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Abstract
Industry 4.0, leveraging the Internet of Things 

(IoT) and Artificial Intelligence (AI), is a key 
enabler for many automated processes in modern-
ized industrial applications. This paper addresses 
significant challenges pertaining to sensing and 
data analytics by connecting a large number of 
industrial IoT (IIoT) devices and deploying feder-
ated learning on 5G edge networks. We envision 
a federated learning-based 5G edge architecture 
for IIoT and develop an AI algorithm, i.e., an LSTM 
autoencoder algorithm for anomaly detection, 
on the 5G edge. We conduct comprehensive 
scalability analytics of communication and com-
putation resources on our 5G edge IoT testbed. 
Our experimentation verifies that 1) federated AI 
algorithms can be deployed on 5G edge servers 
for latency-sensitive analytics, and 2) 5G edge 
supports scalable deployment of IIoT devices with 
low latency.

Introduction
Industry’s transition to the digital world has 
already reaped several benefits, such as fully auto-
mated processes and predictive maintenance, 
which have paved the way for novel service 
developments and business models. Industry 4.0, 
supported by the Internet of Things (IoT) and 
machine intelligence, is a key enabler for many 
automated processes in modernized industrial 
applications. IoT enables production monitoring 
and controlling by collecting data from numerous 
sensors to increase manufacturing productivity, 
logistics, and other industrial contexts. Machine 
intelligence applies Artificial Intelligence (AI) 
algorithms to understand processes in industrial 
plants, predict events, and eventually support 
decision-making.

5G with low latency and high bandwidth plays 
a crucial role in delivering the data required by AI 
algorithms for real-time analytics. Additionally, 5G 
offers the capacity to connect many devices that 
intermittently transmit data. Edge servers, typically 
co-located with 5G base stations, allow for AI algo-
rithms to be developed and deployed in proximity 
to sensors, actuators, and end-users [1]. By pro-
cessing data collected from resource-constrained 

IoT devices leveraging computation-intensive AI 
algorithms at edge, Industrial IoT (IIoT) systems 
enables efficient decision-making by reducing con-
tact frequency with cloud servers, thus reducing 
roundtrip delay; adhering to local identity man-
agement and access control policies; reducing 
lower communication costs through local process-
ing, and load balancing between the application 
and network requests based on changes in the 
edge or core infrastructure, as well as adapting to 
temporary failures or maintenance.

The proliferation of sensors and connected 
devices in IIoT has brought heightened privacy con-
cerns, as it necessitates the secure handling of vast 
amounts of sensitive operational data. For exam-
ple, IoT-enabled medical devices collect real-time 
data on users’ vital signs and health parameters, 
which are essential for tracking users’ health con-
ditions. However, due to the potential privacy risks, 
users may be hesitant to allow ML algorithms on 
centralized servers to analyze their personal data. 
Therefore, it would be ideal for storing sensitive 
data on users’ trusted edge servers instead of a 
remote or cloud server. Federated learning (FL), a 
distributed ML approach, enables the training of 
ML models on trusted edge servers without trans-
ferring data to centralized cloud servers, which 
enhances the data owner’s privacy [2]. Meanwhile, 
FL is well suited for edge computing applications 
and can leverage the computation power of edge 
servers [3]. Significant fundamental challenges 
exist in designing and implementing distributed FL 
architectures and systems [4] for IIoT while fully 
exploiting the computation and communication 
capacities of the 5G edge. Lu et al. [5] Have pro-
posed integrating blockchain into FL to enhance 
security and privacy, where blockchain offers per-
mission control for user participation and data 
encryption, in application scenarios beyond 5G. 
Luo et al. [6] Target optimization approaches of 
heterogeneity challenges of FL in 6G network by 
designing incentive mechanisms, network resource 
management, and personalized FL approaches. 
Limited research efforts have been made on 
deploying FL on 5G edge nodes for IIoT.

Our contributions are twofold. First, we 
propose an FL-based 5G edge architecture for 
IIoT connecting a large number of industrial 
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resource-constrained IoT devices and develop FL 
with an LSTM autoencoder algorithm for anom-
aly detection on the 5G edge. To the best of our 
knowledge, this is one of the first efforts to enable 
FL on the 5G edge for IIoT. Second, we further 
demonstrate the feasibility of deploying FL with 
AI algorithms on a real-world 5G Test Network 
(5GTN) and conduct comprehensive scalability 
analytics of communication latency, throughput, 
and computation resources on 5G edge servers.

FL on 5G Edge for IIoT: Challenges and 
Enabling Technologies

Challenges
We have witnessed the proliferation of IoT devices 
in Industry 4.0. Numerous devices in industrial 
processes monitor and control production by 
creating a digital twin of the product being real-
ized or the operation being achieved to increase 
manufacturing productivity, logistics, and many 
other industrial contexts. The core of the distrib-
uted automation systems in Industry 4.0 is reliable 
information exchange and decision-making [7]. In 
greater detail, we consider the following critical 
challenges:
•	 Ubiquitous, High-Speed, and Reliable 

Connectivity for IIoT Devices. IIoT networks 
present unique challenges compared to 
conventional IoT networks due to the crit-
ical nature of industrial operations and the 
complexity of industrial environments. First-
ly, IIoT applications often require real-time 

monitoring and control, demanding low 
latency and high reliability to support critical 
processes. Secondly, industrial environments 
can be noisy, with various sources of electro-
magnetic interference that can degrade wire-
less communication signals. IIoT networks 
must overcome signal attenuation and inter-
ference challenges to maintain reliable com-
munication between devices. Besides, IIoT 
networks have to scale effectively to accom-
modate the growing number of connected 
devices without sacrificing performance. 
Novel high-speed and reliable communica-
tion technologies are required to provide 
connectivity to heterogeneous, multi-vendor 
devices, enable interoperability by offering 
common software interfaces and compatible 
protocols, and handle data heterogeneity.

•	 Big Data Streams Processing Capacities. 
IIoT data is a type of big data, which is both 
large in scale and volume and is also con-
tinuous, often with rich time and location 
dependencies [8]. The potential subsequent 
integration of multiple sources further ampli-
fies this challenge. Analyzing big data with AI 
algorithms extracts higher levels of informa-
tion, guides the understanding of complex 
situations, and enables real-time analytics to 
provide user insights. Furthermore, data stor-
age, management, confidentiality, and securi-
ty also introduce significant challenges.

•	 Distributed Latency-Sensitive, Privacy-pre-
serving, and Reliable Training and Infer-
ence. IIoT devices often have constrained 
and heterogeneous resources, complicat-
ing the deployment of complex ML tasks. 
Privacy-preserving training and inference 
ensure the protection of user data, but fur-
ther amplify this challenge. Latency-sensitive 
decision-making generates insights timely 
before becoming obsolete. Reliable deci-
sion-making typically enforces the system 
to process significant amounts of data with 
interpretable AI models. Therefore, efficien-
cy, privacy, and reliability are crucial, and 
different data models and data aggregation 
strategies in distributed training and infer-
ence must be considered.

Enabling Technologies
AI-powered systems are envisaged to overcome 
the emerging challenges of Industry 4.0 by fully 
unleashing the potential of edge intelligence. 
Figure 1 presents a conceptual architecture of FL 
on the 5G edge for IIoT.

Reliable IIoT Networks. Reliable decision-mak-
ing depends on reliable data from reliable IoT 
networks. The reliability of IIoT networks requires 
minimum losses and a low, bounded latency. 
Table 1 presents the experimental results from the 
main IIoT network technologies: Zigbee, NB-IoT, 
6LoWPAN, LoRaWAN, Sigfox, BLE and WiFi. 
Results show the average of 1000 messages that 
have been obtained by means of a validated Test-
bed device [9]. The Stability function determines 
the reliability of a communication technology, 
accounting for the variability of the latency and 
the number of losses. Energy consumption val-
ues given in milliwatts-second (mWs) represent 
the specific consumption of only the message 

FIGURE 1. A conceptual FL 5G edge intelligence architecture for IIoT. Large 
volumes of data generated by IIoT devices in industrial processes is deliv-
ered to edge servers at their proximity for fast data analytics with reliable 
and high-speed data connections through gateways. 5G and 6LowPan 
networks allow for massive numbers of connections and provide support 
for large data transmission. Intelligent FL algorithms facilitate learning and 
decision-making at the edges of 5G networks by keeping measured data on 
edges without sharing with the cloud server. The ML model parameters are 
sent to cloud server for model aggregation.

Industry 4.0, supported by the Internet of Things (IoT) and machine intelligence, is a key enabler for 
many automated processes in modernized industrial applications.
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transmission for an IoT node. The other energy 
consumptions are not relevant to compare since 
they are all the same: a microcontroller in sleep 
or duty mode with the wireless transceiver deac-
tivated. Note that Sigfox consumption is orders 
of magnitude higher due to its slow transmission 
rate (10 seconds on air for a single message) 
and distance to the receiving end. In fact, energy 
consumption increases as the range of coverage 
gets wider although not linearly due to modula-
tion scheme, message size, frequency band, etc. 
Among them, IPv6 over Low-Power Wireless 
Personal Area Networks (6LoWPAN) provides a 
balance between technical properties (latency, 
error rate) and implementation features (energy 
consumption, cost). 6LoWPAN enables the use 
of IPv6 over the IEEE 802.15.4 standard, allowing 
each IoT device to be accessible via IP address 
[10]. The IEEE 802.15.4-2015 revision of the stan-
dard defines three MAC protocols, including Low 
Latency Deterministic Network (LLDN), Deter-
ministic and Synchronous Multi-channel Extension 
(DSME), and Time Slotted Channel Hopping 
(TSCH), all of which are suitable for industrial 
applications [11]. LLDN is intended for single-hop 
low latency networks, such as factory automa-
tion. DSME is designed for highly reliable mesh 
networks, such as predictive maintenance. TSCH 
provides multi-hop and multi-channel communi-
cations, such as process control. Alternatives at 
the routing layer are mesh protocols, providing 
higher range and reliability, and star configuration, 
providing lower latency.

5G Networks. 5G is an M2M type communi-
cations enabler, featuring up to 10 Gbps speed, 
1 ms latency, and 100% coverage and reliability. 
5G networks aim to support IIoT and provide 
quality of experience-aware services for indus-
trial applications. The dense deployment of 5G 
base stations, equipped with antenna arrays, 
significantly increases the available line-of-sights 
between IoT devices and 5G antennas. 5G net-
works have three characteristics, including 
massive machine-type communications (mMTC), 
enhanced mobile broadband (eMBB), and ultra-re-
liable and low-latency communications (uRLLC). 
5G networks, with their mMTC characteristic, 
fulfill the requirement of ultra-dense machine 
communications by supporting connection den-
sities of one million devices per square kilometer 
and fulfilling certain quality of service require-
ments. Thus, mMTC enables the connection of 
thousands of IoT devices simultaneously. eMBB 
supports high data rates (exceeding 10 Gbps), 
which fulfills the throughput requirement when 
thousands of IoT devices transmit large volumes 
of data simultaneously and may require gigabytes 
of network capacity. Finally, 5G offers uRLLC, 
which fulfills the requirements for extremely low 
latency communication, allowing for fast data 
transmission and control messages. Moreover, 
5G networks are designed to enhance energy 
efficiency through lower power consumption for 
communication compared to other technologies, 
e.g., LTE-4G networks. Hence, equipping IoT 
devices with 5G will drastically decrease power 
requirements.

FL on Edge. FL is a distributed ML paradigm 
where a consortium of devices contributes collab-
oratively to a global neural network model instead 

of centralizing the data to train a global model. 
Edge intelligence [12] for IIoT requires integrat-
ing heterogeneous IoT data streams, analyzing 
IoT data with AI algorithms on edge devices, and 
deriving systemlevel understanding and knowl-
edge for decision-making. FL on edge servers is 
optimal for IIoT due to its ability to process data 
locally on edge devices, diminishing the neces-
sity for data transmission to a central server. This 
minimizes latency and enables real-time deci-
sion-making. Additionally, FL guarantees data 
privacy and security by keeping sensitive infor-
mation on-premises, addressing compliance 
concerns. Its distributed nature also enhances 
scalability and system robustness, as model 
training can continue even if certain devices are 
offline. FL on 5G edge networks harness the 
advantage of 5G such as high bandwidth, low 
latency, and increased connectivity, to improve 
the efficiency and effectiveness of FL system for 
improved participation, fast model updates and 
inference, continuous model training without dis-
ruption, and enhanced model robustness, which 
further enable reliable IIoT applications.

Edge Intelligence Algorithm: A Case Study of 
Anomaly Detection

FL Architecture for Anomaly Detection
In this section, we present the development of 
FL algorithms, i.e., anomaly detection for IIoT 
data, on edge servers in proximity to IoT devices. 
Anomaly detection plays an important role in IIoT, 
such as facilitating early identification of deviation 
from normal operations in industry machinery, 
supporting predictive maintenance strategies, and 
identifying unusual network behaviors within IIoT 
systems. Implementing federated anomaly detec-
tion in edge devices for IIoT data offers several 
significant benefits. Firstly, it allows for real-time 
analysis without the necessity of transmitting raw 
data to a centralized server, thereby reducing 
network bandwidth usage and latency, enabling 
quicker anomaly detection and response. Sec-
ondly, it enhances data privacy and security by 
keeping sensitive information localized to the 
edge devices, mitigating the risk of data breaches 
and ensuring compliance with privacy regula-
tions. Furthermore, federated anomaly detection 

Technology Zigbee NB-IoT 6LoWPAN LoRaWAN Sigfox BLE WiFi

End-to-end latency (ms) 48 1797 22 397 3695 27 32

Latency standard deviation (ms) 5 1352 9 5 294 13 9

Error Rate (%) 0 0 0.02 0.66 0 0 0

Stability (0–1) 0.592 0.036 0.924 0.993 0.922 0.002 0.036

Energy consumption per message 
transmission (mWs)

12.57 44.40 0.92 31.65 4024 5.05 17.02

TABLE 1. Comparison of IoT network technologies.

FL guarantees data privacy and security by keeping sensitive information on-premises, addressing 
compliance concerns.
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improves scalability and fault tolerance, leveraging 
processing power of edge devices.

Figure 2 presents an overview of the feder-
ated anomaly detection architecture for energy 
monitoring. The collected sensor readings on dif-
ferent edges are denoted by D1, D2, …, Dk, where 
k is the number of edge nodes. The amount of 
computation is controlled by: C, the fraction of 
edge nodes that perform computation on each 
round (C = 1 corresponding to full-batch gradient 
descent meaning all the edge nodes participating 
in the training process); E, the number of training 
passes each edge node makes over its local data-
set on each round; and B, the local minibatch size 
used for the edge node updates (B = ∞ indicates 
that the fully local dataset is treated as a single 
minibatch).

Model
Our anomaly detection model is based on recon-
structing the sensing data shown in the top left 
corner in Figure 2. We design an LSTM autoen-
coder architecture, a stacked LSTM network 
consisting of LSTM layers and TimeDistributed 
dense layers, for energy consumption anomaly 
detection. Our collected data from IIoT devices 
is temporal with continuous time series exhibiting 
periodic (or cyclic behavior) patterns and show-
ing long-term trends. Anomaly is often defined as 
long-term trends and it is essential that the anomaly 
detection model could capture the dependence 
and patterns over continuous time steps. LSTM is 
selected due to its ability to learn long-term depen-
dence and handle inputs of varying lengths which 
make it particularly suitable for sequence model-
ing problems. Meanwhile, the features of LSTM 
make it easy to train under FL architecture com-
pared to alternative anomaly detection methods. 
Considering a time series X = {x(1), x(2), …, x(n)}, 
where each point x(t) in the time series refers to 
an observed value at time t. The model expects 
inputs of a sequence with K time steps and outputs 
a sequence with K time steps. The reconstruction 

errors between reconstruction values X′ and real 
measurements X from sensors are minimized. 
Specifically, the mean absolute error (MAE) is 
defined as the loss function for finding the opti-
mized parameters. Adam optimization algorithm 
with hyperparameters setting α = 0.001, β1 = 
0.9, β2 = 0.999, and  = 10−8 is deployed for the 
LSTM autoencoder. Adam is an adaptive learn-
ing rate optimization algorithm that combines the 
advantages of AdaGrad and RMSProp and has 
many appealing qualities such as computational 
efficiency and invariant to diagonal rescale of 
the gradients. It is widely regarded as being fairly 
robust to the choice of hyperparameters [13]. On 
each edge node, the data is partitioned into two 
parts: the former 70% of the whole data set is used 
for training, and the remaining 30% is used for test-
ing. Meanwhile, 10% of the training set is used for 
validation when the best parameters are selected. 
The reconstruction errors on the training data set 
are used to formulate the threshold for anomaly 
detection. A data point on a data set is labeled as 
an anomaly if the reconstruction error for the data 
point is greater than the threshold.

Experiments and Results Analysis
We use data from the CeDInt IoT network [14] 
to design and evaluate the performance of our 
proposed federated algorithm for anomaly detec-
tion. The CeDInt IoT network monitors energy 
consumption and ambient parameters (tempera-
ture, humidity, and presence) within the CeDInt 
building, including HVAC, lighting and other sys-
tems. The federated anomaly detection model is 
used to detect anomalies within HVAC systems 
by analyzing related energy consumption and 
ambient data.

We consider three model structures: 1) two 
layers with 32 units; 2) two layers with 64 units; 
and 3) four layers with 64, 32, 32, 64 units. Mean-
while, in each model structure, we fix C = 1, E = 1, 
and add more computation per client on each 
round by decreasing B [2]. Figure 3(a)-(c) pres-
ent the loss curves of the three model structures 
with different combinations of (B, E). Our results 
demonstrate that 1) adding more local SGD 
updates per round can significantly decrease train-
ing loss. The expected number of updates per 
client per round is u = En/B. We see that increas-
ing u by varying B is effective. We also note that 
decreasing B is taking advantage of available 
computation resources of edge devices and this 
in practice, should be a primary parameter to be 
tuned; and 2) the model with two LTSM layers 
with both 64 units has the best learning effect, 
which means that the neural network structure 
also affects the training results.

We demonstrate how to use a federated model 
to identify the anomaly, specifically formulating a 
threshold. As we assume that all the data points 
on the training data set are normal, and the max 
value of the reconstruction errors on the training 
data set is the worst for our proposed model to 
reconstruct the data point. Therefore, it is suit-
able to be used as the threshold. Figure 3(d)–(f) 
present the process of detecting anomalies in 
the HVAC scenario. The MAE distribution on the 
scaled training data set is shown in Figure 3(d), 
and the max MAE value of 0.3 is used for the 
threshold. Figure 3(e) presents the dataset where 

FIGURE 2. Federated architecture for anomaly detection where federating 
participating devices using local data to train a global anomaly detection 
model instead of sending the data to a central server. The cloud server 
distributes the current model parameters to selected edge nodes in each 
training round. Each selected edge node locally trains and updates the local 
model’s parameters by calculating the stochastic gradient descent (SGD). 
Then the server takes a weighted average of the updates for global model’s 
updates.
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a sudden jump is added to the original dataset, 
which is used to evaluate the performance of 
the proposed model and show whether the pro-
posed model could detect the sudden jump as 
an anomaly and to what extent. The difference is 
that the values for the time interval [560, 680] in 
Figure 3(e) suffer from a sudden jump with 100 
W more when compared to the normal testing 
data set. We calculate the true positive (TP), false 
negative (FN), false positive (FP), and true nega-
tive (TN), and use four performance measures, 
namely precision TP

TP FP+
( ) , recall TP

TP FN+
( ) , F1 score 

2
2

TP
TP FP FN+ +

( ) , and detection accuracy TP TN
TP FN FP TN

+

+ + +
( ) 

to evaluate the proposed federated model. TP 
is the number of points that lie in time interval 
[560, 680] detected as anomalies, and FN is the 
number of points that lie in time interval [560, 
680] detected as normal points. Similarly, FP and 
TN are the numbers of points in time interval [0, 
559] detected as anomalies and normal points, 
respectively. The precision, recall, F1 score, and 
detection accuracy of the proposed federated 
detection model on the dataset shown in Figure 
3(e) are 0.954, 0.983, 0.968 and 0.950, respec-
tively, which demonstrate that the proposed 
federated model can effectively detect anoma-
lies. Figure 3(f) shows the detected anomalies in 
time interval [560, 680] by using the proposed 

FIGURE 3. a)–c) Performance of the proposed federated anomaly detection model with different model structures with (B = 1000, E = 1), 
(B = 500, E = 1), (B = 200, E = 1), (B = 100, E = 1), (B = 50, E = 1); d) MAE on the scaled training data set in HVAC scenario; e) an 
example of the testing dataset containing anomaly; and f) anomaly detected marked with orange color using the proposed model 
on testing dataset e).
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federated model marked with an orange color, 
which further demonstrates the effectiveness of 
the proposed federated model.

5G Edge Experimentation and Analytics

Testbed
This section presents the performance of deploy-
ing FL model on a real-world 5G edge IoT testbed. 
Our testbed is composed of IoT networks and 5G 
edge testbed (5GTN).

IoT Network: The IoT network at the CeDInt 
building is used 1) to evaluate 6LoWPAN reli-
ability and compliance with industrial constraints 
and 2) to collect IoT data for anomaly detection 
algorithm deployable on edge servers. Based 
on previous experimental evaluations, 6LoW-
PAN outperforms alternative protocols regarding 
communication latency: 6LoWPAN-measured 
single node latency is 20 ms, which outperforms 
BLE (˜26 ms), WiFi (˜32 ms), Zigbee (˜40 ms), 
LoraWAN (˜290 ms), and Sigfox (˜3.7 s). Besides, 
the mesh network topology allows for a dynamic 
routing configuration, increasing communication 
range while reducing overhead and error rate. 
Figure 4(a) presents different elements of the 
experimental IoT testbed.

5GTN: 5GTN is a full-scale 5G micro operator, 
providing both standalone and non-standalone 

5G and LTE connectivity. We conduct our 
experimentation at the University of Oulu imple-
mentation of 5GTN, which has air interfaces of 
two 5G macrocells (n78), several LTE macrocells 
(B28, B7, B42), and a LoRa network supporting 
frequencies [0.7, 2.1, 2.6 and 3.5] GHz. More-
over, our testbed supports heterogeneous wireless 
technologies, including IEEE 802.11, Bluetooth 
LE, LoRa, NB-IoT, UWB and LTE evolutions. Edge 
servers are deployed on 5GTN to support laten-
cy-sensitive data analytics. Figure 4(b) presents 
the 5GTN cell tower and the Multi-access Edge 
Computing (MEC) server. The edge server in this 
experimentation has an Intel Core i7-8700 CPU, 
32 GB memory, and an NVIDIA GeForce RTX 
2080 Ti GPU. To support these experiments, we 
deploy a Stockholm-based cloud Amazon EC2 
server, which has comparable specifications as 
our edge server, i.e., 8 virtual CPUs, 32 GB mem-
ory, and an NVIDIA T4 GPU.

A PC (Intel Core i7-8700K CPU, 32 GB memory, 
and an NVIDIA GeForce RTX 2080 with Max-Q 
Design GPU) relays the real collected data from IoT 
devices. With this approach, we can evaluate mas-
sive deployments of devices through multiple parallel 
threads (one thread representing one device). Data 
is sent from each thread to a MEC server connected 
to 5GTN. The PC relaying the data can access the 
network through a 5G modem.

FIGURE 4. a) Floor map of IoT sensor deployment in CeDInt building, with the location of the different IoT nodes and communication 
paths, power meters (BatMeter) installed at electric panelboards, ambient sensors (BatSense) close to a HVAC controller, and the 
measurement device. b) 5GTN with MEC server in our experiments.
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FIGURE 5. Left: 6LoWPAN results of the a) latency, b) throughput, c) jitter, and d) error rate. The red lines represent the usual network 
traffic (configuration messages, periodic measurement requests from higher-level applications, and event-triggered message trans-
missions). We add additional aleatory traffic (57 byte messages every 4 seconds, blue lines) to simulate real-world environments 
and test reliability [15]. Then e) are the results of the GPU memory and RAM usage for the edge- (E) and cloud- (C) deployed algo-
rithm, with the cloud server requiring an average of 12.7% more memory resources than the edge. Right: f) cellular 5G latency and 
the computation time for prediction where the data connection to the edge server has an average latency of 10.5 ± 2.0 ms, while 
the connection to the cloud is approximately 40.3% larger at 17.6 ± 0.8 ms, and the prediction latency for both edge and cloud 
servers is similar, with an average percentage difference of 1.30%. Then the cellular 5G results of the g) throughput, h) jitter, and 
i) average packet size are presented; as well as j) the GPU and CPU clock cycles results for the edge- (E) and cloud- (C) deployed 
algorithm. The edge executes 9.62% more complete clock cycles than the cloud server.
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Results and Analytics

To analyze the performance of deploying the FL 
model on the 5G edge for IIoT, we study:
•	 Data transmission latency, throughput, error 

rate, and jitter. We separate overall latency 
into the latency of transmitting data from 
IoT sensors to a 5G modem with 6LoWPAN 
and the latency of forwarding the data from 
the 5G modem to an edge server with a 5G 
connection.

•	 Scalability, by increasing the number of 
emulated devices to deliver data from a 5G 
modem to an edge server.

•	 Required computation resources (CPU, 
GPU, and memory) by the FL trained LSTM 
autoencoder algorithm on edge servers.
We analyze different communication param-

eters while increasing the number of neighbors 
from 1 to 50 in increments of 5. Figure 5(a)–(d) 
presents results of the 6LoWPAN experimentation. 
Node hopping increases average latency values 
compared to single communications (60-70 ms 
vs 20 ms). Latency and jitter value oscillations are 
caused by nodehopping and aleatory event-trig-
gered messages and added traffic. We observe 
that the message error rate is less relevant (below 
0.5%). Experimental results of latency, jitter, and 
error rate validate that utilizing 6LoWPAN in indus-
trial applications ensures high-speed, reliable IIoT 
communications. For experimentation of FL on 
the 5G edge, we measure the latency, through-
put, jitter, and average packet size from sending 
data from the sensors to a receiving MEC server 
and a cloud server with a 5G network connection. 
We vary the number of sensors from 10 to 50 in 
increments of 5. Figure 5(f)–(i) present the results 
of the 5G experimental tests. We observe that as 
the number of IoT sensors increases, the data trans-
fer latency, throughput, and average packet size 
increase for both edge and cloud connections. For 
timely data transfer, an edge server is, therefore, 
the most suitable. For both connections to the 
edge and cloud server, the throughput has approx-
imately the same values for each sensor number. 
The jitter shows more variability, e.g., increased 
jitter at 15 sensors at the edge and at 35 sensors 
for the cloud, which reflects the dynamic nature 
of a live cellular network. To test the capabilities 
of the proposed LSTM autoencoder algorithm, we 
deploy the algorithm on both an edge and cloud 
server and compare the required computation 
resources, i.e., the total prediction latency, memory 
usage, and the number of clock cycles during algo-
rithm execution. Figure 5(f), (e), and (j) present the 
results of this experimentation.

Discussion and Open Challenges
5G edge intelligence combines advanced con-
nectivity, compact processing power, and AI at 
the edges of 5G networks, which presents an 
emerging trend for Industry 4.0. Federated opti-
mization enables increasingly complex networked 
systems involving heterogeneous devices, service 
providers, and network operators to become 

more intelligent and autonomous in network man-
agement with privacy protection. In this paper, 
we focus on sensing and data analytics by con-
necting many resource-constrained IIoT devices 
and deploying a federated AI algorithm on the 
5G edge. Our contributions are twofold: 1) we 
envision FL on 5G edge-enabled IIoT architecture; 
and 2) we develop and deploy federated LSTM 
autoencoder anomaly detection on the 5G edge 
and conduct comprehensive scalability analytics 
of communication and computation resources 
on our 5G edge IoT testbed. Our experimen-
tation verifies that 5G edge supports scalable 
deployment of IIoT devices with low latency and 
federated algorithm deployed on 5G edge servers 
for privacy-sensitive analytics.

This study has several open challenges that 
need further investigation. First, how to efficiently 
process continuous data streams locally arrived 
at 5G edge servers, which is vital for real-time 
analytic and decision making. Second, how to 
optimize the FL algorithm while to minimize the 
energy consumption during the FL model training 
and communication process if energy consump-
tion of edge servers or devices is a significant 
concern. Third, how to address potential attacks of 
FL systems on 5G edge, such as gradient leakage 
and model poisoning attacks, is still a significant 
concern. Even data is kept locally without sharing 
and only parameter updates (gradients) are sent 
during the training process, it is still possible for 
the adversaries to disclose valuable information 
or even reconstruct the raw data from the leaked 
parameter gradients. Adversaries can also attack 
the model aggregation process to alter the param-
eters of the global model to corrupt the model, 
causing the global model to behave undesirably 
and produce inaccurate predictions.
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