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Abstract—Human Activity Recognition focuses on developing
systems and techniques to recognise and categorise human actions
automatically based on sensor data. This study combines ultra-
wideband technology and binary sensors to describe and recog-
nise daily activities in real-world environments with multiple oc-
cupants, ensuring accurate user localisation through non-invasive
and privacy-respecting methods. A novel method that combines
wearables with ultra-wideband technology, which allows the
generation of heatmaps for accurate positioning, and binary
sensors, which collect nearby interaction with daily activities
in naturalistic conditions, is presented. A dataset comprised
of real-world data collected from three individuals in a real-
life environment (house) was compiled. Advanced deep learning
models are implemented to effectively fuse spatiotemporal infor-
mation, leading to an encouraging performance in recognition of
daily activities. The promising results suggest that this approach
could be viable for large-scale deployments in future smart
environments.

Index Terms—multi-occupancy, ultra-wide band, localisation
heatmap, activity recognition

I. INTRODUCTION

HUMAN Activity Recognition (HAR) relies on the in-
tegration of various multimodal devices and sensors to

detect and interpret human movements and behaviours with
precision [1]. This technology is crucial in healthcare, assisted
living, and smart home systems, where detailed monitoring
of indoor activities is essential [2]. The ability to accurately
analyse human activities can significantly improve safety,
health outcomes, and overall quality of life. Recent advances
in sensor technology, including binary and vision sensors and
Ultra-Wide Band (UWB) technology, have played a key role in
improving the HAR capabilities for indoor environments [3].
The integration of advanced machine learning techniques and
the combination of data from various sensors further support
these developments by minimising errors and reducing signal
interference, thus improving the reliability of the system [4],
[5]. This technological synergy is crucial for a more precise in-
terpretation of human behaviour. Binary sensors are frequently
used in HAR systems in this context due to their affordability
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and privacy-preserving feature of only detecting the presence
or absence of people. However, their drawbacks become appar-
ent in multi-occupant situations, making accurate identification
and tracking of activities difficult [6]. This underscores the
need for more advanced or complementary technologies to
improve the precision of monitoring in complex environments.

One of the primary challenges in multi-occupant envi-
ronments lies in the inability of environmental sensors to
discriminate between individuals or accurately identify which
person is performing a specific activity [7]. This limitation
reduces the effectiveness of activity tracking and analysis.
Furthermore, the nature of human behaviour, together with
the limitations of low-cost sensors and privacy concerns,
complicates the deployment of HAR systems in these settings.
UWB technology has become a promising approach to precise
indoor location tracking, thanks to techniques such as the
Time Difference of Arrival (TDoA) and the Received Signal
Strength Indicator (RSSI) [8], [9], [10]. This technology
proves particularly efficient in multi-occupant settings, en-
hancing Real-Time Location Systems (RTLS) for consistent
and accurate monitoring. In healthcare, UWB-based RTLS are
widely used for patient monitoring, fall detection, and emer-
gency response [11], [9]. Furthermore, integration of nearby
interaction with sensors improves the accuracy of activity
detection in settings with multiple occupants by providing
environmental and behavioural context [12], [13].

Building on the context of sensorisation and activity recog-
nition, this research introduces an intelligent system that
leverages UWB technology to describe and recognise activities
in environments with multiple occupants, ensuring accurate
user localisation through non-invasive and privacy-preserving
methods. Our contributions are summarised as follows:

• Development of a dataset under naturalistic and domestic
conditions with three participants, utilising advanced lo-
calisation technologies through UWB wearables and low-
invasiveness binary sensors. This contribution represents
a significant and innovative advancement in the scientific
community by integrating a multi-occupancy dataset with
precise indoor localisation, activity labelling, and recog-
nition of basic activities.

• Creation of an activity recognition model based on local-
isation heatmaps. In addition, our approach reduces the
complexity of 2D spatial location introducing the degree
of spatial interaction in activity zones. This transforma-
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tion translates the absolute localisation heatmap into a
relative interaction over activities.

• Evaluation of deep learning models Gated Recurrent Unit
(GRU), Long-Short-Term Memory (LSTM) networks,
Convolutional Neural Network (CNN) + GRU with At-
tention (ATT) Mechanism, CNN + ATT + GRU + ATT,
Transformer with Multihead Attention, Transformer with
Positional Encoding and collection of metrics from the
dataset. A study of performance and complexity is deeply
included.

The remainder of this paper is structured as follows. Section
2 presents studies related to HAR in smart multi-occupancy
environments. Section 3 details the materials and methods
employed, including the integration of nearby sensors, the
computation of heatmaps from UWB devices, and the com-
bination of these data with the proposed models. Section 4
describes the results obtained from the developed case study,
assessing the effectiveness of the methodology in a real-world
context, and providing a detailed analysis of the methods used.
Finally, Section 5 discusses conclusions and ongoing work.

II. RELATED WORKS

HAR in multi-occupant environments is a critical area
of research driven by the increasing demand for intelligent
systems in smart homes, assisted living facilities, and advanced
healthcare settings [14]. These environments often require
systems that can accurately track and differentiate activities
performed by multiple individuals sharing the same space.
The complexity of human interactions, coupled with the lim-
itations of traditional HAR systems, makes it challenging to
identify and monitor specific activities reliably. Conventional
approaches can struggle to distinguish between individuals and
accurately track their activities, leading to potential errors and
inaccuracies in behaviour analysis [15].

To address these limitations, researchers have explored
various sensor technologies and data-fusion methods. Among
these, UWB sensors have garnered considerable attention
for their ability to provide precise real-time localisation in
indoor environments. However, UWB systems are sensitive to
obstacles and high-density scenarios, which can affect their
accuracy. As a result, researchers have begun using heat maps
generated from UWB data to enhance spatial representation
and activity recognition. Heat maps offer a flexible and in-
tuitive visualisation of spatial occupancy, helping to identify
patterns and differentiate simultaneous activities in crowded
environments. This approach has been validated in several
studies, demonstrating its effectiveness in improving activity
recognition accuracy and resolving the limitations of UWB
alone [16], [17]. For instance, [18] showed that heat maps
could effectively visualise occupancy patterns and behaviour
changes, while [19], [20] highlighted their utility in real-time
adjustments of activity recognition algorithms.

The interaction with nearby sensors has emerged as a sig-
nificant advancement in HAR systems. These sensors, which
include wearable devices and embedded environmental sen-
sors, provide additional contextual information that improves
the accuracy of activity detection. Integrating nearby sensor

data with UWB localisation allows for a more detailed and
accurate representation of activities, particularly in scenarios
involving multiple people performing concurrent activities in
close proximity. This interaction improves both spatial and
temporal resolution, addressing many of the limitations asso-
ciated with single-sensor approaches [21], [22]. For example,
the work of [23] demonstrated that combining UWB with
other sensors could significantly enhance HAR accuracy by
providing richer data.

Advanced sensor fusion techniques, including the use of
fuzzy logic, have been employed to further improve HAR
accuracy. Fuzzy logic offers a robust framework for managing
the uncertainty and variability inherent in activity data, which
is crucial when activities do not fit neatly into discrete cate-
gories. By integrating fuzzy logic with heat maps, researchers
can better interpret complex data and differentiate between
multiple concurrent activities [24], [25]. In addition, advanced
hardware and processing techniques have been proposed to
optimise data capture and analysis, leading to significant
improvements in activity recognition [26].

The evolution of HAR has also been marked by the devel-
opment of sophisticated models, such as those that combine
CNNs with LSTM networks. CNNs are effective in extracting
spatial features from sensory data, such as those obtained from
UWB heat maps, while LSTMs are adept at modelling the
temporal sequences of activities. This combination offers a ro-
bust framework for real-time activity recognition, particularly
in dynamic and complex multi-occupancy environments [27].
The integration of CNN-LSTM models improves the ability
to differentiate and track concurrent activities, addressing
the challenges posed by the unpredictable nature of human
behaviour [28], [29].

Despite these advancements, several gaps remain in the field
of HAR. There is a need for further research to optimise these
technologies for real-time data processing and analysis, espe-
cially in dynamic environments with high activity complexity.
Future work should focus on improving the adaptability of
HAR systems to real-time changes in human behaviour, im-
proving the robustness of learning algorithms, and developing
more efficient solutions for data processing and analysis [30],
[31]. Addressing these gaps will contribute to more accurate
and flexible HAR systems, with broader applications in various
fields, including healthcare, home automation, and beyond
[32], [33].

This study aims to address these gaps by integrating ad-
vanced sensor fusion techniques of non-invasive devices and
adaptable learning models to offer a comprehensive solution
for HAR in multi-occupancy environments. The proposed
approach aims to improve the accuracy of activity monitoring
while minimising deployment complexities and optimising
performance in various settings.

III. MATERIALS AND METHODS

This section outlines the rationale behind the selection of
devices and methodologies employed to achieve flexible yet
precise activity recognition. To fully understand this choice, it
is essential to distinguish between two categories of activities.
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The first category includes activities that can be recognised
only based on the location of the user and the time spent
in specific areas, such as sleeping, resting, leaving the house
and staying in the kitchen. The second category encompasses
more complex activities that involve interaction with various
elements of the household, such as cooking, taking a shower,
using a computer, or using the bathroom. All activities are
defined in Section IV-B. To address these needs, we deployed a
RTLS based on UWB technology throughout the environment,
supplemented by various ambient sensors placed on key house-
hold elements. By combining user location heatmaps with
activation data from these sensors, our system is capable of
accurately discerning which users performed specific actions
or activities while preserving privacy and maintaining low
deployment costs and high scalability. This is achieved without
the need for a large number of beacons or a high density of
sensors in the home, as the devices used are commercially
available, low-cost, and feature long battery life. This approach
not only enhances the granularity of activity recognition, but
also ensures that the system can adapt to a variety of contexts
and user behaviours.

A. Minimal Ambient Devices for Nearby-Sensor interaction

To capture user interactions with various household ele-
ments, such as the microwave, refrigerator, computer, stove,
faucets, and others (detailed in Section IV-A), we used a vari-
ety of ambient sensors (Figure 1). These sensors are connected
through a central hub with Home Assistant and transmit data
through Message Queuing Telemetry Transport (MQTT) [34],
allowing seamless integration and communication within the
system.

• Aqara Door and Window Sensor: This sensor registers
activations using a magnetic contact, sending a 0 when
the door is closed and 1 when it is open.

• Aqara Temperature and Humidity Sensor: This device
records temperature variations in degrees Celsius and
humidity levels as a percentage, providing continuous
environmental data.

• Aqara Motion Sensor: This sensor detects movement,
transmitting a 0 when motion is not detected and a 1
when motion is present.

• Aqara Vibration Sensor: Equipped with an inertial sen-
sor, this device detects vibrations or movements, sending
a 1 upon detection and a 0 if no movement is observed
over a period.

• Shelly-EM Power Consumption Sensor: Installed on
the main electrical panel, this sensor monitors the total
consumption of household power, allowing us to deter-
mine when the stove is used (in watts).

• TP-Link Smart Plug: This plug measures the power
consumption of small devices, such as a computer, in
real-time (in watts).

In a formal representation, the ambient sensor stream s⃗
from a given sensor s is composed of a set of measures
s⃗ = [s0, . . . , si]. A measure st is collected at a time-stamp
t within the timeline T = {t−, t− + ∆, . . . , t, . . . t+}, deter-
mined by the start (t−) and end (t+) moments, and a time step

Fig. 1. Overview of ambient sensors deployed in the environment for
capturing user interactions with household elements, such as door status,
temperature, humidity, presence, motion, and power consumption.

∆. In a shake of simplicity, in this work, we translate the status
of ambient sensors into binary representation s[t] ∈ {0, 1}. For
example, open-door sensors are straightforwardly related from
the state active, inactive to 0, 1, respectively, or the power
consumption sensor is thresholded at 50W to denote the use
of the computer with binary values, 0 and 1.

B. Computing localisation heatmap from UWB Wearable de-
vices

Our proposal focuses on leveraging UWB technology for
location-based services through the innovative use of wearable
UWB devices in the form of wristwatches. These wearables
function as low-invasiveness tags, providing a seamless and
user-friendly experience for tracking and locating individuals
within a given space. The novelty of our method lies in the use
of fingerprinting techniques to achieve improved and precise
location estimation in Non-Line-of-Sight, which also reduces
the number of anchors required per room. This reduction
leads to considerable cost savings and shorter deployment
times [35]. In our deployment, we used the Ubitrack RTLS
(see Figure 2), employing only one or two anchors per room
and assigning one tag to each resident of the household.
The proposed wearable UWB wristwatches bring about a
significant step forward in applying UWB technology for
efficient and cost-effective location services.

Fig. 2. Overview of UWB devices deployed for indoor location of individuals
within the environment. The deployment uses anchors and wearable UWB tags
(wristwatches) assigned to each resident.

The location estimation for each user is visually represented
in the form of a localisation heatmap [36], [37]. This visual
approach is particularly suitable for aggregating of locations
in segmentation processes, such as those proposed in this
work, with a time-step of one minute. The localisation heatmap
provides an intuitive and comprehensive view of spatial data,
enabling more accurate and insightful analysis of location
patterns and movements over time.

The occupancy location of the user u is represented in a
spatiotemporal matrix Mu = [mtxy], such that mtxy = 1 if
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the user is at position (x, y) at time t ∈ T , and 0 otherwise.
In this context, the plane is divided into H × V equally sized
rectangles, where being at position (x, y) means that the user is
located in the x-th horizontal and y-th vertical rectangle. This
discretization of space and time generates a three-dimensional
data stream, whose shape is T ×H × V , which captures the
user’s location over time.

Moreover, the occupancy location can be summarised
straightforwardly in the temporal dimension, namely through
the definition of the localisation heatmap HMu = [hxy], such
that, for user u, the heatmap is computed as follows:

HMu
t =

1

|Tt|
∑
t′∈Tt

Mu
t′ ,

where Tt = {t−, t−+∆, . . . , t} ⊂ T is a time window of |Tt|
time-steps and Mu

t′ is the submatrix of Mu containing only
the fixed instante/index t′, i.e., Mu

t′ = [mt′xy]. This process
allows for the aggregation of the user’s location over a time
window, providing a more general view of their location over
time.

Figure 3 provides an example of the localisation heatmap
of three users from the real-life environment dataset deployed
in this work, namely, where they are located in the kitchen,
livingroom, and bedroom.

Fig. 3. Localisation heatmap of the 3 users involved in the dataset where
they are located in the kitchen, livingroom and bedroom (07/25 15:13:00).

C. From localisation heatmap to interaction degree in activity
zones

The main issue with absolute localisation is the dependency
on context. For example, the location where each user sleeps or
rests can vary, taking place in one or more areas within a home.
This variability complicates the generalisation of behaviours in
different households, as room locations differ. To address this,
we propose calculating the degree of interaction in the activity
zones [13] over time, as relative characteristics between users
and environments, to improve the recognition of activity.

As we described previously, we can compute the time
window-location of inhabitants using a heatmap HMu

t , for
each user u at the timestep t. To translate the localisation
heatmap into relative zone paths, we introduce the use of

activity zones as regions of interest Cu
a = [cxy], where a is

an activity, (x, y) corresponds to the x-th horizontal and y-
th vertical rectangle, as defined before, and cxy equals 1 if
user u performs activity a in position (x, y) and 0 otherwise.
They are represented as activity location masks, which are
straightforwardly defined by expert knowledge [13] or by
aggregating the localisation heatmap for each user and activity
over time [36].

From Cu
a , we compute the degree of membership of each

user u in the activity zone a [13]. The degree of interaction
P au
t with the activity a, at instante t, is computed through

aggregation and spatial intersection, using element wise mul-
tiplication between the user location heat map HMu

t and the
activity mask Ca

u , i.e.,

P au
t = HMu

t ⊗ Cu
a ,

where ⊗ is the component wise multiplication of the matrix
elements. If maxP au

t > 0 then user u was within the a activity
zone.

We note that the degree of interaction in activity zones
P au
t overcomes the limitation of dependency on the absolute

location of users with relative activity paths, enhancing the
applicability and robustness of location-based analyses in di-
verse living environments. In Figure 4, we provide an example
which translates the absolute location heat maps to the degree
of interaction of the relative activity zones.

cooking

shower

toileting

resting

Activity 
location mask

cooking
shower
toileting
resting

0.0
0.2
0.8
0.0

cooking
shower
toileting
resting

0.0
0.0
0.0
1.0

cooking
shower
toileting
resting

0.0
0.5
0.7
0.0

Interaction degree to 
activity zones

Absolute 
location 
heatmap

Fig. 4. Interaction degree of relative activity paths from absolute localisation
heatmaps with an example of four activities (cooking, toileting, showering
and resting).

D. Ensemble of Deep Learning Model Fusing Localisation
Heatmaps and Nearby-sensor interaction in multi-occupancy

In this work, we propose using an ensemble of deep
learning models to predict user activities in multi-occupancy
environments. The model inputs are based on the previous
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formulation of user interaction in activity zones, where the
interaction degree is calculated through the aggregation and
spatial intersection of the localisation heatmap of user and
activity masks, and also the nearby-sensor interaction with the
environment by means of ambient sensors:

• Interaction degree of the user in activity zones, represent-
ing where the user has been within the activity zones. It
is straightforwardly introduced by the interaction degree
P au
t between the user u and each activity a.

• Interaction degree of other users in activity zones. The
inclusion of other users’ location information as input to
the model is optional. Ultimately, the decision to include
or exclude other users’ location data should be made
based on a careful assessment of the trade-offs between
improved accuracy, architectural feasibility, performance
and privacy implications within the specific application
context.. This input describes the locations of other users,
which is key for understanding crowd dynamics and inter-
actions while preserving privacy without identificating of
other users. We compute it by aggregating the interaction
degrees of other users U = {u1, u2, . . . , uk} ⊂ U − {u}
as

P auU
t = P au

t ⊕ P au1
t ⊕ P au2

t ⊕ · · · ⊕ P auk
t

where, as before, ⊕ represents the element direct sum of
matrices. The sum of interaction degrees of other users
provides an aggregated value representing the influence
of other inhabitants in a multi-occupancy environment.
This value is independent of the total number of users in
the smart environment.

• Activity of the environmental sensor, which is represented
by the activation st of a given sensor s in the timestamp
t. They provide the interaction between users and objects
in the environment.

The inputs are represented by a sequence under a sliding-
window approach [1], where for each timestamp t, we compute
a set of time-steps t∗ ∈ [t− t∗−, t+ t∗+] defined by a temporal
window size T ∗ = [t∗−, t

∗
+].

The output of the model Oau
t ∈ {0, 1} is a binary prediction

for each activity a and user u on a given time stamp t. For
learning purposes, we develop an ensemble approach [38] in
which each model is focused on learning a given activity.
According to the recommendations of previous works [38],
[39], we compose the training dataset for each activity with
descriptive, but also conflicting, data based on the activity:

• Including data where the activity is developed Oau
t = 1.

• Including data where the activity is not developed Oau
t =

0, but prioritising (with a stochastic selection) when the
evaluated user is within the activity zone (maxPua

t = 1).
Includes conflicting learning, increasing learning perfor-
mance, and detailed capabilities [38] in HAR.

Based on this approach, we evaluated several models for
predicting activities in multi-occupancy environments: [GRU],
[LSTM], [CNN + GRU + ATT], [CNN + ATT+ GRU + ATT],
[Transformer+multihead] and [Transformer+position encod-
ing]:

• [GRU] and [LSTM]. GRU and LSTM sequence models
are used as the baseline due to their efficiency and
robustness in learning sequence patterns. The GRU and
LSTM models consist of three input branches (sensor
data, the location of the evaluated user, and the location
of the other users), which are reshaped and fed into
individual blocks to capture temporal dependencies. The
model employs dropout layers throughout to prevent
overfitting and is optimised using binary cross-entropy
loss and the Adam optimiser.

• [CNN + GRU + ATT], [CNN + ATT + GRU + ATT].
The addition of CNN layers aims to extract local spatial
and temporal features before applying the recurrent GRU
layer. This convolutional block enhances the ability of
the model to identify fine-grained patterns within each
sequence before feeding into a GRU layer to capture
the temporal dependencies. After these individual blocks,
the outputs are concatenated and further processed by
additional GRU layers to integrate information across
all inputs. We evaluated two variants of ATT locations,
incorporating ATT layers at different stages of feature
processing: ATT applied to higher-level features [CNN +
GRU + ATT], and ATT applied to lower-level features
[CNN + ATT + GRU + ATT]. The ATT mechanism
is based on scaled dot-product ATT, which allows the
model to dynamically focus on relevant parts of the input
sequence. This enhances its ability to capture complex
activity patterns, especially in the presence of multiple
users and contextual interactions.

• [Transformer + Multihead] and [Transformer + Position
Encoding]. Two Transformer-based models have been
evaluated. [Transformer + Multihead] uses three parallel
Transformer encoders with multihead attention to process
three separate input sequences, then concatenates their
outputs for binary classification. [Transformer + Position
Encoding] encodes three input sequences with positional
encoding, processes them with separate multihead atten-
tion encoders, and concatenates their reduced representa-
tions for binary classification.

These models were evaluated using standard HAR metrics
(f1 score, precision, recall, and accuracy).

In Figures 5-6, we detail the components and inputs, the
outputs and the set of proposed models.

IV. RESULTS

In this section, we outline the case study and experimental
setup designed in this work to evaluate and demonstrate the
application of the methodology in a real-world context.

A. Experimental Setup

The deployment was carried out in a residential apartment
of 150 square metres, occupied by three individuals: a woman
and two men who live in their own home. The research, carried
out as part of the DTS21-00047 project, received approval
from the regional ethics committee. Participants were informed
about the objectives, methodologies, and legal rights of the
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Fig. 5. Scheme of the inputs and the proposed ensemble architecture, and
description of the base classification models: A) [GRU], [LSTM], B) [CNN
+ GRU + ATT]

study and provided their written informed consent prior to
participating.

The apartment has six distinct areas: a living room, office,
kitchen, bathroom, and two bedrooms (see Figure 7). The
distribution of sensors throughout the apartment is described
in the following for each room:

• Living Room: Two UWB anchors, a energy consumption
sensor, two presence sensors located under the television
and on the corner table near the sofas.

• Kitchen: Two UWB anchors, six open / closed sensors
distributed in refrigerator, microwave, medicine cabinet,
cutlery drawer, pan drawer and plate cabinet; a humidity
and temperature sensor in the hood; two vibration sensors
on the sink faucet and pantry door; two energy consump-
tion sensors for the cooking robot and the washer/dryer
and two presence sensors on the kitchen counter and the
wall opposite the stove.

• Bathroom: One UWB anchor, three vibration sensors

Fig. 6. Description of classification models: C) [CNN + ATT + GRU + ATT],
D) [Transformer+multihead] and E) [Transformer+position encoding].

Fig. 7. Room distribution in the real environment: Living Room, Office,
Bedroom 1, Kitchen, Bathroom, and Bedroom 2.

located on the toilet lid, the sink faucet, and the shower
screen; an open/close sensor on the shower screen; a
humidity and temperature sensor inside the shower and a
presence sensor on the wall opposite the mirror.

• Office: One UWB anchor, a energy consumption sensor
for the computer, a presence sensor positioned under the
window, and an open/close sensor in the closet.

• Bedroom 1: One UWB anchor, a presence sensor placed
under the table and shelf and an open/close sensor on the
closet.

• Bedroom 2: One UWB anchor, a presence sensor in-
stalled on the closet wall and an open/close sensor on
the closet
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• Main Entrance: An open/close sensor on the apartment
door and a energy consumption sensor on the main panel
of the house.

• Hallway: One UWB anchor placed in the middle of the
hallway.

Figure 8 provides a comprehensive layout of the apartment,
illustrating the precise location of each sensor and UWB an-
chor within the different rooms. This map serves to clarify the
spatial arrangement of the sensors and anchors, highlighting
their strategic placement to maximise the effectiveness of
the activity recognition system. In total, 9 UWB anchors, 5
energy consumption sensors, 8 presence sensors, 11 open-
close sensors, 2 humidity and temperature sensors, and 5
vibration sensors were deployed throughout the apartment to
ensure comprehensive coverage and accurate detection of user
activities in all areas. Figure 9 illustrates the deployment of
various sensors in the real environment, demonstrating their
minimal invasiveness and seamless integration into everyday
settings.

Fig. 8. Map with the distribution of the anchors per room in purple, yellow for
open/close sensors, green for energy consumption sensors, blue for presence
sensors, red for humidity and temperature sensors, and orange for vibration
sensors.

B. Daily Activity Labelling

During the data collection period, which spanned 15 days,
users labelled activities using a mobile application and NFC
tags (see Figure 10) placed near the areas where activities
typically occurred, facilitating the annotation process. The
activities identified and labelled in this study are as follows.

• Toileting: Engaging in activities within the bathroom,
such as using the toilet (WC) or interacting with the
faucet.

• Resting: Remaining stationary for an extended period in
the living room, particularly in the area near the sofa.

• Exit: Being outside the home.
• Cooking: Preparing food or interacting with key kitchen

elements, such as the microwave, stove, pans, plates,

Fig. 9. Deployment of ambient sensors in the real environment, includ-
ing motion sensors, door/window sensors, vibration sensors, and tempera-
ture/humidity sensors. The images demonstrate the unobtrusive placement
of the sensors on everyday household items such as faucets, doors, and
appliances, highlighting their minimal invasiveness and seamless integration.

fridge, and tap, is detected through sensors placed in each
drawer where these items are stored and directly on the
microwave, fridge, and tap.

• Shower: Using the shower, which includes interacting
with the shower door, being in the shower area, and
observing an increase in humidity or temperature levels.

• PC: Using the computer, identified by the power con-
sumption of the device and presence in the designated
workspace.

• Sleep: Sleeping in an extended period in the bedroom,
specifically in the area near the bed.

• Kitchen: Remaining in the kitchen and interacting with
kitchen appliances, such as the microwave, stove and
fridge.

Fig. 10. NFC tagging system used during the data collection period to label
daily activities. NFC tags were strategically placed near specific areas where
activities commonly occurred, allowing users to annotate their actions using
a mobile application quickly.
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C. Dataset description
The dataset is designed for the analysis of HAR and

interaction patterns within a multi-occupancy environment.
It combines raw sensor data and processed information that
captures the interactions of users with various household
elements and their movements throughout the space. Data
are collected from a variety of ambient sensors and wearable
devices from the UWB, providing comprehensive insights into
user behaviour, activity patterns, and sensor interactions. The
dataset is publicly accessible on the Kaggle platform [40] 1 and
comprises a wider range of ambient sensors than those used
in this study. The full dataset is accessible to the scientific
community for research purposes. Additionally, to promote
scientific replicability and encourage advances in future work,
we have included the source code of models, pre-processing
data, and results publicly accessible on GitHub:2.

The dataset comprises a total of 15 days recorded in a real
environment (see Section IV-A) and is structured into two main
folders: raw-har and data-har.

1) Description of the ‘raw-har’ folder: The ‘raw-har‘
folder contains three primary subfolders that organise the
raw sensor data collected from various devices deployed in
the environment. In this dataset, we have indeed included
the raw, continuous signals collected from the sensors. Each
subfolder contains data corresponding to different types of
sensors, which capture various aspects of user interactions,
environmental conditions, and positioning data. Below is a
detailed description of each subfolder and its contents:

• Binary: This subfolder contains raw data from all
binary sensors deployed in the environment, such as
door/window sensors, motion sensors, and presence sen-
sors.

– Data Format: The files are in Tab-Separated Values
(TSV) format, where each row contains:
∗ Timestamp: Time in seconds since the epoch

(UNIX timestamp).
∗ Formatted Date: Human-readable date and time

(e.g., 2024-05-03 21:04:10).
∗ Sensor Value (day.*_presence,
day.*_apertura): The status of the sensor,
usually 0 or 1, indicating the sensor state (e.g.,
on/off, detected/not detected).

• Sensor: This subfolder contains data from non-binary
environmental sensors, such as temperature, humidity,
and power consumption sensors.

– Data Format: The files are also in TSV format,
capturing various measurements:
∗ Timestamp: Time in seconds since the epoch.
∗ Formatted Date: Date and time in human-

readable format.
∗ Sensor Value: Depending on the sensor type, the

value could represent:
· Temperature (day.temp_*): Measured in

degrees Celsius.

1https://www.kaggle.com/datasets/aurorapolorodriguez/
multi-occupancy-activity-recognition

2https://github.com/AuroraPR/Multiuser-HAR-Fusion

· Humidity (day.hum_*): Measured as a per-
centage (%).

· Power Consumption
(day.*_current_consumption):
Measured in watts (W).

• ‘Ubitrack-uwb’: This subfolder holds data from the
UWB localisation system, which provides detailed loca-
tion information of users within the environment.

– Data Format: The files are also in TSV format:

∗ Timestamp: Time in seconds since the epoch.
∗ Formatted Date: Date and time in human-

readable format.
∗ UWB Values: The value could represent:

· Source Data (day.user.sourcedata):
Files with distance readings between UWB tags
(worn by users) and anchors (fixed reference
points), measured in centimetres. This data
helps determine the exact location of the user
within the space.

· RSSI Data (day.user.rssi): Files con-
taining RSSI values indicating signal strength
between the user’s UWB device and each an-
chor, providing additional context on the relative
positioning of the user.

2) Description of the ‘data-har’ folder: The ‘data-har‘
folder contains processed data organised by days, which
integrates sensor readings into more interpretable formats
such as heatmaps, interval logs, and aggregated sensor data.
This processed data is essential for understanding daily user
activities and interactions. Below is a detailed description of
each subfolder and its contents:

• Heatmaps of User Localisation
(other.user.activity): This section contains
visual representations of user locations during specific
activities, providing a spatial distribution of the user
within the environment on a specific day.

– Data Format: The files are in PNG format, rep-
resenting heatmaps that highlight areas of fre-
quent presence during different activities (e.g.,
0001.cooking.png).

• Activity Interval Logs (INTERVAL.user.all):
These files contain tab-separated values with start and
end times of activities throughout the day, along with
activity type and index ranges.

– Data Format: Each row in the TSV files includes:

∗ Activity Type: The specific activity being
recorded (e.g., kitchen, cooking, sleep).

∗ Index Range: The range of indices representing
the sequence of timestamps related to the activity
(e.g., (1, 5)).

∗ Start Time: The start date and time of the activity
in a human-readable format (e.g., 2024-07-31
02:01:00).

∗ End Time: The end date and time of the activity
(e.g., 2024-07-31 02:05:00).
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– Example (INTERVAL.0001.all): Represents the
specific intervals when user 0001 was engaged in
cooking.

• ‘Object sensor’: Contains aggregated data from environ-
mental sensors, aggregated by minute.

– Data Format: The files are in TSV format, including:
∗ Timestamp: Human-readable date and time.
∗ Sensor Values: For binary sensors, a value of

‘1‘ is applied if the sensor was activated during
that minute; otherwise, it is ‘0‘. For sensors with
values other than ‘0‘ or ‘1‘, the median of the val-
ues obtained during that minute is calculated (e.g.,
power consumption in watts, humidity percentage
or temperature in degrees Celsius).

• ‘Act’: Includes files that document the processing of
activities, including labels, location data, and predictions.
The files are in TSV format, capturing details as follows:

– Activity Labels (LABEL.user.activity): De-
fines ground truth labels for users and activities per
minute.
∗ Data Format:

- Timestamp: Human-readable date and time.
- Activity Value: Binary value indicating whether
activity occurred (True) or not (False).

– Location Data (loc.user.activity): Repre-
sents the spatial interaction degree of a user in a
zone associated with an activity.
∗ Data Format:

- Timestamp: Human-readable date and time.
- Interaction Degree: A numeric value represent-
ing the level of interaction or presence within the
specified zone.

∗ Example: loc.0001.cooking.tsv shows the
calculated interaction degree of user 0001 in the
cooking zone.

– Predictions (PREDICTION.user.activity):
Contains model predictions of user activities, used
to compare against labelled data for evaluation.
∗ Data Format:

- Timestamp: Human-readable date and time.
- Prediction Value: A numeric value between 0
and 1 indicating the prediction by the model of
the degree of activity.

• ‘User agg’ Contains heatmaps of user localization
minute by minute.

– Data Format: The files are in PNG format, each
representing a heatmap showing the user’s location
within the environment per minute

D. Evaluation

In this work, we used a one-day cross-validation approach to
evaluate the performance of the models. This method assesses
the ability of the model to generalise and recognise activities
on different days and users, capturing the variability in the
data. The evaluation involves using one day as the test set

while the remaining days are used for training. This process
is repeated so that each day in the dataset serves as a test
day once, ensuring a thorough and unbiased evaluation of the
model performance under varying temporal conditions.

For each iteration, the users who are active on the selected
test day and their activities are identified. Training examples
are then created from the data of all other days, generating
both positive examples (where specific activities are present)
and negative examples (where those activities are absent). This
random selection captures sequences of sensor and location
data that represent the natural variability in human behaviour.
The generated training data is then used to train the models,
which optimises their parameters to recognise the activities
from the sensor data, adapting to the diverse patterns in the
training set. To evaluate the model, test data are prepared using
only data from the selected test day. These test sequences are
similar to the training data but entirely new to the model,
testing its ability to predict activities in an unseen context.
The predictions of the model on the test data are compared
with the actual labels, and its performance is evaluated using
standard metrics such as accuracy, precision, recall, and F1-
score.

Several models have been evaluated: [GRU], [LSTM],
[CNN + GRU + ATT], [CNN + ATT + GRU + ATT],
[Transformer+multihead] and [Transformer+position encod-
ing], which are described in detail in SectionIII-D. In ad-
dition, two temporal windows are proposed for including
the performance of real-time and delayed temporal windows
[41]: 40+0) a temporal window of 45 past minutes, which
configures a sliding sequence of 45 elements for each input,
30+15) a delayed temporal window of 30 past minutes and 15
ongoing minutes, which also configure a sliding sequence of
45 elements for each input. We note that the configuration 40
+ 0 provides real-time recognition performance and 30+15 a
delayed 15-minute performance in activity recognition.

In addition, a parameter N is used to define a tolerance
range in the evaluation of the prediction metrics, allowing
matches between the prediction and the ground truth not only
at the exact index, but also within the N positions forward
and backward. This introduces flexibility in the evaluation by
capturing nearby matches that reflect the prediction quality
when slight temporal misalignments are acceptable. In our
analysis, the evaluation was carried out with tolerances N = 0
and N = 3 minutes. The time margin N is relevant for
removing prediction delays that are unavoidable in some cases
of user movement, offering dispersed trajectories, or sensor
activations that are triggered or deactivated with delay. For
example, it is especially sensitive in the “shower” activity
where the activation of the humidity sensor takes several
minutes to activate, so the prediction of the activity may take
a few minutes, even if it is performed correctly.

We describe the results of evaluating the proposed models
with inputs of ambient sensor, user location and collective
location in the next tables:

• Tables I and II describe the performance of [GRU] with
[30+15] and [40+5] minutes of time windows, respec-
tively.
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• Tables III and IV describe the performance of the model
[LSTM] with [30+15] and [40+5] minutes of time win-
dows, respectively.

• Tables V and VI describe the performance of the model
[CNN+GRU+ATT] with [30+15] and [40+5] minutes of
time windows, respectively.

• Tables VII and VIII describe the performance of the
model [CNN+ATT+GRU+ATT] with [30+15] and [40+5]
minutes of time windows, respectively.

• Tables IX and X describe the performance of the model
[Transformer+multihead] with [30+15] and [40+5] min-
utes of time windows, respectively.

• Tables XI and XII describe the performance of the
model [Transformer+position encoding] with [30+15] and
[40+5] minutes of time windows, respectively.

TABLE I
PERFORMANCE OF THE GRU MODEL WITH A 30+15 TIME WINDOW (30
MINUTES IN THE PAST AND 15 MINUTES INTO THE FUTURE). METRICS

INCLUDE ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1
SCORE (F1).

GRU 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,97 - 0,98 0,83 - 0,87 0,95 - 0,94 0,87 - 0,88
resting 0,97 - 0,97 0,96 - 0,97 0,98 - 0,98 0,97 - 0,97

exit 0,99 - 1,00 0,80 - 0,94 0,94 - 0,99 0,86 - 0,96
cooking 1,00 - 1,00 0,80 - 0,88 0,89 - 0,96 0,79 - 0,90
shower 1,00 - 1,00 0,90 - 0,95 0,99 - 0,99 0,92 - 0,96

pc 0,98 - 0,98 0,99 - 1,00 0,99 - 1,00 0,99 - 1,00
sleep 0,97 - 0,98 0,68 - 0,78 0,94 - 0,98 0,76 - 0,84

kitchen 0,99 - 1,00 0,79 - 0,90 0,97 - 1,00 0,87 - 0,94
TOTAL 0,98 - 0,99 0,85 - 0,91 0,96 - 0,98 0,88 - 0,93

TABLE II
PERFORMANCE OF THE GRU MODEL WITH A 45+0 TIME WINDOW (45
MINUTES IN THE PAST ONLY). METRICS INCLUDE ACCURACY (ACC),

PRECISION (PRE), RECALL (REC), AND F1 SCORE (F1).

GRU 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,96 - 0,97 0,72 - 0,80 0,86 - 0,95 0,78 - 0,86
resting 0,96 - 0,97 0,93 - 0,94 0,95 - 0,96 0,93 - 0,95

exit 0,95 - 0,97 0,31 - 0,55 0,67 - 0,97 0,41 - 0,69
cooking 0,99 - 1,00 0,68 - 0,80 0,86 - 0,97 0,71 - 0,84
shower 0,99 - 1,00 0,90 - 0,93 0,96 - 0,99 0,92 - 0,94

pc 0,97 - 0,98 0,97 - 0,99 0,98 - 0,99 0,98 - 0,99
sleep 0,95 - 0,97 0,60 - 0,69 0,83 - 0,94 0,67 - 0,76

kitchen 0,95 - 0,97 0,27 - 0,51 0,66 - 0,98 0,37 - 0,66
TOTAL 0,97 - 0,98 0,68 - 0,78 0,85 - 0,97 0,73 - 0,84

1) Evaluation using uniquely individual location: This sec-
tion presents a targeted evaluation to assess the impact of
integrating the individual location of the user being evaluated,
without utilising the aggregated location data of other users.
For this purpose, the model with the best performance has
been employed, as analysed in the previous section.

This evaluation is crucial to account for the influence of
other individuals on the recognition of patterns that affect the
classification of each individual. To achieve this, we have
removed the input to the model that captures the location
patterns of other users, leaving only the individual location and
sensor activation data. Furthermore, it is important because it
allows us to understand the potential loss of precision and

TABLE III
PERFORMANCE OF THE LSTM MODEL WITH A 30+15 TIME WINDOW (30

MINUTES IN THE PAST AND 15 MINUTES INTO THE FUTURE). METRICS
INCLUDE ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1

SCORE (F1).

LSTM 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,96 - 0,97 0,77 - 0,82 0,95 - 0,96 0,82 - 0,86
resting 0,98 - 0,98 0,99 - 0,99 0,98 - 0,99 0,98 - 0,99

exit 0,99 - 1,00 0,71 - 0,88 0,96 - 1,00 0,81 - 0,93
cooking 1,00 - 1,00 0,67 - 0,75 0,89 - 0,97 0,70 - 0,81
shower 0,99 - 0,99 0,92 - 0,93 0,94 - 0,95 0,91 - 0,93

pc 0,98 - 0,98 0,99 - 1,00 0,99 - 0,99 0,99 - 1,00
sleep 0,97 - 0,98 0,70 - 0,81 0,92 - 0,95 0,77 - 0,86

kitchen 0,99 - 1,00 0,79 - 0,90 0,97 - 1,00 0,86 - 0,94
TOTAL 0,98 - 0,99 0,82 - 0,88 0,95 - 0,98 0,86 - 0,91

TABLE IV
PERFORMANCE OF THE LSTM MODEL WITH A 45+0 TIME WINDOW (30
MINUTES IN THE PAST AND 15 MINUTES INTO THE FUTURE). METRICS

INCLUDE ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1
SCORE (F1).

LSTM 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,95 - 0,96 0,70 - 0,76 0,86 - 0,94 0,74 - 0,81
resting 0,97 - 0,97 0,97 - 0,98 0,97 - 0,98 0,97 - 0,98

exit 0,94 - 0,97 0,28 - 0,53 0,67 - 0,99 0,38 - 0,68
cooking 0,99 - 1,00 0,72 - 0,77 0,85 - 0,96 0,75 - 0,83
shower 0,99 - 0,99 0,88 - 0,93 0,98 - 0,98 0,90 - 0,93

pc 0,97 - 0,97 0,96 - 0,98 0,99 - 0,99 0,97 - 0,99
sleep 0,94 - 0,97 0,63 - 0,70 0,86 - 0,93 0,71 - 0,77

kitchen 0,95 - 0,97 0,28 - 0,52 0,65 - 0,99 0,38 - 0,66
TOTAL 0,96 - 0,98 0,68 - 0,77 0,85 - 0,97 0,73 - 0,83

recall in configurations where, due to privacy concerns, only
the location of the user being evaluated can be considered.

We describe the results of evaluating the proposed models
with inputs of ambient sensor and user location without the
collective location of other users in the next tables:

• Tables XIII and XIV describe the performance of [GRU]
with [30+15] and [40+5] minutes of time windows,
respectively.

• Tables XV and XVI describe the performance of the
model [LSTM] with [30+15] and [40+5] minutes of time
windows, respectively.

• Tables XVII and XVIII describe the performance of
the model [CNN+GRU+ATT] with [30+15] and [40+5]
minutes of time windows, respectively.

• Tables XIX and XX describe the performance of the
model [CNN+ATT+GRU+ATT] with [30+15] and [40+5]
minutes of time windows, respectively.

• Tables XXI and XXII describe the performance of the
model [Transformer+multihead] with [30+15] and [40+5]
minutes of time windows, respectively.

• Tables XXIII and XXIV describe the performance of the
model [Transformer+position encoding] with [30+15] and
[40+5] minutes of time windows, respectively.

E. Discussion

Comparative analysis of CNN + GRU + ATT and GRU
models in the 30+15 and 45+0 time window configurations
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TABLE V
PERFORMANCE OF THE CNN+GRU+ATT MODEL WITH A 30+15 TIME

WINDOW (30 MINUTES IN THE PAST AND 15 MINUTES INTO THE FUTURE).
METRICS INCLUDE ACCURACY (ACC), PRECISION (PRE), RECALL

(REC), AND F1 SCORE (F1).

CNN+GRU+ATT 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,98 - 0,98 0,84 - 0,89 0,93 - 0,98 0,89 - 0,93
resting 0,98 - 0,98 0,99 - 0,99 0,98 - 0,99 0,98 - 0,99

exit 0,99 - 1,00 0,84 - 0,93 0,95 - 0,99 0,88 - 0,96
cooking 1,00 - 1,00 0,82 - 0,93 0,91 - 0,96 0,82 - 0,94
shower 1,00 - 1,00 0,91 - 0,94 0,95 - 0,97 0,90 - 0,94

pc 0,98 - 0,98 0,99 - 0,99 0,99 - 1,00 0,99 - 1,00
sleep 0,98 - 0,99 0,76 - 0,84 0,91 - 0,96 0,82 - 0,88

kitchen 1,00 - 1,00 0,84 - 0,92 0,97 - 1,00 0,90 - 0,95
TOTAL 0,99 - 0,99 0,88 - 0,93 0,95 - 0,98 0,90 - 0,95

TABLE VI
PERFORMANCE OF THE CNN+GRU+ATT MODEL WITH A 45+0 TIME

WINDOW (45 MINUTES IN THE PAST ONLY). METRICS INCLUDE
ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1 SCORE

(F1).

CNN+GRU+ATT 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,95 - 0,97 0,74 - 0,77 0,91 - 0,97 0,79 - 0,83
resting 0,97 - 0,98 0,96 - 0,97 0,98 - 0,99 0,96 - 0,98

exit 0,96 - 0,98 0,36 - 0,64 0,62 - 0,97 0,44 - 0,76
cooking 1,00 - 1,00 0,63 - 0,77 0,80 - 0,98 0,67 - 0,83
shower 1,00 - 1,00 0,88 - 0,93 0,97 - 0,99 0,90 - 0,94

pc 0,97 - 0,98 0,97 - 0,99 0,99 - 1,00 0,98 - 0,99
sleep 0,95 - 0,97 0,59 - 0,70 0,84 - 0,97 0,67 - 0,79

kitchen 0,96 - 0,98 0,36 - 0,59 0,60 - 0,99 0,44 - 0,73
TOTAL 0,97 - 0,98 0,69 - 0,80 0,84 - 0,98 0,74 - 0,86

reveals significant differences in the performance and classi-
fication accuracy of various activities. The results obtained,
discussed below, provide an interpretation of the factors that
may have influenced the performance of the models.

The 30+15 configuration, which includes 30 minutes in the
past and 15 minutes in the future, shows markedly better
performance compared to the 45+0 configuration, which only
considers 45 minutes in the past. The ability of the 30+15
configuration to capture information from both the recent
past and the near future provides a considerable advantage
in activity classification, allowing models to better interpret
temporal transitions and patterns in the data. N-tolerance also
plays a crucial role, as it allows the model to better handle
temporal variations and adapt to changes in sensor data. In
the CNN+GRU+ATT model, this configuration results in high
accuracy values and F1 scores for activities such as “resting”
and “pc”. Integrating a time window into the future allows
models to more effectively anticipate and differentiate between
activities that may have similar characteristics in the past time
window. This anticipatory capability is crucial for accurate
identification of activities involving long patterns or subtle
changes in the data. The N = 3 tolerance also improves the
model’s ability to handle transitions and variations in activities
with complex or less predictable patterns.

In contrast, the 45+0 configuration, which only uses data
from the past without considering the future, shows a decrease
in performance, especially in activities such as “exit” and
“kitchen”. This reduction in accuracy and F1 score suggests

TABLE VII
PERFORMANCE OF THE CNN+ATT+GRU+ATT MODEL WITH A 30+15
TIME WINDOW (30 MINUTES IN THE PAST AND 15 MINUTES INTO THE
FUTURE). METRICS INCLUDE ACCURACY (ACC), PRECISION (PRE),

RECALL (REC), AND F1 SCORE (F1).

CNN+ATT+GRU+ATT 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,97 - 0,98 0,84 - 0,84 0,93 - 0,95 0,86 - 0,87
resting 0,98 - 0,98 0,98 - 0,98 0,98 - 0,99 0,98 - 0,98

exit 0,99 - 1,00 0,81 - 0,92 0,94 - 0,99 0,86 - 0,96
cooking 1,00 - 1,00 0,69 - 0,83 0,95 - 0,98 0,76 - 0,88
shower 1,00 - 1,00 0,93 - 0,92 0,99 - 0,95 0,94 - 0,92

pc 0,98 - 0,98 0,99 - 1,00 0,99 - 1,00 0,99 - 1,00
sleep 0,98 - 0,99 0,73 - 0,82 0,92 - 0,96 0,79 - 0,86

kitchen 0,99 - 1,00 0,79 - 0,90 0,97 - 1,00 0,87 - 0,94
TOTAL 0,98 - 0,99 0,84 - 0,90 0,96 - 0,98 0,88 - 0,93

TABLE VIII
PERFORMANCE OF THE CNN+ATT+GRU+ATT MODEL WITH A 45+0
TIME WINDOW (30 MINUTES IN THE PAST AND 15 MINUTES INTO THE
FUTURE). METRICS INCLUDE ACCURACY (ACC), PRECISION (PRE),

RECALL (REC), AND F1 SCORE (F1).

CNN+ATT+GRU+ATT 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,96 - 0,97 0,74 - 0,80 0,86 - 0,95 0,77 - 0,84
resting 0,97 - 0,97 0,95 - 0,97 0,97 - 0,99 0,96 - 0,97

exit 0,96 - 0,98 0,35 - 0,63 0,59 - 0,97 0,43 - 0,75
cooking 0,99 - 1,00 0,63 - 0,77 0,87 - 0,98 0,67 - 0,84
shower 0,99 - 1,00 0,87 - 0,89 0,96 - 0,97 0,88 - 0,91

pc 0,97 - 0,98 0,98 - 0,99 0,99 - 1,00 0,98 - 0,99
sleep 0,95 - 0,97 0,60 - 0,66 0,80 - 0,95 0,67 - 0,74

kitchen 0,96 - 0,98 0,34 - 0,60 0,62 - 0,99 0,43 - 0,74
TOTAL 0,97 - 0,98 0,68 - 0,79 0,83 - 0,97 0,72 - 0,85

that the lack of information about the future limits the ability
of the model to capture changes and transitions between activ-
ities. Activities with more subtle patterns or rapid transitions
may not be adequately differentiated with past information
alone, resulting in a higher classification error rate. The N
tolerance also affects this configuration, as a lower tolerance
may not be sufficient to capture subtle variations in the data.

Another important factor in interpreting the results is the
influence of sensors and environmental parameters, such as
humidity and temperature, on the classification of activity.
Activities such as “showering” and “cooking” are associated
with sensors that measure specific changes in humidity and
temperature, which is clearly reflected in the classification
results. These activities have more detailed and specific rules
that use multiple sensors to capture changes in these parame-
ters, which contributes to a more accurate identification in the
30+15 configuration. N-tolerance also helps to better capture
these variations, improving the classification accuracy. On the
other hand, activities such as “exit” and “kitchen” present
classification challenges due to the generality of the rules
and the lack of specific environmental parameters. The “exit”
activity, for example, may involve less distinct changes in
sensor data, which can make it difficult to identify correctly.
The 45+0 configuration, by not considering information from
the future, may exacerbate these problems by not capturing
subtle transitions or patterns that could help better differentiate
these activities.

The CNN + GRU + ATT model generally outperforms other
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TABLE IX
PERFORMANCE OF THE TRANSFORMER+MULTIHEAD MODEL WITH A

30+15 TIME WINDOW (30 MINUTES IN THE PAST AND 15 MINUTES INTO
THE FUTURE). METRICS INCLUDE ACCURACY (ACC), PRECISION (PRE),

RECALL (REC), AND F1 SCORE (F1).

Transformer+multihead 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,92 - 0,93 0,66 - 0,66 0,84 - 0,92 0,69 - 0,72
resting 0,94 - 0,95 0,92 - 0,93 0,88 - 0,92 0,89 - 0,92

exit 0,97 - 0,98 0,44 - 0,64 0,87 - 0,97 0,56 - 0,76
cooking 1,00 - 1,00 0,75 - 0,79 0,87 - 0,98 0,77 - 0,85
shower 0,98 - 0,99 0,94 - 0,91 0,95 - 0,96 0,93 - 0,91

pc 0,96 - 0,97 0,98 - 0,99 0,96 - 0,98 0,97 - 0,98
sleep 0,96 - 0,98 0,63 - 0,73 0,85 - 0,98 0,70 - 0,81

kitchen 0,97 - 0,98 0,45 - 0,63 0,90 - 0,99 0,59 - 0,76
TOTAL 0,96 - 0,97 0,72 - 0,78 0,89 - 0,96 0,76 - 0,84

TABLE X
PERFORMANCE OF THE TRANSFORMER+MULTIHEAD MODEL WITH A

45+0 TIME WINDOW (30 MINUTES IN THE PAST AND 15 MINUTES INTO
THE FUTURE). METRICS INCLUDE ACCURACY (ACC), PRECISION (PRE),

RECALL (REC), AND F1 SCORE (F1).

Transformer+multihead 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,89 - 0,90 0,53 - 0,57 0,75 - 0,89 0,58 - 0,64
resting 0,93 - 0,93 0,87 - 0,89 0,88 - 0,92 0,87 - 0,90

exit 0,92 - 0,95 0,21 - 0,45 0,72 - 0,99 0,31 - 0,60
cooking 0,99 - 1,00 0,78 - 0,70 0,90 - 0,95 0,81 - 0,76
shower 0,98 - 0,98 0,92 - 0,88 0,93 - 0,96 0,92 - 0,90

pc 0,95 - 0,96 0,95 - 0,96 0,94 - 0,97 0,94 - 0,96
sleep 0,93 - 0,95 0,52 - 0,56 0,86 - 0,96 0,61 - 0,66

kitchen 0,93 - 0,95 0,19 - 0,41 0,65 - 0,97 0,29 - 0,56
TOTAL 0,94 - 0,95 0,62 - 0,68 0,83 - 0,95 0,66 - 0,75

models in terms of accuracy and F1 score, particularly in the
30 + 15 configuration. This can be attributed to the ability
of the CNN + GRU + ATT to take advantage of both spatial
(captured by the convolutional layers) and temporal (captured
by the recurrent and ATT layers) features. The combination
of these capabilities allows the model to perform a more
accurate and robust classification of complex activities. The
N-tolerance in this configuration also improves the model’s
ability to handle subtle temporal patterns and transitions.

In the CNN+GRU+ATT configuration of 45+0 (Table VI)
with N = 0, the overall performance is lower, with an average
F1 of 0.74. Although “resting” and “pc” still show high scores
(0.96 and 0.98), activities such as “exit” and “kitchen” have
low F1-s (0.44). When using N = 3, overall performance
improves to an average F1 of 0.86, with better scores for
activities such as “exit” and “kitchen”, although still lower
than “resting” and “pc”.

The CNN + GRU + ATT configuration with a temporal
window of 30 + 15 (Table V) and N = 0, the model
presents an outstanding performance with an average F1 of
0.9. Activities such as “resting” and “pc” stand out with F1
close to 0.99, while “cooking” and “sleep” have lower results,
with F1 of 0.82. With N = 3, performance improves overall,
reaching an average F1 of 0.94. F1 scores for “resting” and
“pc” remain high, and activities such as “cooking” and “sleep”
also improve markedly.

In comparison, the GRU and LSTM model, while also
showing good performance in the 30+15 configuration, tends

TABLE XI
PERFORMANCE OF THE TRANSFORMER+POSITION ENCODING MODEL

WITH A 30+15 TIME WINDOW (30 MINUTES IN THE PAST AND 15
MINUTES INTO THE FUTURE). METRICS INCLUDE ACCURACY (ACC),

PRECISION (PRE), RECALL (REC), AND F1 SCORE (F1).

Transformer+position encoding 30+15
Activity ACC N0-N3 PRE N0-N3 REC N0-N3 F1 N0-N3

toileting 0,96 - 0,97 0,76 - 0,79 0,92 - 0,96 0,81 - 0,84
resting 0,98 - 0,98 0,99 - 0,99 0,96 - 0,98 0,97 - 0,98

exit 0,99 - 1,00 0,71 - 0,89 0,94 - 1,00 0,80 - 0,94
cooking 1,00 - 1,00 0,73 - 0,86 0,88 - 0,97 0,73 - 0,88
shower 1,00 - 1,00 0,92 - 0,94 0,98 - 1,00 0,93 - 0,96

pc 0,98 - 0,98 0,99 - 1,00 0,99 - 1,00 0,99 - 1,00
sleep 0,97 - 0,98 0,66 - 0,77 0,94 - 0,98 0,74 - 0,84

kitchen 0,99 - 1,00 0,77 - 0,89 0,95 - 1,00 0,84 - 0,93
TOTAL 0,98 - 0,99 0,82 - 0,89 0,95 - 0,98 0,85 - 0,92

TABLE XII
PERFORMANCE OF THE TRANSFORMER+POSITION ENCODING MODEL

WITH A 45+0 TIME WINDOW (45 MINUTES IN THE PAST ONLY). METRICS
INCLUDE ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1

SCORE (F1).

Transformer+position encoding 45+0
Activity ACC N0-N3 PRE N0-N3 REC N0-N3 F1 N0-N3

toileting 0,95 - 0,96 0,72 - 0,75 0,89 - 0,95 0,77 - 0,81
resting 0,97 - 0,98 0,97 - 0,98 0,97 - 0,99 0,97 - 0,98

exit 0,95 - 0,97 0,30 - 0,59 0,72 - 0,99 0,42 - 0,73
cooking 0,99 - 1,00 0,60 - 0,76 0,81 - 0,97 0,63 - 0,82
shower 0,99 - 0,99 0,85 - 0,90 0,97 - 0,99 0,88 - 0,92

pc 0,97 - 0,98 0,97 - 0,98 0,99 - 1,00 0,98 - 0,99
sleep 0,94 - 0,96 0,56 - 0,59 0,90 - 0,97 0,65 - 0,69

kitchen 0,93 - 0,95 0,22 - 0,45 0,77 - 0,99 0,33 - 0,61
TOTAL 0,96 - 0,97 0,65 - 0,75 0,88 - 0,98 0,70 - 0,82

to be less effective in accurately identifying activities with
complex or subtle patterns, especially in the 45+0 configu-
ration. This suggests that the GRU model, lacking the ATT
component, may face greater difficulties in interpreting data
sequences with rapid temporal changes or less obvious pat-
terns. The GRU-based model achieved slightly better results
than LSTM in terms of both complexity and F1-score.

The GRU configuration of 30+15 (Table I) with N = 0,
the model achieves an average F1 of 0.88. Activities such
as “resting”, “pc” and “shower” have high F1 scores (0.97,
0.99 and 0.92), while “sleep” and “cooking” present lower
values (0.76 and 0.79). With N = 3, performance improves
to an average F1 of 0.93, with high scores for most activities,
particularly for “resting”, “pc” and “shower”.

The GRU configuration of 45+0 (Table II) with N = 0,
overall performance is moderate, with an average F1 of 0.73.
Activities such as “resting” and “pc” obtain good F1 scores
(0.93 and 0.98), but “exit” and “kitchen” have low F1s
(0.41 and 0.37). With N = 3, performance improves to an
average F1 of 0.84, with notable improvement in activities
such as “exit” and “kitchen”, although they are still lower
than “resting” and “pc”.

It is observed that the definition of the temporal window and
the tolerance parameter of recognition has a significant impact
on performance. The CNN + GRU + ATT configuration with a
temporal window of 30 + 15 and N = 3 offers the best overall
performance, with an average F1 of 0.95. This model shows a
noticeable improvement in classifying activities as “cooking”
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TABLE XIII
PERFORMANCE OF THE GRU (WITHOUT COLLECTIVE LOCATIONS)

MODEL WITH A 30+15 TIME WINDOW (30 MINUTES IN THE PAST AND 15
MINUTES INTO THE FUTURE). METRICS INCLUDE ACCURACY (ACC),

PRECISION (PRE), RECALL (REC), AND F1 SCORE (F1).

GRU (without collective locations) 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,96 - 0,97 0,79 - 0,83 0,92 - 0,95 0,83 - 0,87
resting 0,98 - 0,98 0,98 - 0,99 0,98 - 0,99 0,98 - 0,99

exit 0,99 - 1,00 0,80 - 0,92 0,93 - 0,99 0,85 - 0,95
cooking 1,00 - 1,00 0,75 - 0,89 0,88 - 0,97 0,77 - 0,91
shower 1,00 - 1,00 0,92 - 0,95 1,00 - 0,98 0,93 - 0,95

pc 0,98 - 0,98 0,99 - 1,00 0,99 - 1,00 0,99 - 1,00
sleep 0,97 - 0,98 0,66 - 0,77 0,93 - 0,97 0,73 - 0,82

kitchen 0,99 - 1,00 0,80 - 0,90 0,97 - 1,00 0,86 - 0,94
TOTAL 0,98 - 0,99 0,84 - 0,90 0,95 - 0,98 0,87 - 0,93

TABLE XIV
PERFORMANCE OF THE GRU (WITHOUT COLLECTIVE LOCATIONS)

MODEL WITH A 45+0 TIME WINDOW (45 MINUTES IN THE PAST ONLY).
METRICS INCLUDE ACCURACY (ACC), PRECISION (PRE), RECALL

(REC), AND F1 SCORE (F1).

GRU (without collective locations) 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,95 - 0,97 0,73 - 0,79 0,86 - 0,95 0,77 - 0,84
resting 0,97 - 0,97 0,95 - 0,97 0,98 - 0,99 0,96 - 0,98

exit 0,95 - 0,97 0,31 - 0,56 0,66 - 0,97 0,40 - 0,69
cooking 1,00 - 1,00 0,67 - 0,80 0,87 - 0,96 0,70 - 0,85
shower 0,99 - 0,99 0,86 - 0,91 0,96 - 1,00 0,88 - 0,94

pc 0,97 - 0,98 0,97 - 0,98 0,99 - 1,00 0,98 - 0,99
sleep 0,94 - 0,97 0,61 - 0,68 0,85 - 0,95 0,68 - 0,75

kitchen 0,94 - 0,97 0,26 - 0,48 0,67 - 0,98 0,36 - 0,64
TOTAL 0,96 - 0,98 0,67 - 0,77 0,86 - 0,98 0,72 - 0,83

and “sleep” as the tolerance of N increases, highlighting
its ability to handle temporal variability in predictions. In
contrast, the same configuration with N = 0 performs poorly,
with an average F1 of 0.90, indicating that a larger tolerance
range in the evaluation may be beneficial in capturing more
complex patterns in the data.

In comparison, the CNN + GRU + ATT configuration with
the 45 + 0 window shows a decrease in performance, with an
average F1 of 0.74 and 0.86 for N = 0 and N = 3, respec-
tively. Providing real-time recognition for delayed recognition
is the cause of slightly decreasing performance. Although the
addition of N = 3 improves the results, the performance
is still lower than the 30 + 15 window configuration. This
suggests that a wider time window without proper tolerance
may introduce noise or dilute the model’s ability to make
accurate predictions. However, the GRU configuration with the
30 + 15 window shows consistent performance with an average
F1 of 0.88 and 0.93 for N = 0 and N = 3, respectively,
indicating that the GRU model is robust to changes in the
parameter N. The 45+0 GRU configuration also improves with
N = 3, achieving an average F1 of 0.84 versus 0.73 with
N = 0. However, it remains less effective compared to the
CNN+GRU+ATT configurations.

The Transformer-based models, while demonstrating good
overall performance, did not surpass the CNN + GRU + ATT
model. This suggests that the explicit extraction of spatial and
temporal features by the CNN and GRU layers, combined with
the ATT mechanism, provides a more effective representation

TABLE XV
PERFORMANCE OF THE LSTM (WITHOUT COLLECTIVE LOCATIONS)

MODEL WITH A 30+15 TIME WINDOW (30 MINUTES IN THE PAST AND 15
MINUTES INTO THE FUTURE). METRICS INCLUDE ACCURACY (ACC),

PRECISION (PRE), RECALL (REC), AND F1 SCORE (F1).

LSTM (without collective locations) 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,96 - 0,97 0,81 - 0,83 0,93 - 0,94 0,85 - 0,86
resting 0,98 - 0,98 0,98 - 0,99 0,98 - 0,99 0,98 - 0,99

exit 0,99 - 1,00 0,79 - 0,92 0,95 - 0,99 0,86 - 0,95
cooking 1,00 - 1,00 0,75 - 0,81 0,88 - 0,96 0,75 - 0,86
shower 0,99 - 0,99 0,90 - 0,93 0,99 - 1,00 0,92 - 0,95

pc 0,98 - 0,98 0,99 - 1,00 0,99 - 1,00 0,99 - 1,00
sleep 0,97 - 0,98 0,74 - 0,79 0,92 - 0,96 0,79 - 0,84

kitchen 0,99 - 1,00 0,72 - 0,85 0,97 - 1,00 0,82 - 0,91
TOTAL 0,98 - 0,99 0,84 - 0,89 0,95 - 0,98 0,87 - 0,92

TABLE XVI
PERFORMANCE OF THE LSTM (WITHOUT COLLECTIVE LOCATIONS)

MODEL WITH A 45+0 TIME WINDOW (30 MINUTES IN THE PAST AND 15
MINUTES INTO THE FUTURE). METRICS INCLUDE ACCURACY (ACC),

PRECISION (PRE), RECALL (REC), AND F1 SCORE (F1).

LSTM (without collective locations) 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,96 - 0,97 0,72 - 0,79 0,87 - 0,94 0,78 - 0,84
resting 0,97 - 0,98 0,96 - 0,98 0,97 - 0,98 0,96 - 0,98

exit 0,95 - 0,97 0,28 - 0,54 0,68 - 0,98 0,39 - 0,68
cooking 0,99 - 1,00 0,65 - 0,76 0,87 - 0,96 0,69 - 0,82
shower 0,99 - 1,00 0,90 - 0,94 0,97 - 0,98 0,90 - 0,94

pc 0,97 - 0,98 0,97 - 0,98 0,99 - 1,00 0,98 - 0,99
sleep 0,94 - 0,97 0,53 - 0,63 0,82 - 0,94 0,61 - 0,72

kitchen 0,95 - 0,97 0,28 - 0,50 0,65 - 0,99 0,38 - 0,66
TOTAL 0,96 - 0,98 0,66 - 0,77 0,85 - 0,97 0,71 - 0,83

for this specific task. In particular, the Transformer model with
positional encoding exhibited competitive results, indicating
the importance of incorporating temporal order information
for activity recognition. However, it appears that the benefits
of positional encoding, while contributing to competitive per-
formance, were not sufficient to outperform the CNN + GRU
+ ATT approach. Furthermore, the CNN + GRU + ATT model
generally exhibited lower computational complexity compared
to the Transformer-based models, making it a more efficient
choice for resource-constrained environments.

The results obtained highlight the importance of properly
selecting the time window configuration and input param-
eters to maximise activity classification performance. The
30+15 configuration proves to be the most effective for most
activities, especially those involving complex patterns and
subtle transitions. For activities with less distinctive patterns or
more general rules, such as “exit” and “kitchen,” integrating
additional information or improving classification rules can
be beneficial. The combination of an appropriate time window
and the integration of information about environmental param-
eters and temporal patterns is key to improving activity clas-
sification performance. Choosing models that can effectively
capture and utilise these features, such as CNN+GRU+ATT,
can offer significant advantages in practical activity classifica-
tion applications.

On the evaluation of integrating only individual location
versus individual and collective location, the analysis reveals
that incorporating location information from other users signif-
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TABLE XVII
PERFORMANCE OF THE CNN-GRU-ATT (WITHOUT COLLECTIVE

LOCATIONS) MODEL WITH A 30+15 TIME WINDOW (30 MINUTES IN THE
PAST AND 15 MINUTES INTO THE FUTURE). METRICS INCLUDE

ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1 SCORE
(F1).

CNN-GRU-ATT (without collective locations) 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,97 - 0,97 0,79 - 0,83 0,90 - 0,96 0,81 - 0,86
resting 0,97 - 0,98 0,98 - 0,98 0,98 - 0,99 0,98 - 0,98

exit 0,99 - 1,00 0,81 - 0,93 0,95 - 1,00 0,87 - 0,96
cooking 1,00 - 1,00 0,80 - 0,92 0,95 - 0,99 0,83 - 0,95
shower 1,00 - 1,00 0,90 - 0,94 0,96 - 0,98 0,91 - 0,95

pc 0,98 - 0,98 0,99 - 1,00 0,99 - 1,00 0,99 - 1,00
sleep 0,98 - 0,99 0,75 - 0,83 0,95 - 0,98 0,81 - 0,88

kitchen 1,00 - 1,00 0,86 - 0,94 0,97 - 1,00 0,91 - 0,97
TOTAL 0,99 - 0,99 0,86 - 0,92 0,96 - 0,99 0,89 - 0,94

TABLE XVIII
PERFORMANCE OF THE CNN-GRU-ATT (WITHOUT COLLECTIVE

LOCATIONS) MODEL WITH A 45+0 TIME WINDOW (45 MINUTES IN THE
PAST ONLY). METRICS INCLUDE ACCURACY (ACC), PRECISION (PRE),

RECALL (REC), AND F1 SCORE (F1).

CNN-GRU-ATT (without collective locations) 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,96 - 0,97 0,73 - 0,79 0,89 - 0,96 0,77 - 0,84
resting 0,97 - 0,98 0,93 - 0,95 0,95 - 0,97 0,94 - 0,96

exit 0,96 - 0,98 0,36 - 0,64 0,63 - 0,98 0,45 - 0,77
cooking 0,99 - 1,00 0,62 - 0,70 0,85 - 0,97 0,67 - 0,78
shower 0,99 - 1,00 0,87 - 0,92 0,97 - 1,00 0,89 - 0,94

pc 0,97 - 0,98 0,98 - 0,99 0,99 - 1,00 0,98 - 0,99
sleep 0,95 - 0,98 0,62 - 0,66 0,83 - 0,97 0,70 - 0,74

kitchen 0,96 - 0,98 0,32 - 0,58 0,62 - 1,00 0,42 - 0,72
TOTAL 0,97 - 0,98 0,68 - 0,78 0,84 - 0,98 0,73 - 0,84

icantly improves the recognition accuracy of specific activities,
such as toileting and showering, in confined spaces with an
area like the toilet. This improvement likely stems from the
added contextual information provided by the location of other
occupants, which helps to disambiguate activities with similar
sensor interaction patterns in close proximity.

However, the impact of integrating other users’ location data
was less pronounced and slightly reduced the performance
for most activities in other rooms, which tend to be more
solitary and less influenced by the presence or actions of other
occupants. This suggests that the benefits of incorporating such
contextual information may vary depending on the nature of
the activity and the spatial dynamics of the environment.

V. CONCLUSION AND ONGOING WORKS

This study proposes an innovative framework for multi-
occupancy activity recognition, combining UWB technology
and binary sensors to enable accurate, privacy-preserving
monitoring. The integration of localisation heatmaps with
nearby sensor data significantly improved recognition accu-
racy, achieving up to 90% F1 scores by leveraging temporal
windows that incorporate both past and future data. The in-
clusion of future-aware windows proved particularly effective,
enhancing model performance in scenarios with overlapping
actions and diverse sensor inputs. Advanced deep learning
models, such as CNNs with GRU and ATT mechanisms,
excelled in capturing complex activity patterns. Notably, the

TABLE XIX
PERFORMANCE OF THE CNN+ATT+GRU+ATT (WITHOUT COLLECTIVE
LOCATIONS) MODEL WITH A 30+15 TIME WINDOW (30 MINUTES IN THE

PAST AND 15 MINUTES INTO THE FUTURE). METRICS INCLUDE
ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1 SCORE

(F1).

CNN+ATT+GRU+ATT (without collective locations) 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,97 - 0,97 0,80 - 0,86 0,92 - 0,95 0,84 - 0,89
resting 0,98 - 0,98 0,98 - 0,98 0,98 - 0,99 0,98 - 0,98

exit 0,99 - 1,00 0,82 - 0,93 0,95 - 0,99 0,88 - 0,96
cooking 1,00 - 1,00 0,70 - 0,89 0,93 - 0,98 0,76 - 0,93
shower 1,00 - 1,00 0,91 - 0,94 0,98 - 1,00 0,92 - 0,96

pc 0,97 - 0,98 0,99 - 0,99 0,99 - 1,00 0,99 - 0,99
sleep 0,98 - 0,99 0,77 - 0,86 0,93 - 0,97 0,82 - 0,90

kitchen 0,99 - 1,00 0,83 - 0,92 0,98 - 1,00 0,89 - 0,95
TOTAL 0,98 - 0,99 0,85 - 0,92 0,96 - 0,99 0,88 - 0,95

TABLE XX
PERFORMANCE OF THE CNN+ATT+GRU+ATT (WITHOUT COLLECTIVE

LOCATIONS) MODEL WITH A 45+0 TIME WINDOW (30 MINUTES IN THE
PAST AND 15 MINUTES INTO THE FUTURE). METRICS INCLUDE

ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1 SCORE
(F1).

CNN+ATT+GRU+ATT (without collective locations) 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,96 - 0,97 0,73 - 0,79 0,89 - 0,96 0,77 - 0,84
resting 0,97 - 0,97 0,95 - 0,97 0,97 - 0,99 0,96 - 0,97

exit 0,96 - 0,98 0,35 - 0,65 0,62 - 0,99 0,44 - 0,77
cooking 0,99 - 1,00 0,64 - 0,73 0,84 - 0,98 0,67 - 0,80
shower 0,99 - 1,00 0,87 - 0,92 0,95 - 0,99 0,88 - 0,94

pc 0,97 - 0,98 0,98 - 0,99 0,99 - 1,00 0,98 - 0,99
sleep 0,95 - 0,97 0,58 - 0,69 0,79 - 0,96 0,65 - 0,77

kitchen 0,96 - 0,97 0,28 - 0,50 0,63 - 0,99 0,38 - 0,66
TOTAL 0,97 - 0,98 0,67 - 0,78 0,84 - 0,98 0,72 - 0,84

analysis highlighted the critical role of individual location data
in confined spaces, such as toileting, where it consistently
enhanced performance, often surpassing results achieved with
collective data. These findings underscore the scalability and
adaptability of the proposed approach, paving the way for
smart environments and assistive applications.

Future research will focus on enriching datasets by incor-
porating diverse multi-occupant environments with overlap-
ping activities and routine interruptions in residential con-
texts. Additional efforts will explore adaptive time window
configurations that dynamically respond to activity patterns
and integrate complementary sensors, such as sound [42],
light, and air quality, to improve contextual understanding.
Furthermore, the development of personalisation techniques
and robust privacy-preserving mechanisms will be essential to
tailor models to individual behaviours while ensuring secure
deployment. These advancements will support scalable, user-
centred solutions for multi-occupancy smart environments.
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TABLE XXI
PERFORMANCE OF THE TRANSFORMER+MULTIHEAD (WITHOUT

COLLECTIVE LOCATIONS) MODEL WITH A 30+15 TIME WINDOW (30
MINUTES IN THE PAST AND 15 MINUTES INTO THE FUTURE). METRICS

INCLUDE ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1
SCORE (F1).

Transformer+multihead (without collective locations) 30+15
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,93 - 0,94 0,66 - 0,68 0,87 - 0,95 0,70 - 0,74
resting 0,95 - 0,95 0,93 - 0,93 0,90 - 0,93 0,90 - 0,93

exit 0,97 - 0,98 0,43 - 0,64 0,88 - 0,97 0,56 - 0,76
cooking 1,00 - 1,00 0,73 - 0,80 0,86 - 0,97 0,75 - 0,84
shower 0,98 - 0,99 0,90 - 0,86 0,93 - 0,90 0,89 - 0,86

pc 0,96 - 0,97 0,98 - 0,98 0,95 - 0,98 0,96 - 0,98
sleep 0,96 - 0,97 0,57 - 0,68 0,91 - 0,98 0,66 - 0,77

kitchen 0,97 - 0,98 0,43 - 0,65 0,89 - 0,98 0,57 - 0,77
TOTAL 0,96 - 0,97 0,70 - 0,78 0,90 - 0,96 0,75 - 0,83

TABLE XXII
PERFORMANCE OF THE TRANSFORMER+MULTIHEAD (WITHOUT

COLLECTIVE LOCATIONS) MODEL WITH A 45+0 TIME WINDOW (30
MINUTES IN THE PAST AND 15 MINUTES INTO THE FUTURE). METRICS

INCLUDE ACCURACY (ACC), PRECISION (PRE), RECALL (REC), AND F1
SCORE (F1).

Transformer+multihead (without collective locations) 45+0
Activity ACC N=0 - N=3 PRE N=0 - N=3 REC N=0 - N=3 F1 N=0 - N=3

toileting 0,88 - 0,89 0,56 - 0,59 0,83 - 0,91 0,61 - 0,66
resting 0,94 - 0,95 0,94 - 0,95 0,93 - 0,96 0,92 - 0,94

exit 0,91 - 0,94 0,19 - 0,42 0,76 - 1,00 0,29 - 0,57
cooking 0,99 - 0,99 0,66 - 0,67 0,91 - 0,98 0,70 - 0,74
shower 0,98 - 0,98 0,90 - 0,90 0,94 - 0,98 0,91 - 0,92

pc 0,95 - 0,96 0,95 - 0,96 0,94 - 0,96 0,94 - 0,96
sleep 0,92 - 0,94 0,43 - 0,52 0,87 - 0,98 0,52 - 0,62

kitchen 0,91 - 0,94 0,17 - 0,38 0,69 - 0,98 0,27 - 0,53
TOTAL 0,93 - 0,95 0,60 - 0,67 0,86 - 0,97 0,65 - 0,74

Using IoT Devices’ (6324) from the Office of Technology
Transfer (OTRI).
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[12] J. Gómez, J. R. Casas, and S. Villalba, “Structural health monitoring
with distributed optical fiber sensors of tunnel lining affected by nearby
construction activity,” Automation in Construction, vol. 117, p. 103261,
2020.

[13] A. Polo-Rodrı́guez, F. Cavallo, C. Nugent, and J. Medina-Quero,
“Human activity mining in multi-occupancy contexts based on nearby
interaction under a fuzzy approach,” Internet of Things, vol. 25, p.
101018, 2024.

[14] Q. Li, R. Gravina, Y. Li, S. H. Alsamhi, F. Sun, and G. Fortino, “Multi-
user activity recognition: Challenges and opportunities,” Information
Fusion, vol. 63, pp. 121–135, 2020.

[15] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning
for sensor-based human activity recognition: Overview, challenges, and
opportunities,” ACM Computing Surveys (CSUR), vol. 54, no. 4, pp.
1–40, 2021.

[16] I. Khan, O. Zedadra, A. Guerrieri, and G. Spezzano, “Occupancy
prediction in iot-enabled smart buildings: Technologies, methods, and
future directions,” Sensors, vol. 24, no. 11, p. 3276, 2024.

[17] Y. Zhan and H. Haddadi, “Mosen: Activity modelling in multiple-
occupancy smart homes,” arXiv preprint arXiv:2101.00235, 2021.

[18] A. Naser, A. Lotfi, and J. Zhong, “Adaptive thermal sensor array

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3531316

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE INTERNET OF THINGS JOURNAL 16

placement for human segmentation and occupancy estimation,” IEEE
Sensors Journal, vol. 21, no. 2, pp. 1993–2002, 2020.

[19] L. Hiley, A. Preece, Y. Hicks, S. Chakraborty, P. Gurram, and R. Tomsett,
“Explaining motion relevance for activity recognition in video deep
learning models,” arXiv preprint arXiv:2003.14285, 2020.

[20] H. Yuan, S. Chan, A. P. Creagh, C. Tong, A. Acquah, D. A. Clifton,
and A. Doherty, “Self-supervised learning for human activity recognition
using 700,000 person-days of wearable data,” NPJ digital medicine,
vol. 7, no. 1, p. 91, 2024.

[21] B. Fu, N. Damer, F. Kirchbuchner, and A. Kuijper, “Sensing technology
for human activity recognition: A comprehensive survey,” IEEE Access,
vol. 8, pp. 83 791–83 820, 2020.

[22] S. Zhang, Y. Li, S. Zhang, F. Shahabi, S. Xia, Y. Deng, and N. Alshurafa,
“Deep learning in human activity recognition with wearable sensors: A
review on advances,” Sensors, vol. 22, no. 4, p. 1476, 2022.

[23] A. Polo-Rodriguez, M. A. Anguita-Molina, I. Rojas, and J. Medina-
Quero, “Enhanced multi-occupant tracking via fusion of low-intrusive
radar and wearable ultra-wideband devices using autoencoders,” Avail-
able at SSRN 4892704, 2024.

[24] T. Yang, A. Cabani, and H. Chafouk, “A survey of recent indoor
localization scenarios and methodologies,” Sensors, vol. 21, no. 23, p.
8086, 2021.

[25] H. Obeidat, W. Shuaieb, O. Obeidat, and R. Abd-Alhameed, “A review
of indoor localization techniques and wireless technologies,” Wireless
Personal Communications, vol. 119, pp. 289–327, 2021.

[26] M. Javaid, A. Haleem, S. Rab, R. P. Singh, and R. Suman, “Sensors for
daily life: A review,” Sensors International, vol. 2, p. 100121, 2021.

[27] R. Mutegeki and D. S. Han, “A cnn-lstm approach to human activity
recognition,” in 2020 international conference on artificial intelligence
in information and communication (ICAIIC). IEEE, 2020, pp. 362–366.

[28] I. U. Khan, S. Afzal, and J. W. Lee, “Human activity recognition via
hybrid deep learning based model,” Sensors, vol. 22, no. 1, p. 323, 2022.

[29] E. Ramanujam, T. Perumal, and S. Padmavathi, “Human activity
recognition with smartphone and wearable sensors using deep learning
techniques: A review,” IEEE Sensors Journal, vol. 21, no. 12, pp.
13 029–13 040, 2021.

[30] M. Jacob Rodrigues, O. Postolache, and F. Cercas, “Physiological and
behavior monitoring systems for smart healthcare environments: A
review,” Sensors, vol. 20, no. 8, p. 2186, 2020.

[31] S. K. Yadav, K. Tiwari, H. M. Pandey, and S. A. Akbar, “A review of
multimodal human activity recognition with special emphasis on classifi-
cation, applications, challenges and future directions,” Knowledge-Based
Systems, vol. 223, p. 106970, 2021.

[32] P. Kumar, S. Chauhan, and L. K. Awasthi, “Human activity recognition
(har) using deep learning: Review, methodologies, progress and future
research directions,” Archives of Computational Methods in Engineering,
vol. 31, no. 1, pp. 179–219, 2024.

[33] S. Bian, M. Liu, B. Zhou, and P. Lukowicz, “The state-of-the-art sensing
techniques in human activity recognition: A survey,” Sensors, vol. 22,
no. 12, p. 4596, 2022.

[34] A. Polo-Rodrı́guez, S. Rotbei, S. Amador, O. Baños, D. Gil, and J. Med-
ina, “Smart architectures for evaluating the autonomy and behaviors
of people with autism spectrum disorder in smart homes,” in Neural
Engineering Techniques for Autism Spectrum Disorder. Elsevier, 2021,
pp. 55–76.

[35] A. Polo-Rodrı́guez, J. C. Valera, J. Peral, D. Gil, and J. Medina-Quero,
“Tracking daily paths in home contexts with rssi fingerprinting based on
uwb through deep learning models,” Multimedia Tools and Applications,
pp. 1–25, 2024.

[36] A. Polo-Rodrı́guez, M. A. Anguita-Molina, D. Gil, J. Romero,
E. Fernández, O. Paloma, A. Porcel, and J. Medina-Quero, “Discovering
social interactions between caregivers and frail individuals using indoor
localization,” in Proceedings of the UCAMI 2024 Conference, 2024.
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