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Abstract—Smart network management is one of the key
innovation areas for current and future generations of cellu-
lar networks. This field is especially meaningful for the use
cases introduced in the Fifth Generation (5G) technology, with
their varied scenarios and requirements, leading to a far more
challenging management. Cellular networks have traditionally
showed underperformance in specific conditions and scenarios,
e.g. crowded places, high-speed scenarios, indoor environments
or coverage holes. All the previous have one common point: they
are related to the users’ location. In this sense, users’ localization
has been proven as a key enabler to support smart analysis
and decision over the networks. The present work proposes
a complete location-based network management infrastructure,
which is evaluated in a real network scenario. The proposed
infrastructure presents a novel approach for the interconnection
of several virtualized components and functionalities leveraging
location information. The interconnected components are vali-
dated jointly using data from a real network.

Index Terms—Localization, Context, Network Management

I. INTRODUCTION

Network management has consistently played a pivotal
role for Mobile Network Operators (MNOs) across several
generations of cellular networks. Substantial efforts have been
dedicated to achieving automated and seamless network man-
agement. In this context, Drive Tests (DTs) and network traces
have been leveraged to optimize network performance in the
past. Here, some of the most common network failures are
related to users’ localization aspects, such as crowded places
during events, high-speed movement of users, indoor coverage
problems, coverage holes, or capacity problems experienced
users located at cell edges. Although these issues have been
widely studied in the literature, they are still challenging to
solve. Nevertheless, location information of users has demon-
strated to play a key role in order to determine the network
status [1–3].

The 5G technology aims to cater to diverse Use Cases
(UCs) characterized by specific requirements. The main three
UCs are: enhanced Mobile Broadband (eMBB), Ultra-Reliable

*Corresponding author

and Low-Latency Communications (URLLC) and Massive
Machine-Type Communications (mMTC). This means that
scenarios are dynamic and heterogeneous, making network
management especially challenging, since it has to be adapted
to dynamic service requirements.

In addition, retrieving location information from users
is not easy. Indeed, it is important to take into account
regulations about users’ privacy, as well as the availability
of differing sources of location information. On the one hand,
Global Positioning System (GPS) has traditionally been the
main technology for outdoor positioning, while it does fulfill
the expected requirements in indoor scenarios. On the other
hand, 3GPP Rel-16 [4] introduces the aspects for 5G-based
localization. 5G localization is still being enhanced in Rel-
18 and Rel-19, where the use of novel features such as
beamforming is under standardization to determine users’
position in an efficient, seamless way. Therefore, the fusion of
other technologies like Ultra-wideband (UWB) and Wi-Fi has
been proposed in the literature and in 3GPP standardization,
demonstrating an excellent performance in terms of accuracy
[5, 6].

The key contribution of this work is the definition and re-
alization in real-world of a novel approach for the deployment
and application of location-aware network management. In
particular, a location-aware network optimization is proposed,
which consists of (i) identifying clusters of people or users
whose coverage is poor, as well as (ii) detecting faulty cells
which may cause coverage holes. Location information will
enrich the Machine Learning (ML)-based techniques that use
network information for network management. In particular,
users’ locations will be used by the Network Data Analytics
Function (NWDAF), together with other network data, e.g.,
counters and Key Performance Indicators (KPIs) [7]. The
proposed functionalities could also fit into the envisioned
architecture for the Open RAN paradigm. To the best of
authors’ knowledge, this is the first time that a real-world
location-aware network management infrastructure has been
developed and evaluated under realistic conditions.
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A virtualized infrastructure has been developed and de-
ployed in a real-world scenario where different communication
and localization technologies are available. Real-time data
collection from different User Equipments (UEs) is performed
while different functionalities are running and providing out-
puts related to the current network status.

The remainder of this paper is organized as follows: In
Section II the proposed approach and the scenario that has
been considered are described, including the physical and
virtualized infrastructure as well as the technologies that have
been used for its implementation. Section III reviews the
functionalities that have been built on top of the infrastructure
regarding the network management. Finally, the conclusions
of this work are summarized in section IV.

II. SYSTEM OVERVIEW

The system proposed in this paper implements a set
of capabilities that involve real-time processing of network
measurements and events, the identification of users’ locations,
and the exploitation of location information to deliver smart
network coverage prediction and failure detection. The Proof
of Concept (PoC) demonstrates the successful implementation
of a set of containerized network functions (CNFs) that de-
liver location-based network management capabilities, and the
integration with the developed LOCUS Platform capabilities,
as shown in Figure 1.

This section will describe: 1) University of Malaga
(UMA) Testbed, used to deploy a variety of wireless network
technologies used for estimating user positions and monitoring
network events; 2) LOCUS Platform and the common services
that enable the development of smart network management
functions, such as coverage optimization and failure detection.

Fig. 1. PoC Architecture including physical and cloud-based elements, and
software solutions in use.

UMA Testbed

The physical scenario is composed by teaching laborato-
ries placed in the Faculty of Telecommunication Engineering
of the UMA, Málaga, Spain. It is an indoor scenario for
Research and development (R&D) which is covered with a
large amount of different technologies, including LTE, Wi-
Fi, UWB and 5G. These are private deployments composed
by real commercial equipment from different vendors. The
scenario is depicted in Fig. 2. The cellular networks are
independent and composed by three 5G indoor cells and
five LTE picocells, respectively. Both private networks cells
are co-located on the ceiling to cover the whole scenario
with good coverage. The 5G cells work in Standalone (SA)
mode and transmit with a SS PBCH power of -17 dBm and
are centered at 3774.990 MHz, using Time Division Duplex
(TDD) mode. The LTE cell parameters are configured with a
transmission power of -6.8 dBm, Downlink (DL) frequency
at 2630MHz, and Uplink (UL) frequency at 2510 MHz. The
UWB deployment is based on Qorvo DWM1000 devices while
the Wi-Fi Fine Timing Measurement (FTM) APs are Google
Wi-Fi mesh routers and they were placed on top of shelves (2
meters height) in order to cover the whole scenario with good
visibility. Both UWB devices and Google Wi-Fi routers are
set to their default configuration parameters, considering only
the 5 GHz channel for Wi-Fi operation. The UWB devices
transmit with a power of -14.3 dBm and they are centered in
6 GHz. The scenario is a teaching laboratory which presents
several metallic elements such as computers, shelves, etc.
Therefore, it is expected that the measurements are heavily
affected by multipathing.

An Android application has been developed to capture all
the ranging data from the network reference points: 5G and
LTE base stations, UWB and Wi-Fi APs. The distance ranges
with the 5G and LTE stations are estimated using the measured
RSSI which is modeled by the indoor office propagation model
[8]. To the best of our knowledge, there is no implementation
yet to obtain more precise ranges in the cellular network,
although localization based on Positioning Reference Signals
(PRSs) are envisioned by 3GPP [4]. The WiFi-FTM ranges
are directly obtained through the Android Application Pro-
gramming Interface (API). For the UWB measurements, each
UWB device is attached to an UE and connected via Bluetooth
Low Energy (BLE) to read the UWB data. A limitation on the
performance of the UWB devices is that the UWB tag can only
receive the information from four anchors simultaneously due
to the software provided with the DWM1000 family products.
Thus, in order to reduce the impact of the reflections, the
ranging information according to the Round-Trip Time (RTT)
protocol is obtained. Timing ranging reduces the impact of
multipathing in ranging estimations and the RTT neglects
the need for clock synchronization as proposed for indoors
technologies by [9].

LOCUS Platform

A unified and generalized platform has been designed and
developed for the deployment of localization analytics func-
tions and services, and their exposure towards Smart Network

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3483570

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



3

UE

 Radio Metrics

Location Information

Location-based Functionalities
Coverage Optimization

Kriging Coverage Hole
Detection

Coverage Hole
Correction

Failure Detection

Contextualized Indicators
Generation

ML-aided
Network Status

Network
Management

 Actions

GUI

Data Bus

Fig. 2. Functionalities components diagram together with the physical scenario sited at UMA premises.

Management and 3rd party vertical applications that require
(geo)location-awareness and analytics for their purposes [10].
More specifically, the platform in Fig. 1, named LOCUS Plat-
form, implements localization analytics as a service solution
on top of a flexible, scalable and virtualized infrastructure that
allows to deploy and execute analytics services and functions
(including ML pipelines) as virtualized elements across edge
and core compute locations of the 5G network. This plat-
form is physically sited in Athens, Greece. In particular, the
goal is indeed to provide a common environment where the
localization and data analytics can run as virtual functions,
allowing cloud-native applications distributed across edge and
core domains. Running such functions on top of a virtualized
infrastructure enables a smooth integration of the location
based services within 5G networks, being accessible for both
network management and vertical customers. In addition,
automation in deployment and operation of these virtualized
localization analytics services can be achieved by adopting
the ETSI Network Function Virtualization (NFV) Management
and Orchestration (MANO) principles [11].

As depicted in Figure 3, the proposed platform prototype
is composed of three main complementary components: the
LOCUS API layer, the LOCUS platform control, and the
LOCUS MANO, all integrated with the virtualized infrastruc-
ture. The API layer represents the northbound interface of the
platform and is responsible for providing access to the virtual-
ized analytics functions, ML pipeline services and ML model
predictions when they run in the edge/core virtualized infras-
tructure. On the other hand, it exposes the data they generate
as services that can be consumed by external applications (e.g.,
Smart Network Management). It is implemented leveraging on
open-source tools for analytics and data consumption through
advanced API gateway and service discovery features (based
on Consul and Zuul).

The API gateway and service discovery features are
linked with access control features (implemented through
Keycloack), and are integrated with a custom catalog and a
service subscription module that allows external applications
and users to discover the available analytics services and
activate them on-demand.

The LOCUS platform control (see Fig. 3) allows to
decouple the API layer functionalities and the analytics ser-
vices exposed towards external entities from the complexity
of internal analytics functions management and execution, in
terms of deployment as virtualized functions, data operations
and constraints. It is implemented as a combination of software
tools, which integrates custom applications for analytics ser-
vice coordination, and relies on open-source tools for analytics
service and ML pipeline management and virtualization (such
as Apache AirFlow and Kubeflow).

The data exchange among the various localization and
analytics functions, required to provide the specific end-to-
end service logic, is facilitated by a dedicated data platform,
which combines a solution based on RabbitMQ for real-time
data streams exchange with a data persistence module based
on Hadoop, Hive and Trino. These two solutions enable the
analytics services and functions to communicate and exchange
data following different paradigms, while supporting real-time
and batch processing. For the purpose of the PoC presented
in this paper, the RabbitMQ message queue module is used as
a message broker, which receives messages from a producer
(e.g. a localization or analytics functions), elaborates them in a
so-called exchange, and route them to different queues, where
one or multiple consumers process the message. Here, the
exchange of type topic has been used, allowing the use of
wildcard matching, where a routing key can define a pattern
that matches multiple queues.

The third component of the platform is the MANO,
which is implemented on top of the ETSI OSM open-source
framework (i.e., the de-facto standard open source NFV or-
chestration platform), and provides NFV-oriented automation
capabilities in the deployment and runtime operation of local-
ization analytics functions and services as Virtual Network
Functions (VNFs) and NFV Network Services. It supports
fully cloud-native deployments and thus automated instanti-
ation and configuration of localization analytics functions as
containerized functions. Each localization analytics function
and service part of the PoC presented in this paper has been
therefore packaged following the ETSI OSM principles and
standard NFV descriptors formats, and dockerized to be de-
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Fig. 3. LOCUS Platform Architecture Components

ployed as container. The LOCUS MANO is tightly integrated
with the virtualization infrastructure, which realizes a realis-
tic edge/core computing infrastructure where the localization
analytics functions are deployed on demand. For the PoC, the
virtualization infrastructure is implemented following a hybrid
approach to leverage on de-facto virtualization technologies
and support distributed edge/core cloud-native deployments.
This allows to match the requirements imposed by the 5G
network architecture, which is based on a high degree of net-
work function virtualization that can be deployed at different
computing locations. Specifically, it integrates a Kubernetes
cluster with an Openstack infrastructure , with the aim of
supporting both traditional virtual machine based services, as
well as cloud-native applications more suitable to run at the
edge using containerized services.

III. NETWORK MANAGEMENT FUNCTIONALITIES

Two main location-aware network management function-
alities are presented, focused on two main fields of the cellular
Operations and Maintenance (OAM) activities: coverage opti-
mization and failure detection.

Coverage Optimization

Continuous monitoring of radio coverage is an essential
task for a MNO in order to guarantee the continuity of services
to its customers. The primary objective is to reduce the number
of locations where the signal level received by the user is low
(i.e. below a threshold), also known as coverage holes. Other
metrics to be monitored are the Signal-to-Interference-plus-
Noise Ratio (SINR) which measures the quality of the useful
signal coming from the serving cell divided by the interference
of neighboring cells, the availability of resources, the reduction
of congestion, etc.

This study focus on the supervision of radio coverage
holes. An initial measurements collection is proposed on some
positions for a preliminary learning phase, that enables the pre-
diction on the other locations. Thus, the use case of coverage
optimization consists in predicting a Radio Environment Map
(REM). The modification of the transmission powers of some
cell(s) is also proposed in order to correct potential coverage
holes using Self-Organizing Networks (SON) techniques to
automatically change the transmitted power of the cells and
then proactively correct the problem.

The coverage optimization module is deployed as a
service. Three Dockers are pipelined and exchange their
outputs via a data bus (See Fig. 2). The main container,
named “Kriging”, performs interpolation in order to predict
the REM. From [12], the measured received signal power for
a given UE from a given cell (either serving or interfering
cell) in the logarithmic domain depends on several parameters.
These quantities are the transmitted power of the cell, the
distance between the considered UE and the cell and the
path loss-exponent [13]. The measured received signal power
also includes two zero-mean Gaussian random variables: the
first one indicates the log-normal shadowing; the second one
models any error in measurement. Both random variables are
assumed to be independent.

In order to create the REM maps, the prediction of
the received signal power is performed on the set of points
for a well-defined area. The prediction is based on some
measurements reported by several UEs located at different
locations. Since the obstacles around the users located at close
locations are almost the same, the corresponding shadowing
signals are correlated. Thus received signal powers for both
users are correlated, too. So, it is proposed to exploit this
correlation to interpolate the received signal power at a new
location. The Kriging interpolation technique is used since it
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is the best linear unbiased predictor [14].
The module works in real time, i.e. real-time measure-

ment collection and REM prediction are performed. Collected
measurements include user location, Reference Signal Re-
ceived Power (RSRP) and the cell identity. The Kriging block
performs prediction of the RSRP and finds the corresponding
serving cell for each test location. This results on a matrix
containing, on each row, the coordinates of the test location,
the predicted RSRP and the serving cell identity. This matrix
is then transmitted to the next container by the RabbitMQ bus.

The “Coverage Hole Detection” container finds the lo-
cations where there exist anomalies in terms of coverage.
It examines each row of the matrix received by the data
bus. Each location where the predicted RSRP is below a
predefined threshold is extracted. The set of locations where
the RSRP is low are grouped into a second matrix. This matrix
contains then the detected coverage holes. Each row of the
matrix corresponds to the coordinates of the coverage hole,
the predicted RSRP and its serving cell identity.

Lastly, the “Coverage Hole Correction” service receives
the coverage hole matrix published on the bus. It calculates
for each cell how to adjust the cell transmitted power in order
to cover all locations where the coverage is not good enough.

Here, the modules are started, and the users are moving
around the scenario randomly. Firstly, it is considered the
positioning technology based on the combination of Wi-Fi and
UWB as shown in Figure 4. It can be seen that the Kriging
interpolator manages to predict the REM. Also, the module
detects the coverage holes (in red points in Figure 4). It can be
noticed that the coverage hole locations are close and grouped
into two little areas. This validates the proposed approach since
in reality, coverage problems are not randomly dispatched but
quite close.

Fig. 4. Coverage holes prediction based on UWB and Wi-Fi positioning.

In Figure 5, a second positioning technology based on
LTE is considered. Here, the REM prediction is compared with
the one obtained with the baseline given in Figure 4 as it was
demonstrated that the positioning technology based on Wi-Fi
plus UWB is close to the ground truth [6]. By comparing Fig.
4 and 5, it can be observed that the accuracy of the geolocated
measurements impacts the prediction precision.

Fig. 5. Coverage holes prediction based on LTE positioning.

The work can be easily extended to the prediction of
the SINR of a moving user. The prediction of the user’s
trajectory makes it possible to determine the future location
of the user. The SINR maps are created from the RSRP maps
already calculated in this study. The SINR is a metric used for
resource allocation in cellular networks. Thus, the prediction
of the future SINR value of a user equipment located at a new
position can build an accurate resource reservation for it.

Location-aware failure detection

Context information is starting to be used for network
management, i.e. information from different sources (weather,
traffic, social events, etc.). Nevertheless, this kind of informa-
tion is not always available. In contrast, new indicators were
generated by taking into account the available cells covering
the scenario and the areas where they may interfere each other.
With these contextualized indicators [15], it is possible to have
additional information about the scenario at low computational
cost. To generate them, positioning information is obtained
through the LOCUS platform, based on the radio technologies
described in Section II. This positioning information is gen-
erated by opportunistic fusion of ranges from different source
technologies [6].

In addition, the cell locations are mandatory to previously
compute Voronoi areas. The Voronoi areas are also calculated
for the assumption where one of the cells is missing, so
overlapping areas refer to the coverage area of cells when their
neighbor cells are not working. The cell centers and edges are
also considered. Then, each received sample is related to one
or more areas and indicators for each area are dynamically
computed. If the samples are coming from static users, they
will always update the same areas, which means the system
will be able to detect, e.g. a cell outage, but it will not discover
coverage holes. The system will have two perspectives of the
scenario: on the one hand, a historical perspective based on
all the samples that have been received and processed since
the functionality was enabled; on the other hand, it also filters
last received samples in order detect when a network failure
has just occurred. A map is generated with the data that have
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been received, as illustrated in Fig. 6, and it is also updated
when new samples are collected.

Fig. 6. Contextualized indicators computed over the scenario.

In the figure, the crosses represent the real-time positions
for several UEs, and the triangles refer to the cell locations.
Moreover, terminology CellX-Y means area where cell X is
influenced by cell Y in case that cell X is not available. It can
be observed that there are areas where the coverage is good,
and other where it is worse. In addition, there are areas of the
scenario where the contextualized area is not plotted, which
means there are not recent samples involving that area.

Here, the functionality schema is also based on pipelined
Docker containers, as depicted in Fig. 2. The first container
is in charge of computing and updating the contextualized
indicators for each area upon sample receptions. This informa-
tion is then sent to the LOCUS platform where an ML-aided
component returns whether there is any cell outage or every
cell is working normally, being the contextualized indicators
the input for this component. It is also possible to configure the
number of historical samples, i.e., radio metrics provided by
UEs together with their location, that are used to determine the
current status of the network. This may improve the accuracy
but reduce the reactivity of the system. The last container
implements the Graphical User Interface (GUI), which shows
the map and the time evolution graph, as well as the output
of the ML-aided component indicating the network status.

The system achieved an accuracy of 90.7% when looking
at last historical samples received, being able to detect when
a cell is not working properly. However, a refined layer could
be added to the system with an additional step consisting
on analyzing the historical samples for each area, and then
comparing to the last received samples. This would verify the
ML model’s output is correct (especially when it reports faulty
cells), and thus reduce the number of false positives.

In this sense, a more powerful ML model could be trained
with additional radio network quality metrics, such as SINR,
or Reference Signal Received Quality (RSRQ), being able to
provide more accurate results when determining the network
status. On the other hand, Voronoi areas could be substituted
by other areas, such as hexagons or even areas generated from

the beam sets configuration and the cell sectors, both easily
available for the MNO.

These functionalities enable new opportunities for the
MNO to improve the network management. Their applicability
is not restricted to radio quality metrics, but it could be
extended to the Quality of Experience (QoE) metrics, which
are crucial for the MNO to provide a good service to its
customers. However, the regulatory framework should be con-
sidered, as the use of location information is subject to strict
rules in some countries. In this sense, there are features that
would implement localization techniques from the network,
as the PRSs or the use of beamforming. The latter enables a
beam-based localization with an accuracy high enough for the
described functionalities and low enough to potentially comply
with the regulations. In any case, the anonymity of the data
must be guaranteed. On the other hand, these functionalities
have been tested to receive data in real time, so that they could
suggest actions in real time. However, there is a risk when
taking actions in real time, so the system should be intelligent
enough to properly decide whether a network configuration
change should be applied or not in a specific moment.

IV. CONCLUSIONS

This work has presented the design and implementation
of a real-world location-aware network management infras-
tructure, where network management functionalities leverage
location information received in real-time. Location infor-
mation has been demonstrated to be crucial for network
management, even in an indoor scenario. The behavior of
the different components working together over a virtualized
infrastructure was analyzed, assessing the feasibility of the
approach even when the management algorithms platform
and the physical scenario were located in different countries.
The tested functionalities have shown promising results with
regard to exploiting location information in an indoor scenario.
Moreover, the functionalities could be easily extended to be
based on other metrics, including QoE, in order to be able
to identify other issues related, e.g., to network capacity or
congestion, in a particular situation or area. The proposed
architecture supports this extension, as it is designed to be
flexible and scalable, and to support the integration of new
functionalities.
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