t, ξ)− ϕ(t, ξ′)∥ ≤ Lϕ∥ξ − ξ′∥ (34b)
∥ϕavg(ξ)− ϕavg(ξ

′)∥ ≤ Lϕ∥ξ − ξ′∥ (34c)
∥υ(t, ξ)− υ(k, ξ′)∥ ≤ 2Lϕτper∥ξ − ξ′∥ (34d)

∥ϕavg(ξ)∥ ≤ Lϕ. (34e)

Let us introduce ζt ∈ Rnξ defined as

ζt := ξtavg + γυ(t, ξtavg). (35)

Then, it holds

ξt − ζt =

t−1∑

k=0

(ξk+1 − ξk)− (ζk+1 − ζk),

add ±γ∑t−1
k=0(ϕ(k, ζ

k) + ϕ(k, ξkavg)), and use (32) to get

ξt − ζt = γ

t−1∑

k=0

(ϕ(k, ξk)− ϕ(k, ζk))

+ γ

t−1∑

k=0

(ϕ(k, ζk)− ϕ(k, ξkavg))

− γ

t−1∑

k=0

(ϕ(k, ξk+1
avg )− ϕ(k, ξkavg))

+ γ

t−1∑

k=0

(ϕavg(ξ
k+1
avg )− ϕavg(ξ

k
avg))

− γ

t−1∑

k=0

(υ(k, ξk+1
avg )− υ(k, ξkavg)).

Use (18), (27), and (34) to bound

∥ξt − ζt∥ ≤ γLϕ

t−1∑

k=0

∥ξk − ζk∥+ γ2L2
ϕ2 (1 + 2τper) t. (36)

Apply the discrete Gronwall inequality (see [42], [43]) and
t−1∑

k=0

γLϕk exp (−γLϕk) ≤
∞∑

k=0

γLϕk exp (−γLϕk) = 1

to further bound (36) as

∥ξt − ζt∥ ≤ γ2L2
ϕ2 (1 + 2τper) t

+ γLϕ2 (1 + 2τper) exp (γLϕt) . (37)

The definition of ζt (35) and the triangle inequality lead to

∥ξt − ξtavg∥ ≤
∥∥ξt − ζt

∥∥+ γ
∥∥v(t, ξtavg)

∥∥
(a)

≤ γ2L2
ϕ2 (1 + 2τper) t+ γ2Lϕτper

+ γLϕ2 (1 + 2τper) exp (γLϕt) . (38)

where (a) uses (37) to bound the first term and (34a) to bound
the second one. Then, set θ⋆ ∈ R such that

θ⋆ ≥ − 1
c3

ln
(

(ρ̄/2−ϵ)/c2
c2rξ

)
. (39)

Let γ2 := ϵ/(3c2)
L2

ϕ2(1+2τper)θ⋆ , γ3 := ϵ/(3c2)
2Lϕ(1+2τper) exp(Lϕθ⋆) ,γ4 :=

ϵ/(3c2)
2Lϕτper

, γ1 := min{γ0, γ2, γ3, γ4, 1}. Pick γ ∈ (0, γ1) such
that t⋆ := θ⋆

γ ∈ N. This can be done without loss of generality
since θ⋆ is a design parameter. Then, we bound (38) as

∥ξt − ξtavg∥ ≤ ϵ

c2
, (40)

for all t ∈ {0, . . . , t⋆}. As a consequence, since ξtavg ∈ Br′ξ

for all t ∈ N, it holds ξt ∈ Br′ξ+ϵ for all t ∈ {0, . . . , t⋆}, i.e.,
we have verified that the bounds (34) can be used into the
interval {0, . . . , t⋆}. Moreover, the exponential law (31) and
the expression of θ⋆ (cf. (39)) ensure that it holds

∥ξtavg∥ ≤ (ρ̄/2− ϵ)/c2, (41)

for all t ≥ t⋆. Now, by using the triangle inequality, we write

∥ξt⋆∥ ≤ ∥ξt⋆ − ξt
⋆

avg∥+ ∥ξt⋆avg∥
(a)

≤ ρ̄

2c2
, (42)

where in (a) we combined (40) and (41). The inequality (42)
guarantees that ξt

⋆ ∈ B ρ̄
2c2

, hence we proved that the trajecto-
ries of (27) enters into B ρ̄

2c2

with linear rate. Next, in order to
show that ξt ∈ Bρ̄/2 for all t ≥ t⋆, we divide the set of natural
numbers in intervals as N = {0, . . . , t⋆}∪{t⋆, . . . , 2t⋆}∪ . . . .
Define ψavg(k + t⋆, ξt

⋆

) as the solution to (27) for ξ0avg = ξt
⋆

and k ∈ {0, . . . , t⋆}. Thus, at the beginning of each interval
{t⋆, . . . , 2t⋆}, the initial condition of (27) coincides with the
one of ψavg(k + t⋆, ξt

⋆

) and lies into Bρ̄/2 ⊆ Brξ . Thus, we
apply the same arguments above to guarantee that

∥ξk+t⋆ − ψavg(k + t⋆, ξt
⋆

)∥ ≤ ϵ

ψavg(2t
⋆, ξt

⋆

) ∈ B(ρ̄/2−ϵ)/c2 ,

for all γ ∈ (0, γ⋆) and k ∈ {0, . . . , t⋆}. By using Lemma 3, we
guarantee that system (27) cannot escape from Bρ̄/2−ϵ, namely
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ξtavg ∈ Bρ̄/2−ϵ for all t ≥ t⋆. Thus, we get ξt ∈ Bρ̄/2 for all
t ∈ {t⋆, . . . , 2t⋆}. By recursively applying the same arguments
above for each interval {jt⋆, . . . , (j+1)t⋆} with j = 2, 3, . . .
and using ∥xti − x⋆∥ ≤ ∥ξt∥ for all i ∈ {1, . . . , N} and t ∈ N,
we get

∥∥xti − x⋆
∥∥ ≤ ρ̄/2, (43)

for all i ∈ {1, . . . , N} and t ∈ N. The change of coordi-
nates (6), (43), and the triangle inequality lead to

∥∥wt
i − x⋆

∥∥ ≤ ρ̄

2
+ δ

∥∥dti
∥∥ (a)

≤ ρ̄

2
+ δ

√
n, (44)

where in (a) we use the boundedness of the dither signals.
The proof follows from (44) by setting δ⋆ := min

{
δ⋆1 ,

ρ̄
2
√
n

}
.

V. NUMERICAL COMPUTATIONS ON DISTRIBUTED
PERSONALIZED OPTIMIZATION

To corroborate the theoretical analysis, in this section, we
provide numerical computations for the proposed distributed
algorithm on a personalized optimization framework.

In several engineering applications, a problem of interest
consists of optimizing a performance metric while keeping into
account user discomfort terms [9], [44]. In these scenarios, the
user discomfort term is usually not known in advance but can
be only accessed by measurements. Specifically, we associate
to each agent i ∈ {1, . . . , N} a cost function in the form
fi(w) = w⊤Qiw + r⊤i w + log(

∑n
ℓ=1 aiℓe

biℓwℓ) with Qi =
Q⊤

i ∈ Rn×n, ri ∈ Rn and aiℓ, biℓ > 0, for all ℓ ∈ {1, . . . , n}.
In the following, we provide different sets of simulations to
study in detail the features of Extremum Seeking Tracking. In
particular, each set consists of Monte Carlo simulations over
20 randomly generated scenarios in which each one differs
from the other in terms of cost functions, communication
graphs, and algorithmic variables’ initialization. In particular,
unless differently stated, in each trial the agents communicate
according to Erdős-Rényi random graphs (see, e.g., [45]) with
edge probabilities equal to 0.2. As for the problem parameters,
for each trial and all i ∈ {1, . . . , N}, we generate each
matrix Qi by pre- and post-multiplying a diagonal matrix
(whose diagonal elements are randomly extracted from the
interval [10−3, 5 · 10−3] with uniform probability) with an
orthonormal matrix (randomly generated by extracting its
elements from the interval [0, 1] with uniform probability) and
its transpose, respectively. Further, for all i ∈ {1, . . . , N} and
ℓ ∈ {1, . . . , n}, we randomly extract the components of ri
within the interval [−10−2, 3·10−2] and the parameters aiℓ, biℓ
within the interval [0, 10−3] with a uniform probability. In
each set of simulations, we choose the parameters τip and ϕip
according to the following procedure. For all i ∈ {1, . . . , N},
we take ϕip =

π

4
(1 + (−1)p) for all p = 1, . . . , n, while τip

have been chosen as the first ⌊(n + 1)/2⌋ elements of odd
numbers greater than 3 since it is possible to show that such
a set of frequencies satisfy (3). Roughly speaking, ϕi,p = 0
and ϕi,p = π/2 are used to create orthogonal functions with
the same frequency. It is important to note that this selection
is not unique. As for the algorithm parameters γ and δ, due
to the complexity of the dependencies of the bounds γ⋆ and
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Fig. 2. Monte Carlo simulations for large scale problems: mean and
1-standard deviation band of cost error (left) and variable error (right).

δ⋆ provided in Theorem 1, we choose them via a trial-and-
error procedure. In each set of simulations, the performance
is evaluated by providing graphical results involving the rela-
tive errors |∑i fi(x̄

t)− f(x⋆)|/|f(x⋆)| and ∥x̄t − x⋆∥/∥x⋆∥
achieved along the trials of the Monte Carlo simulations,
where x̄t := 1

N

∑N
i=1 x

t
i. Simulations are performed using

DISROPT [46], a Python package based on MPI to encode
and simulate distributed optimization algorithms.

A. Monte Carlo simulations for large-scale problems
First, we perform numerical simulations over large-scale

problems with networks made of N = 250 agents. We con-
sider different optimization variable sizes, namely n = 10, 20.
Part of these simulations has been run on the Marconi100
HPC Cluster of the Italian Cineca. We used 10 nodes of the
cluster and, for each node, we used 25 cores and 4 GPUs.
The code has been adapted in order to perform part of the
computation directly on GPUs. The results are shown in Fig. 2.
In detail, as the number of agents increases, the Lipschitz
constant of the system to be averaged increases too. Moreover,
a larger domain of initial conditions also implies a potentially
larger Lϕ constant (cf. (33)). This implies smaller γ⋆, which,
fixed the other parameters, makes the convergence slower. The
decision variable dimension instead impacts the selection of
the dither signal. A larger number of states implies a larger
number of frequencies. This, in turn, means a longer time to
estimate the gradient (cf. Lemma 1). Notice that, however, the
accuracy of the final estimate is guaranteed by design. Indeed,
since δ and γ are designed on ρ̄, the trajectories of (5) converge
to a ball of radius ρ̄ independently of the problem size.

B. Monte Carlo simulations varying number of agents
Second, we test Extremum Seeking Tracking in a framework

with n = 10 and different number of agents, i.e., N =
5, 10, 20, 30. For each value of N , we generate communication
graphs with a diameter d such that the ratio N/d is constant
while varying N . The results depicted in Fig. 3 show that the
algorithm slows down as the number of agents increases.

C. Monte Carlo simulations varying the size n

Then, we test the algorithm features with a fixed number
of agents N = 10 and different decision variable dimensions
n = 1, 10, 100. The achieved results are reported in Fig. 4 and
show that Algorithm 1 slows down as n increases.
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Fig. 3. Monte Carlo simulations for a varying number of agents: mean
and 1-standard deviation band of cost error (left) and variable error
(right).
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Fig. 4. Monte Carlo simulations varying n: mean and 1-standard
deviation band of cost error (left) and variable error (right).

We conclude this part by providing in Fig. 5 the results of
a single trial in the case with n = 1 to show the evolution of
the solution estimate of each agent in error coordinate with
respect to the optimal solution to the problem.
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Fig. 5. Evolution of the agents’ estimates wt
i in coordinate error with

respect to the optimal solution x⋆.

D. Monte Carlo simulations varying the parameter δ
Third, we provide numerical simulations in which we vary

δ in the case in which N = n = 10. As one may expect from
Theorem 1, we provide Fig. 6 to show that the final accuracy
of the algorithm increases with smaller values of δ.
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Fig. 6. Monte Carlo simulations for varying amplitude δ: mean and 1-
standard deviation band of cost error (left) and variable error (right).

E. Monte Carlo simulations for comparisons

We now perform simulations with n = 30 and N = 10 to
compare our method with the 1-Point Distributed Stochastic
Gradient-Tracking Method (1P-DSGT) by [19]. We remark
that, similarly to our scheme, when running 1P-DSGT each
agent estimates the local gradient with one query of the
objective function at each iteration. These results are depicted
in Fig. 7 and have been obtained by running the consid-
ered distributed schemes with the same objective functions,
communication graphs, and initial conditions of the solution
estimates.
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Fig. 7. Monte Carlo simulations for comparison between Extremum
Seeking Tracking and 1P-DSGT in [19]: mean and 1-standard deviation
band of cost error (left) and variable error (right).

In detail, Fig. 7 shows that, although the algorithm by [19]
exhibits a faster convergence in the beginning phase of the
simulations, our scheme has a better convergence rate and final
accuracy. Both 1P-DSGT and Extremum Seeking Tracking
employ a single function query per agent to approximate the
gradient. These methods rely on the concept that averaging
across iterations around the “quasi-static” local solution esti-
mate xti provides an accurate gradient approximation. How-
ever, in the context of their theoretical frameworks, 1P-DSGT
attains this approximation using an infinite number of samples
(mean of an ergodic process), whereas Extremum Seeking
Tracking only needs τper samples. This makes the convergence
rate of our algorithm faster.

F. Monte Carlo simulations in stochastic scenarios

Finally, we compare the considered distributed algorithms
in a stochastic scenario in which each agent receives cost
measurements affected by noise, i.e., in the case of fi(wt

i)+η
t
i

in place of fi(wt
i) in Algorithm 1, where each component

ηti ∈ Rn is randomly generated according to the Gaussian
distribution with expected value 0 and standard deviation
0.1. Fig. 8 compares the behavior of Extremum Seeking
Tracking and 1P-DSGT by [19] in the case in which N = 30
and n = 10. These plots confirm that Extremum Seeking
Tracking exhibits faster convergence and greater final accuracy
with respect to the considered scheme also in the considered
stochastic setup. To interpret these results, we also remark that
Theorem 1 ensures (semi-global, practical) stability properties
for Extremum Seeking Tracking. Coherently, Fig. 8 shows
the typical behavior exhibited by the trajectories of perturbed
systems in the neighborhood of (practically) stable equilibria.
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Fig. 8. Monte Carlo simulations in stochastic scenarios: mean and 1-
standard deviation band of cost error (left) and variable error (right).

VI. CONCLUSIONS

In this paper, we addressed a distributed optimization
problem in which the cost function is unknown and agents
have only access to local measurements. Taking inspiration
from a continuous gradient tracking algorithm, we proposed
a novel gradient-free distributed optimization algorithm in
which gradients are estimated via extremum seeking. We
analyzed the convergence properties of the proposed algorithm
by using Lyapunov and averaging tools from system theory.
We corroborated the theoretical analysis through Monte Carlo
simulations on personalized optimization problems.

APPENDIX

A. Proof of Lemma 1

Given α = col(α1, . . . , αn) ∈ Nn, y = col(y1, . . . , yn) ∈
Rn, and a smooth function f : Rn → R, we define

α! := α1! . . . αn!, yα := yα1
1 . . . yαn

n ,

∂αf(y) :=
∂α1

∂yα1
1

. . .
∂αn

∂yαn
n
f(y), |α| := α1 + · · ·+ αn.

Being each function fi smooth (cf. Assumption 3), we can
apply Taylor’s expansion (cf. [47, Theorem 2]) and write

fi(xi + δdti)=fi(xi)+δd
t
i
⊤∇fi(xi)+

δ2

2
dti

⊤∇2fi(xi)d
t
i

+ δ3Ri,2(xi, δd
t
i), (45)

where the remainder Ri,2(xi, δd
t
i) is given by

Ri,2(xi, δd
t
i) =

∑

|α|=3

∂αfi(xi + cδdti)

α!
(δdti)

α, (46)

for some c ∈ (0, 1). Then, we can use (45) to write

2

δτper

t+τper∑

k=t+1

dki fi(xi + δdki )

=
2fi(xi)

δτper

t+τper∑

k=t+1

dki +

[
2

τper

t+τper∑

k=t+1

(
dki d

k
i

⊤)
]
∇fi(xi)

+
δ

τper

t+τper∑

k=t+1

(
dki d

k
i

⊤)∇2fi(xi)d
k
i

+
2

δτper

t+τper∑

k=t+1

dkiRi,2(xi, δd
k
i ). (47)

By combining (3) and (47), we get
t+τper∑

k=t+1

dki = 0,
2

τper

t+τper∑

k=t+1

(
dki d

k
i

⊤)
= In

t+τper∑

k=t+1

(
dki d

k
i

⊤)∇2fi(xi)d
k
i = 0,

which combined with (47), allow us to write

fi(xi + δdti) = ∇fi(xi) +
2

δτper

t+τper∑

k=t+1

dkiRi,2(xi, δd
k
i ).

The proof follows by setting ℓi(xi) =
2

τper

∑t+τper

k=t+1 d
k
iRi,2(xi, δd

k
i )/δ

3. Finally, given a compact set

Si ⊂ Rn, let us bound ∥ℓi(xi)∥ for all xi ∈ Si. Note that
∥δdti∥ ≤ δ

√
n for all t ∈ N and let S ′

i ⊂ Rn be a compact
set such that (i) Si ⊆ S ′

i ⊂ Rn, and (ii) xi + δdti ∈ S ′ for all
xi ∈ Si, δ ∈ (0, 1], and t ∈ N. Thus, we can write

sup
xi∈S′

i

k∈{1,...,τper−1}

∥∥∥∥
Ri,2(xi, δd

k
i )

δ3

∥∥∥∥

(a)

≤ sup
xi∈S′

i

k∈{1,...,τper−1}

∥∥∥∥∥∥
1

δ3

∑

|α|=3

∂αfi(xi)

α!
(δdki )

α

∥∥∥∥∥∥

(b)
= sup

xi∈S′
i

k∈{1,...,τper−1}

∥∥∥∥∥∥
∑

|α|=3

∂αfi(xi)

α!
(dki )

α

∥∥∥∥∥∥
=: L′

i,Si
, (48)

where in (a) we use the expression (46) of Ri,2(xi, δd
k
i ), the

definition of S ′
i, and the fact that δ ∈ (0, 1], while in (b) we

drop out the term δ3 from (δdki )
α. We underline that, since the

set S ′
i is compact and fi is smooth, L′

i,Si
exists and is finite.

The bound of ℓi(xi) follows by defining Li,Si
:= 2L′

i,Si

√
n

and combining the result (48) with the bound about the norm
of the dither signal, i.e., ∥dti∥ ≤ √

n for all t ∈ N.

B. Proof of Lemma 2
In [38], it is provided a Lyapunov function proving that,

under the Assumptions 1, 2, and 3, the point ξ⋆ = (1x⋆, z̃eq
⊥ ),

with z̃eq
⊥ := −R⊤G(1x⋆), is a globally exponentially stable

equilibrium for the continuous-time system

ξ̇(t) = ϕGT(ξ(t)).

In detail, [38, Th. 3.1] introduces a full-rank matrix T̄ ∈
Rnξ×nξ to define ξ̄ := T̄ ξ, and a matrix P̄ = P̄⊤ ∈ Rnξ×nξ

such that

ā1I ≤ P̄ ≤ ā2I (49a)

2ξ̄⊤avgP̄ T̄ ϕGT(T̄
−1ξ̄avg) ≤ −ā3

∥∥ξ̄avg
∥∥2 , (49b)

for all ξavg ∈ Rnξ and some ā1, ā2, ā3 > 0. Let P := T̄⊤P̄ T .
Then, there exist a1, a2, a3 > 0 such that

a1I ≤ P ≤ a2I (50a)

2ξ⊤avgPϕGT(ξavg) ≤ −a3 ∥ξavg∥2 , (50b)
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for all ξavg ∈ Rnξ . Hence, we define the candidate Lya-
punov function V (ξavg) := ξ⊤avgPξavg and bound ∆V (ξtavg) :=
V (ξt+1

avg )− V (ξtavg) along the trajectories of (28) as

∆V (ξtavg) ≤ −γa3
∥∥ξtavg

∥∥2 + γ2ϕGT(ξ
t
avg)

⊤PϕGT(ξ
t
avg). (51)

Moreover, by using the Lipschitz continuity of the gradients of
the objective functions (cf. Assumption 3) and the definition
of ϕGT, there exists a4 > 0 such that

∥∥ϕGT(ξ
t
avg)

∥∥ ≤ a4
∥∥ξtavg

∥∥ . (52)

Finally, for any c1 ∈ (0, a3), let γ0 := (a3 − c1)/(a2a
2
4) and

the proof follows by using (51) and (52).

C. Proof of Lemma 3
The proof relies on (i) the matrix P satisfying (29), and (ii)

the fact that the norm of the perturbation term γδBu(ξtavg) can
be arbitrarily reduced through the parameter δ as long as ξtavg
lies into a compact set. First of all, without loss of generality,
we assume ρ ≤ rξ. Indeed, we will use the parameter rξ to
define a (compact) ball and arbitrarily bound the norm of the
perturbation term γδBu(ξtavg) through the parameters δ as long
as ξtavg lies into this ball. Hence, we can always use the more
conservative condition. In detail, we introduce the candidate
Lypaunov function V (ξavg) := ξ⊤avgPξavg and the set Ωrξ :=
{ξavg ∈ Rnξ | V (ξavg) ≤ a2r

2
ξ} ⊂ Rnξ . Then, from (29a), we

derive Brξ ⊆ Ωrξ ⊆ Br′ξavg
, where r′ξavg

:=
√
a2/a1rξ. Now,

under the assumption ξtavg ∈ Brξ (later verified by a proper
selection of the algorithm parameters), it holds ξtavg ∈ Ωrξ . By
using this property and since γ ∈ (0, γ0), we use (29b), the
Cauchy-Schwarz inequality, and (52) to bound ∆V (ξtavg) :=
V (ξt+1

avg )− V (ξtavg) along the trajectories of (27) as

∆V (ξtavg) ≤ −γc1∥ξtavg∥2 + γδ22 ∥PB∥ ∥ξtavg∥
∥∥u(ξtavg)

∥∥
+ δ2γ22a4 ∥PB∥

∥∥ξtavg

∥∥ ∥∥u(ξtavg)
∥∥

+ δ4γ2
∥∥B⊤PB

∥∥ ∥∥u(ξtavg)
∥∥2 . (53)

Now, for all i ∈ {1, . . . , N}, let us introduce the Si :=
{xi ∈ Rn | ∥xi − x⋆∥ ≤ r′ξavg

}. Hence, we note that
ξavg := (x̃avg, z̃⊥,avg) ∈ Ωrξ =⇒ x̃ ∈ S ⊂ RNn, where
S := S1× · · ·×SN . Then, we apply result (23) to claim that,
for all i ∈ {1, . . . , N}, it holds ℓi(xi) ≤ Li,Si

for all xi ∈ Si.
Thus, by defining LS := maxi{L1,S1 , . . . , LN,SN

} and using
the definition u(ξtavg) = ℓ(x̃t + 1x⋆), we get

∥∥u(ξtavg)
∥∥ ≤

√
NLS . (54)

Since γ ∈ (0, 1] and δ ∈ (0, 1], we bound (53) as

∆V (ξtavg) ≤ −γc1∥ξtavg∥2 + γδ2(b1
∥∥ξtavg

∥∥+ b2), (55)

where we introduced

b1 := 2 ∥PB∥
√
NLΩrξ

+ 2a4 ∥PB∥
√
NLS

b2 :=
∥∥B⊤PB

∥∥NL2
S .

Therefore, for any ρ ∈ (0, rξ) and c′1 ∈ (0, c1), we define

δ⋆1 := min
{√

(c1 − c′1)ρ
2/(b1r′ξavg

+ b2), 1
}
. (56)

Hence, by combining (55) and (56), if δ ∈ (0, δ⋆1), then, for
all ξtavg ∈ Ωr′ξavg

such that
∥∥ξtavg

∥∥ ≥ ρ, it holds

∆V (ξtavg) ≤ −γc′1
∥∥ξtavg

∥∥2 . (57)

Thus, the inequality (57) ensures that the set Ωrξ is forward-
invariant for system (27). Hence, if we pick ξ0avg ∈ Brξ ,
we prove that ξtavg ∈ Ωrξ for all t ∈ N. Consequently,
the bound (54) holds for all t ∈ N and, in turn, also the
inequality (57) is verified for all t ∈ N, namely we proved that
the trajectories of system (27) enter the ball Bρ exponentially
fast. The result (30) follows from the inequality (57) and (29a)
by setting c3 := c′1/(2a2).
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ceived the M.Sc. degree “summa cum laude” in
Automation Engineering from the University of
Bologna, in 2019, and the Ph.D. degree “summa
cum laude” in ”Biomedical, Electrical, and Sys-
tems Engineering” from the same university.
He was a visiting scholar at the University of
Oxford in 2022. His research interests include

distributed optimization and games over networks, robotics, and optimal
control.

Andrea Testa received the Laurea degree
“summa cum laude” in Computer Engineering
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