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ABSTRACT Computerized adaptive testing (CAT) presents a tradeoff dilemma involving item exposure
bias and measurement accuracy. To resolve this dilemma, we propose a new two-step CAT mechanism to
balance exposure bias and measurement accuracy. Using zero-suppressed binary decision diagram (ZDD),
the proposedmethod first selects and presents an optimal item from an equivalent item pool, which uniformly
divides the whole item pool. The first step rapidly provides a roughly approximated ability estimate of an
examinee. The second step produces a more accurate ability estimate of the examinee. Specifically, the
second step selects an optimal item from the whole item pool and presents an itemwith a difficulty parameter
value that is approximately equal to the examinee ability estimate. Numerical experiment results underscore
the effectiveness of the proposed method.

INDEX TERMS Computerized adaptive testing, item response theory, parallel test assembly, zero-
suppressed binary decision diagrams

I. INTRODUCTION
Computerized Adaptive Testing (CAT) (e.g. [1]) selects and
presents an optimal item from an item pool to maximize the
information for an examinee’s current ability as estimated
based on item response theory (IRT). After the examinee
responds to the item, the examinee’s ability is estimated
according to the history of response data. Subsequently, the
next item is selected to have the maximum information at
the current ability estimate. Adaptive item selection for each
examinee can reduce the number of presented items with-
out decreasing the measurement accuracy of the examinee’s
ability compared to a fixed (non-adaptive) test. In fact, CAT
has already been applied for many high-stakes assessments
such as the National Assessment of Educational Progress
(NAEP) [2], Trends in International Mathematics and Sci-
ence Study (TIMSS) [3], Progress in International Reading
Literacy Study (PIRLS) [4], the Program for the International
Assessment of Adult Competencies (PIAAC) [5], in addition
to others.

However, conventional CAT tends to present the same
items to examinees with similar abilities. Therefore, it is inad-

equate for situations in which the same examinee takes a test
multiple times. Additionally, items with greater information
around θ = 0 tend to be exposed frequently because IRT
requires the assumption that the ability variable follows a
standard normal distribution. It entails bias of item exposure
frequency in an item pool. This bias consequently decreases
the test reliability because the contents of overexposed items
might be known to future examinees with high probability
[6]–[8].

To resolve this difficulty, many researchers have proposed
alternative CATs of various kinds specifically to alleviate
the bias associated with item exposure (e.g. [7], [9]–[11]).
Van der Linden [7] proposed a CAT that selects the optimal
item from a subset of an item pool, which is designated
as a "shadow test." The shadow test is assembled from an
item pool using integer programming (IP) to satisfy test
constraints. Choi and Lim [9] developed another mechanism
to minimize the difference between test information of a
shadow test and target information (TI). Using a probabilistic
approach, van der Linden and Choi [11] proposed a CAT (des-
ignated as Prob) method that controls the item exposure using
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probabilistic item selection. As themost recent approach, Lim
and Choi described a hybrid item exposure control method
[12] using the combination of an a-stratification method [13],
[14] and an eligibility probabilistic method [11]. Neverthe-
less, these methods led to the difficulty that they increase the
bias of measurement accuracies among examinees. In addi-
tion, this difficulty necessarily engenders bias of the required
test lengths for CAT examinees.

To overcome these difficulties posed by earlier methods,
we propose a new two-step CAT algorithm. The first step of
the proposed method, using zero suppressed binary decision
diagram (ZDD), selects and presents an optimal item from
an equivalent item pool which uniformly divides a whole
item pool. The equivalent item pools are constructed before
running CAT by uniformly dividing the whole item pool so
that each has equivalent measurement accuracy but with a
different set of items. For this study, we use a state-of-the-
art parallel test assembly technique to divide an item pool
into equivalent item pools. The parallel test forms have the
same test properties (number of test items, test area, test
information, etc.), but each form consists of different test
items. Recent studies have explored several techniques using
AI technologies to generate numerous parallel test forms
from an item pool [15]–[20]. Especially among all methods,
parallel test assembly using a zero-suppressed binary decision
diagram (ZDD) [21] is known to generate the greatest number
of parallel test forms [20]. However, when we apply the ZDD
directly to generate equivalent item pools, the ZDD method
often leads to computer memory overflow. To resolve this
shortcoming, this study proposes a novel ZDD compilation
algorithm implemented to address this particular difficulty.
(1) A ZDD is constructed with approximated measurement
accuracies of shared nodes. Specifically, during the breadth-
first search, nodes are shared when the difference in mea-
surement accuracies between two nodes at the same depth is
smaller than a determined threshold parameter value. Then,
measurement accuracy of the shared node uses an approxi-
mated value by averaging the two nodes’ measurement ac-
curacies. (2) Paths from the constructed ZDD are randomly
sampled to search and enumerate paths that exactly satisfy
the constraints of measurement accuracies.

Consequently, each equivalent item pool includes a differ-
ent set of items, but each has equivalent measurement accu-
racy. Because the first step selects the optimal item from an
equivalent item pool, it presents a different set of items to each
examinee until the examinee’s ability estimate converges. The
first step rapidly provides a roughly approximated ability
estimate of an examinee because item difficulties in each
equivalent item pool are distributed uniformly and sparsely.
The second step reaches a more accurate ability estimate
of the examinee. Specifically, after the examinee’s ability
estimate converges, the method switches to select the optimal
item from the whole item pool in the second step. For this
study, because the Fisher information measure is an asymp-
totic approximation, we use it as an item selection criterion
that is sufficiently accurate for the second step.

However, improvement of the bias of the item exposure
might be inadequate because the second step exhibits a ten-
dency to select and present items with high Fisher informa-
tion (examinee’s measurement accuracy) for widely various
examinee abilities rather than with a difficulty parameter that
is approximately equal to the current ability estimate. To relax
this tendency, the second step of the proposed method selects
an optimal item from items which satisfy the item difficulty
interval (IDI) condition based on the standard error of the es-
timated ability. Therefore, the second step selects an optimal
item with a difficulty parameter value that is approximately
equal to the examinee ability estimate. Similar techniques
to the IDI condition have been proposed for multi-objective
optimization problem studies (e.g., [22], [23]).
Findings obtained from numerical experiments demon-

strate that the proposed method can mitigate bias of item
exposure while maintaining low measurement error.

II. CONVENTIONAL CAT
A. ITEM RESPONSE THEORY
To select the optimum item with the highest Fisher infor-
mation, conventional CAT estimates an examinee’s ability
based on Item Response Theory (IRT) [24]. For the three-
parameter logistic model (3PLM) [24], the most widely
recognized IRT model, the probability of a correct answer
to item i(= 1, 2, . . . ,n) by examinee j (= 1, 2, . . . , J ) with
ability θj ∈ (−∞,∞) is assumed as

p(ui = 1|θj ) = ci +
1− ci

1 + exp(−Dai(θj − bi))
. (1)

Therein, ui takes a value of 1 when an examinee answers
item i correctly. It is 0 otherwise. In addition, ai ∈ [0,∞),
bi ∈ (∞,∞), and ci ∈ [0, 1] respectively represent the
discrimination parameter of item i , the difficulty parameter
of item i , and the guessing parameter of item i . Further-
more, D is a scale factor used to approximate the cumulative
distribution function of the standard normal distribution to
3PLM. Actually, the widely used scale factor is D = 1.701.
Especially when ci = 0, the model in Eq. (1) is designated as
a two-parameter logistic model (2PLM).
In addition, a widely used IRT model is the generalized

partial credit model (GPCM) [25]. With GPCM, the prob-
ability of receiving a score on item i in ordered category
k(= 0, 1, . . . ,K − 1) is defined as

pi(k |θj )=
exp(

∑k
s=1 αi(θj−βi,s))∑K−1

k=0 [exp(
∑k

s=1 αi(θj−βi,s))]
, (2)

where K − 1 represents the number of response categories
and where βi,s ∈ (∞,∞) is the step difficulty parameter for
receiving a score on item i in category s . It is noteworthy that
βi,0 is 0.
The ability Expected A Posteriori (EAP) estimate θ̂ [26] is

calculated as

θ̂ =

∫ ∞

−∞
θf (θ|u)dθ, (3)
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where

f (θ|u) = L(u|θ)f (θ)∫∞
−∞ L(u|θ)f (θ)dθ

.

Therein, L(u|θ) denotes a likelihood function of θ and f (θ)
represents a prior distribution of θ, the standard normal dis-
tribution N (0, 12).

The asymptotic variance of an examinee’s ability estimate
for IRT is known to approach the inverse of Fisher informa-
tion [27]. The Fisher information function for 3PLM [27] is
defined when item i provides an examinee’s ability θ from
the following equations:

Ii(θ) =
[p′(ui = 1|θ)]2

p(ui = 1|θ)[1− p(ui = 1|θ)]
, (4)

where

p′(ui = 1|θ) = ∂

∂θ
p(ui = 1|θ). (5)

In addition, the Fisher information function for GPCM
[25] is defined when item i provides an examinee’s ability
θ using the following equations as

Ii(θ) =

K∑
k=0

[p′
i(k |θ)]2

pi(k |θ)
, (6)

where

p′
i(k |θ) =

∂

∂θ
pi(k |θ). (7)

An itemwith high Fisher information Ii(θ) can estimate the
examinee’s ability accurately. Therefore, conventional CAT
usually implements an item selection method with the highest
amount of Fisher information given an examinee’s ability
estimate θ̂.

The test information IT (θ) of a test form T is defined as
IT (θ) =

∑
i∈T Ii(θ). As a result, the asymptotic error of

ability estimate θ̂ is obtained as the inverse of square root of
the test information function at a given ability estimate θ̂.

B. ALGORITHM OF CONVENTIONAL CAT
Conventional CAT selects optimal items from an item pool,
as described hereinafter.

1. Procedure 1 initializes an examinee’s ability estimate
to θ̂ = 0.

2. Procedure 2 selects an item with the highest Fisher
information for the examinee’s ability estimate from an
item pool and presents the item.

3. Procedure 3 updates the examinee’s ability estimate
from the examinee’s response history data using Eq.
(3).

4. Procedures 2 and 3 are repeated until the ability esti-
mate converges.

Consequently, CAT sequentially selects and presents an opti-
mal item to an examinee’s ability estimate. As a result, CAT
can reduce the test length without reducing the measurement
accuracy of the examinee’s ability compared to the fixed test.

III. CAT METHODS WITH ITEM EXPOSURE CONTROL
As described earlier, conventional CATs tend to present the
same items to examinees who have similar abilities. This
property engenders bias of the item exposure frequency in an
item pool and consequently decreases the test reliability.
To overcome this difficulty, various CATmethods incorpo-

rating item exposure have been proposed.

A. METHOD USING IP
As awell known approach, van der Linden proposed amethod
selecting the optimal item from a shadow test assembled by
solving IP with constraints to control the item exposure [7].
This method selects and then presents the optimal item as
described below.

1. Procedure 1 initializes an examinee’s estimated ability
to θ̂ = 0.

2. The shadow test is assembled along with solution of the
IP, as shown below.
maximize

n∑
i=1

Ii(θ̂)xi . (8)

subject to

rixi ≤ R(i = 1, 2, · · · ,n), (9)

n∑
i=1

xi = L, (10)

xi =

{
1, if item i is included
0, otherwise

Therein, ri denotes the number of times item i is pre-
sented. In addition, R expresses the maximum number
of times it is presented. L represents the test length.

3. The item which maximizes Fisher information is se-
lected from the shadow test.

4. The current ability estimate is updated based on the
examinee’s response history.

5. Procedures 2–4 are repeated until the ability estimate
converges.

This method can keep the number of times each item is
presented under the upper bound R. However, this method
avoids presenting only items that reach the maximum number
of times to present. Therefore, the method has limited effec-
tiveness at mitigating bias of item exposure.

B. SHADOW-TEST APPROACH WITH PROBABILISTIC
ELIGIBILITY (PROB)
Van der Linden and Choi proposed a method of controlling
item exposure probabilistically [11]. More specifically, this
method selects the optimal item and presents it as described
below.

1. Procedure 1 initializes an examinee’s estimated ability
to θ̂ = 0.
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2. Then the eligibility probability of item i for examinee
j is calculated as

EP (i,j ) = min{ rmax

IERi,(j−1)
EP (i,j−1), 1}, (11)

IERi,j =
1

j

j∑
j ′=1

IEi,j ′ , (12)

IEi,j ′ =


1 if the i -th item is exposed
to the j ′-th examinee, and
0 otherwise.

(13)

Therein, IERi,j denotes the item exposure rate when
examinees 1, 2, ..., j finish their tests, and where rmax

represents the upper bound of the item exposure rate.
3. Following eligibility probability computation, some

items become ineligible.
4. The item which maximizes Fisher information is se-

lected from the item pool without ineligible items.
5. Based on the examinee’s earlier response history, the

estimated examinee ability θ̂ is updated.
6. Procedures 2–5 are repeated until the estimated exami-

nee ability converges.

This method avoids presenting only items that are above the
upper bound of the item exposure rate rmax . However, this
method does not guarantee that items with low item exposure
will be selected for examinees. Therefore, the method can
provide only limited effectiveness in decreasing the bias of
item exposure.

C. SHADOW-TEST APPROACH USING TARGET
INFORMATION (TI)
As an approach that is similar to IP, Choi and Lim proposed
a method [9] of selecting an optimal item from a shadow test
assembled by solving IP.

1. Procedure 1 initializes an examinee’s estimated ability
to θ̂ = 0.

2. Then the shadow test is assembled by solving the IP
presented below:
minimize y .
subject to

n∑
i=1

Ii(θ̂)xi ≤ T + y ,

n∑
i−1

Ii(θ̂)xi ≥ T − y ,

y ≥ 0,
n∑

i=1

xi = L,

where T denotes the target value of test information
when examinees 1, 2, . . . , J − 1 finish tests.

3. The item which maximizes Fisher information is se-
lected from the assembled shadow test.

4. Based on the examinee’s earlier response history, the
current ability estimate is updated.

5. Procedures 2–5 are repeated until the estimated exami-
nee ability converges.

Conventional CAT selects greedily to maximize information
at each item presentation. This item selection tends to cause
overexposure of items with high Fisher information during
the early step and tends to leave items with low Fisher in-
formation during the later step. By contrast, TI can assemble
shadow tests directly with a determined target value of test
information using the minimax approach, which minimizes
the deviation between the test information value of the as-
sembled shadow test and the target value of test information.
Therefore, TI might avoid presentation of only those items
with high Fisher information from the whole item pool in the
early step. Consequently, TI is expected to alleviate the bias
of item exposure.

However, because TI cannot control the bias of item ex-
posure directly, TI can provide only limited effectiveness for
decreasing the bias of item exposure.

D. SHADOW-TEST APPROACH WITH A-STRATIFICATION
AND PROBABILISTIC ELIGIBILITY (HYBRID)
Lim and Choi proposed a hybrid item exposure control
method [12] incorporating the a-stratification method [13],
[14] and the eligibility probabilistic method (Section. III-B).
The a-stratificationmethod divides the item pool intomultiple
sets of active items based on values of the discrimination
parameter according to Chang and van der Linden [14]. Ac-
tually, during the early steps of CAT, a-stratification uses a
set of active items with the lowest discrimination parameters.
By contrast, during the last steps of CAT, a-stratification uses
a set of active items with the highest a-parameters. More
specifically, the hybrid method selects the optimal item and
presents it as described below.

1. Procedure 1 initializes an examinee’s estimated ability
to θ̂ = 0.

2. Procedure 2 calculates the eligibility probability of item
i for examinee j as Eq. (11).

3. Procedure 3 determines the set of ineligible itemsVinel

according to eligibility probability EP (i,j ).
4. Procedure 4 determines the set of active items Va

based on the a-stratificationmethod [13], [14] with item
position p, where p represents the number of presented
items within CAT.

5. The item which maximizes Fisher information is se-
lected from the item pool without the set of ineligible
items Vinel and the set of active items Va .

6. Based on the examinee’s earlier response history, the
estimated examinee ability θ̂ is updated.

7. Procedures 2–4 are repeated until the estimated exami-
nee ability converges.

The a-stratification method tends to select the itemwith the
value of the difficulty parameter closest to the estimated ex-
aminee’s ability because active items have the equivalent dis-
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crimination parameter. As a consequence, the a-stratification
method is expected to decrease the bias of item exposure.
In addition, the eligibility probabilistic method avoids pre-
senting only items that are above the upper bound of the
item exposure rate rmax . Therefore, the hybrid item exposure
control method can decrease the bias of item exposure.

IV. CAT METHOD USING ZDD
Earlier item exposure control methods for CAT have not
resolved the tradeoff dilemma between decreasing item ex-
posure and increasing measurement accuracy.

To balance this tradeoff, we propose a new two-step CAT
framework using ZDD. The first step divides an item pool
into as many equivalent item pools as possible using ZDD, as
described by Fuchimoto et al. [20]. That process of division is
known to lead to assembly of the greatest number of parallel
test forms with the highest measurement accuracy. In fact,
ZDD is an efficient graphical representation of a set of item
combinations [21]. It can decrease the calculation time and
the computer memory which are used.

Subsequently, CAT selects an item from an equivalent item
pool assigned to each examinee. After the examinee’s ability
estimate converges in the first step, it switches to the second
step, which selects and presents the optimal item from the
whole item pool. As a result, the proposed method can reduce
both the test length and the item exposure without decreasing
the measurement accuracy of an examinee’s ability. However,
improvement of the bias of the item exposure is constrained
because the second step tends toward frequent selection of
items with high Fisher information for widely various exam-
inees’ abilities, rather than those with difficulty parameters
that are approximately equal to the current estimated exam-
inee ability. To address this shortcoming, the second step of
the proposed method selects an optimal item from items that
satisfy the item difficulty interval (IDI) condition based on
the standard error of the estimated ability. The use of the IDI
condition thereby avoids biased selection of items with high
Fisher information for widely various examinees’ abilities.

Details of the proposed CAT are presented in the following
subsections.

A. ZERO-SUPPRESSED BINARY DECISION DIAGRAM
(ZDD)

A ZDD is constructed from a binary decision tree (BDT)
by the application of two reduction rules that eliminate re-
dundancy. These reduction rules provide the ZDD with the
advantages of reducing computation time and memory usage.
As a result, the ZDD achieves compactness and efficiency
by representing subsets using binary variables, as explained
below.

Given a finite set I = {x1, x2, . . . , xn} with ordered binary
variables, a family of sets F ⊆ 2I exists, where each subset
S ⊆ I is a set of binary variables xi from the finite set I . Each
binary variable xi represents whether xi ∈ S or xi /∈ S for each

x
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3333

0 0 0 1 0 1 1 0

(a) BDT

x

2

3

10

(b) ZDD
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1 1

x2x2 x2 x2

x3 x3 x3 x3 x3

FIGURE 1. BDT and ZDD.

subset S, defined as

xi =

{
1 if xi ∈ S,
0 otherwise.

Consequently, each subset S ∈ F can be represented as a
unique combination of binary values for each binary variable
xi in the finite set I .
A ZDD is a directed acyclic graph (DAG) that represents

the family of sets F compactly and which has terminal nodes
of two types: a 1-terminal node representing valid subsets in
F ; and a 0-terminal node representing subsets not included
in F . Consequently, each path from the root to the 1-terminal
node corresponds to a unique subset S ∈ F .
Figures 1(a) and 1(b) respectively represent examples of

a BDT and a ZDD, where the finite set is given as I =
{x1, x2, x3}. In addition, these graph structures have two ter-
minal nodes, which are shown as rectangles in Figure 1: 1-
terminal and 0-terminal. A path from the root node to the
1-terminal node in these graph structures corresponds to a
unique subset S ∈ F . Every non-terminal node is presented as
a circle in Figure 1. Each non-terminal node is labeled using
a binary variable xi. Moreover, each node has two outgoing
edges: a 1-edge and a 0-edge. The 1-edge and the 0-edge
respectively signify that the parent node is an element of
each subset S, and not. For instance, in Figure 1, the subset
{x1, x3} is represented in both the BDT and the ZDD by
following the 1-edge at x1 (indicating x1 ∈ S), the 0-edge
at x2 (indicating x2 /∈ S), and the 1-edge at x3 (indicating
x3 ∈ S) before reaching the 1-terminal node. This traversal
ensures that x1 and x3 are included in the subset S and that
x2 is excluded. Accordingly, in Figure 1, both BDT and ZDD
correspond to the same family of sets F , which consists of
{{x1, x2}, {x1, x3}, {x2, x3}}. This comparison demonstrates
that the ZDD can represent the same family of sets with fewer
nodes than BDT can.

The ZDD is obtained by applying the two reduction rules
by Minato [21] to the BDT. Specifically, the two reduction
rules are defined as presented hereinafter.
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1. In reduction rule 1, when two non-terminal nodes repre-
sent the identical binary variable xi and their 1-edge and
0-edge point to nodes that represent identical subtrees,
these two nodes are shared into a single node. Re-
duction rule 1 eliminates duplicate nodes representing
the same subtrees, thereby reducing redundancy in the
graph structure.

2. In reduction rule 2, nodes with a 1-edge pointing to the
0-terminal node are removed because these nodes are
not elements of any valid subset S in the family of sets
F . Reduction rule 2 simplifies the graph structure by
eliminating redundant nodes that cannot lead to the 1-
terminal node.

By applying these two reduction rules, a canonical ZDD
representing the family of sets F is obtained. The canonical
ZDD provides a unique and compact representation of the
family of sets F , ensuring that redundant nodes and subtrees
are fully eliminated.

B. EQUIVALENT ITEM POOL CONSTRUCTION USING ZDD

The proposed method, inspired by the work of Fuchimoto
et al. [20], divides an item pool into several equivalent item
pools using zero-suppressed binary decision diagram. For the
proposed method, we define a finite set I = {x1, x2, . . . , xn}
with ordered binary variables, where n represents the number
of items in the item pool. Each binary variable xi is defined
as presented below.

xi =


1, if the item i is included for

equivalent item pool, and
0, otherwise.

(10)

Additionally, we define the family of sets F ⊆ 2I as the set
of equivalent item pools, where each subset S ∈ F is defined
as a set of binary variables which satisfies the following
constraints.

n∑
i=1

xi = M , (11)

∀γ ∈ {1, 2, . . . ,Γ},LBθγ ≤
n∑

i=1

Ii(θγ)xi ≤ UBθγ . (12)

Therein,M represents the number of items in each equivalent
item pool. The number of items M is optimized to balance
the bias of item exposure and measurement error. In addition,
LBθγ and UBθγ respectively represent a lower bound and
an upper bound of the test information at point θγ on the
ability level. For earlier studies of automated parallel test
forms assembly, the upper and lower bounds of test infor-
mation have been determined arbitrarily based on the desired
measurement error (e.g., [19], [20], [28], [29]). By contrast,
the present study determines the upper and lower bounds of
test information based on characteristics of item information

in the item pool. For the proposed method, these bounds are
set as presented below.

LBθγ = Iµ,θγn , (13)

UBθγ = (Iµ,θγ + Iσ,θγ )n , (14)

Iµ,θγ =
1

n

n∑
i=1

Ii(θγ), (15)

Iσ,θγ =

√√√√ 1

n

n∑
i=1

(Ii(θγ)− Iµ,θγ ). (16)

In those equations, Iµ,θγ and Iσ,θγ respectively represent the
average and the standard deviation of the Fisher information
(Eq. 4) at the ability level θγ over all items. Eq. (13) and
Eq. (14) mean that each equivalent item pool is guaranteed
to assemble items with above-average test information.
When we apply the conventional ZDD [21] to divide an

item pool, the BDD has high space complexity of O(2n),
where n represents the number of items in the item pool. To
mitigate this space complexity, the proposed method imple-
ments a breadth-first search [30] to compress the BDT into the
ZDD. Frontier-based search constructs a ZDD directly using
top-down and breadth-first approaches without increasing the
computer memory usage or computation time. The conven-
tional ZDD compilation shares two nodes with identical test
information values at all test score levels during the top-down
and breadth-first approaches. However, it leads to insufficient
sharing of nodes because, from a vast search space, find-
ing nodes with exactly identical measurement accuracies is
extremely difficult. Consequently, when we apply the ZDD
directly to generate equivalent item pools, this method often
causes computer memory overflow.
To solve this problem, this study proposes a novel ZDD

compilation algorithm. First, the proposed method constructs
a ZDD that approximates the test information value of the
merged two nodes by their average value. In the ZDD, during
breadth-first search using frontier-based search, nodes are
shared with an approximated value by averaging the two
nodes’ measurement accuracies when the difference in mea-
surement accuracy between two nodes at the same depth is
less than a threshold value.
Next, paths that satisfy the measurement accuracy con-

straints are searched and enumerated from the constructed
ZDD. The exact measurement accuracy for each of the enu-
merated paths is recalculated to enumerate paths that exactly
satisfy the measurement accuracy constraints.

1) Approximated ZDD construction
For frontier-based search, we designate a number of item
variables as tl and designate a test information array as
tis(tis = [ti1, ti2, . . . , tiΓ]), where Γ represents the number
of discretized points for the test information function. The
numbers of the item variable value and each element value in
the test information array respectively correspond to

∑n
i=1 xi

in Eq. (11) and
∑n

i=1 Ii(θγ)xi in Eq. (12). Frontier-based
search calculates the values of these variables for each node.
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FIGURE 2. Outline of the approximated ZDD construction.

Specifically, 1) Approximated ZDD construction algorithm
comprises five procedures, as presented in Figure 2.

1. Procedure 1 creates a root node. Then, Procedure 1 sets
zero to the number of items variable tl value and zero to
each element tis[γ] value in the test information array.

2. Procedure 2 creates a 0-child node with a 0-edge and
a 1-child node with a 1-edge. Then, Procedure 2 adds
one to the number of items variable tl value for 1-
child nodes. Subsequently, Procedure 2 adds Fisher
information Ii(θγ) of depth i to every element tis[γ]
value in the test information array for 1-child nodes.

3. Procedure 3 merges two nodes into a single node when
the difference of tis[γ] values for the two nodes is less
than the threshold value Ith . Then, each element tis[γ]
value in the test information array for the merged node
is approximated by the average of the corresponding
values from the two original nodes.

4. Procedure 4 connects a 1-edge to the 1-terminal node
when the number of items variable tl value and each
element tis[γ] value in the test information array satisfy
the following constraints, which correspond to Eq. (11)
and Eq. (12) as
Condition 1. M = tl,
Condition 2. ∀γ ∈ {1, 2, . . . ,Γ}, ILB(θγ) ≤

tis[γ] ≤ IUB(θγ).
5. In Procedure 5, a 1-edge and a 0-edge are connected

to the 0-terminal node when one of the following con-
straints is satisfied because the test constraints are not
satisfied.
Condition 1. M < tl,
Condition 2. ∃γ ∈ {1, 2, . . . ,Γ} s.t. IUB(θγ) <

tis[γ],
Condition 3. ∃γ ∈ {1, 2, . . . ,Γ} s.t. M =

tl and tis[γ] < ILB(θγ).
6. Procedure 6 executes Procedures 2–5 sequentially for

all items in the finite set I , resulting in a ZDD represent-
ing the family of equivalent item poolsF . Then, the two
reduction rules are applied to the constructed ZDD to
remove redundant nodes and identical subtrees because
frontier-based search does not guarantee a canonical

graph structure [30]. Consequently, a canonical ZDD
representing the family of equivalent item pools F is
obtained by application of the two reduction rules.

The specific algorithms for Procedure 1 through Procedure
6 are presented in Appendix A.

2) Exact search method from approximated ZDD

In 1) Approximated ZDD construction, each element in the
test information array of a shared node is approximated by the
average of the test information values of two nodes. There-
fore, paths that include the shared node are not guaranteed to
satisfy test information constraints in Eq. (12) exactly. Addi-
tionally, the proposed ZDD construction is unable to control
overlapping items. Allowing some overlapping items enables
repeated use of items, thereby increasing the total number of
equivalent item pools. However, when the maximum number
of overlapping items is too large, all equivalent item pools
might become nearly identical. (In earlier studies of parallel
test assembly, the maximum number of overlapping items is
usually set as 20% of the test length (the number of items of
each parallel test) (e.g., [19], [20], [28], [29])).

To address these limitations, the proposed method enumer-
ates paths that exactly satisfy the test information constraints
and overlapping items constraints from the constructed ZDD.

For the proposedmethod, equivalent item pools are defined
as the families of setsP ⊆ F which satisfy all test constraints.
The proposed method searches equivalent item pools using
the following procedures.

1. Procedure 1 sets P to the empty set.
2. Procedure 2 searches a subset S from the constructed

canonical ZDD F using random sampling.
3. Procedure 3 proceeds to Procedure 4 when the binary

variables of the sampled subset S satisfy the test infor-
mation constraints; otherwise, it returns to Procedure
2.

4. Procedure 4 proceeds to Procedure 5 when the binary
variables of the sampled subset S satisfy the following
overlapping item constraint; otherwise, it returns to
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FIGURE 3. Flowchart of the first step.

Procedure 2.

∀P ∈ P,
∑
i∈I

xSi x
P
i ≤ OC , (17)

Therein, xSi denotes a binary variable xi in subset S
and xPi represents a binary variable xi in subset P. In
addition, OC is defined as the maximum number of
common items between any pair of equivalent item
pools.

5. In Procedure 5, the sampled subset S is added to the
family of sets P (P ← P ∪ {S}).

6. Procedure 6 repeats Procedures 2–5 until a determined
computation time is reached.

Consequently, the proposed method enumerates equivalent
item pools that exactly satisfy all test constraints. The specific
algorithms for Procedure 1 through Procedure 6 are presented
in Appendix B.

C. FIRST STEP WITH EQUIVALENT ITEM POOLS
The first step selects and presents an item from an equivalent
item pool assigned to each examinee.

Subsequently, it estimates an examinee’s ability, as de-
scribed in the six procedures below, as presented in Figure
3.

1. Procedure 1 divides an item pool into equivalent item
pools using ZDD in Section IV-B.

2. Procedure 2 initializes an examinee’s estimated ability
to θ̂ = 0.

3. Procedure 3 assigns a randomly equivalent item pool
from a set of unused item pools to an examinee.

4. Procedure 4 selects an item for the examinee with the
maximizing item information for the examinee’s ability
from the equivalent item pool selected in Procedure 2.

FIGURE 4. Example of an item with high Fisher information for widely
various examinee ability value parameters.

5. Procedure 5 estimates the examinee ability θ̂ based on
the examinee’s response to the presented item.

6. Procedures 2 and 3 are repeated until the asymptotic
error of ability estimate SE (θ̂) reaches a threshold
value or less. The threshold value is designated as the
switching criterion SC .

Here, if a set of unused item pools is empty in Procedure
1, then the proposed method resets it as a universal set of
equivalent item pools.
The first step switches to the second step, which selects the

optimum item from the whole item pool and then presents it
when the examinee’s ability estimate error becomes less than
the switching criterion SC . The switching criterion SC is opti-
mized to balance the bias of item exposure and measurement
error.
Item selection from an equivalent item pool accelerates

the ability estimation to approach the true ability value be-
cause the item difficulties in each equivalent item pool are
distributed sparsely and uniformly over the abilities of all
examinees. At the same time, item selection from equivalent
item pools can decrease the bias of item exposure.

D. SECOND STEP WITH THE IDI CONDITION
The first step rapidly approaches a roughly approximated
ability estimate of an examinee. The second step reaches
a more accurate ability estimate of the examinee because
it selects the optimum item from the whole item pool and
then presents it. The second step proceeds until the update
difference of the estimated examinee ability becomes less
than a constant value or less, similarly to traditional CATs.
An item selection criterion employing the Fisher information
measure becomes more accurate for the second step than for
the first step because it is an asymptotic approximation of the
inverse estimate variance (e.g. [31]). Therefore, the second
step is expected to approach the true ability value efficiently
and rapidly without greatly increasing the item exposure.
The second step assumes that an item with a difficulty pa-

rameter approximately equal to the ability estimate is selected
and presented to an examinee. However, the proposed and
traditional CATmethods tend to select and present items with
high Fisher information for widely various examinees’ abili-
ties. Fig. 4 depicts an example of items 1 and 2 with different
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FIGURE 5. Flowchart of the second step.

discrimination parameter ai values. The vertical axis and the
horizontal axis respectively show the Fisher information and
ability.When the ability value is 0.0, item 2 has a lower Fisher
information than item 1 has, although the value of item 2 has
reached its peak. This phenomenon causes overexposure of
itemswith high Fisher information for widely various abilities
of the examinees.

To relax this tendency, in the second step, the proposed
method restricts the items which satisfy the IDI condition
based on the estimation error for that examinee’s ability.
Actually, the IDI condition for 3PLM is defined as

θ̂ − δSE (θ̂) < bi < θ̂ + δSE (θ̂), (18)

where δ stands for a tuning parameter that is optimized to
balance the measurement error and the bias of item exposure.
Moreover, SE (θ̂) represents the standard error of the exami-
nee’s ability estimate θ̂ as

SE (θ̂) =

√∫ ∞

−∞
(θ − θ̂)2f (θ | u). (19)

In addition, the IDI condition for GPCM is defined as

θ̂ − δSE (θ̂) < βi,s < θ̂ + δSE (θ̂). (20)

More specifically, the algorithm in the second step can be
presented as shown below, as illustrated in Figure 5.

1. Procedure 1 calculates the IDI from SE (θ̂), the current
examinee’s ability θ̂, and the standard error.

2. From items satisfying the IDI condition, Procedure 2
selects an optimal item that maximizes Fisher informa-
tion.

3. Procedure 3 updates the estimated examinee ability
based on the examinee’s responses.

4. Procedures 1–3 are iterated until the update difference
of the ability estimate falls to or below a constant value
of ϵ.

The proposed method is expected to reduce item exposure
with high discrimination parameters while retaining lowmea-
surement error.

V. EXPERIMENTATION
As presented in this section, we optimize the tuning param-
eters for the proposed method, which presents a tradeoff
between decreasing item exposure and increasing measure-
ment accuracy among the values of parameters. Therefore,
we evaluate the tradeoff by changing the parameter values
to ascertain optimal values and to maximize the method’s
performance. Subsequently, we compare the performance
achieved using the proposed method with the performance
achieved using earlier methods.
We use two simulated item pools with 1000 items and

two actual item pools for experiments. Items in the simulated
item pools have discrimination parameters ai and difficulty
parameters bi of IRT. In addition, guessing parameters ci of
all items are 0 because it is assumed for this study that the
item cannot be answered correctly by guessing. Specifically,
we generated two simulated item pools according to the most
commonly used approaches applied in earlir studies (e.g.,
[26], [31]) as

Simulation1 : log ai ∼ N (−0.5, 0.2), bi ∼ N (0, 1), (21)

Simulation2 : log ai ∼ N (−0.75, 0.2), bi ∼ N (0, 1). (22)

Table 1 presents details of the actual item pool used for the
synthetic personality inventory examination. It is a widely
used aptitude test in Japan [32]. For this study, the actual item
pool is designated as SPI. The values of guessing parameters
ci in all items from SPI are 0. Additionally, we use another
actual item pool (designated as Science), which was used in
earlier studies (e.g. [33]). Science includes 918 items with
3PLM and 82 items with GPCM.
We sampled the examinees’ actual abilities from θ ∼

N (0, 1) 10,000 times. We set the total test length as 30.

A. COMPARISON OF THE NUMBER OF EQUIVALENT ITEM
POOLS
This experiment demonstrates the benefits provided by the
proposed ZDD method through comparison of the number

TABLE 1. Details of the actual item pool

Item

Pool Item discrimination Parameter a Item difficulty parameter b

Size Range Mean SD Range Mean SD

978 0.12 − −3.08 0.46 0.19 −4.00 − 4.55 −0.22 1.57
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of equivalent item pools with those assembled using an ear-
lier method, specifically Hybrid Maximum Clique Algorithm
using Parallel Integer Programming (HMCAPIP) [19] with
simulated and actual item pools. Actually, HMCAPIP [19]
is known to assemble the maximum number of parallel test
forms among conventional test form assembly methods. Ad-
ditionally, this study determined the hyperparameters as pre-
sented below.

1. The value ofM is determined as the value which gener-
ates the maximum number of equivalent item pools by
changing the value from 5 to 100 in increments of 5.

2. The maximum number of common items OC is set to
20% ofM items in each equivalent item pool according
to earlier studies ( [19], [20], [28], [29]).

3. The lower bound LBθγ and the upper bound UBθγ of
the test information at point θγ on the ability level are
calculated based on Eq. (13) and Eq. (14).

4. The time limitation for all methods is 24 hr.

The parameter values for HMCAPIP were set based on the
explanation presented by [19]. For this study, CPLEX 12.9
[34] was applied to the IP for HMCAPIP.

Table 2 for the simulated item pool and Table 3 for the
actual item pool present the number of equivalent item pools
produced using the proposed ZDD method and using HM-
CAPIP by modifying M and OC .
As presented in the tables, the proposed ZDD method as-

sembles more equivalent item pools than the earlier methods
do when the number of equivalent item pools becomes large.
In fact, the proposed ZDD method assembles a maximum of
over 200,000 equivalent item pools, whereas HMCAPIP is
limited to assembling only around 100,000 equivalent item
pools. The HMCAPIP method is incapable of increasing the
number of equivalent item pools to more than around 100.000
because of its high time and space complexity.

By contrast, when the number of equivalent item pools
generated by the proposed method is less than 70,000, the
proposed method assembles fewer equivalent item pools than
HMCAPIP does. The reason for that outcome is that the true
number of possible equivalent item pools is small. Therefore,
the number of assembled equivalent item pools is also small
because the rate of valid paths which satisfy the test informa-
tion constraints is small in the approximated ZDD.

To confirm that rationale, we calculate Pvalid, info, which
represents the rate of valid paths which satisfy the test infor-
mation constraints, as

Pvalid,info =
Nvalid,info

Nsampled
,

where Nvalid,info represents the number of valid paths which
satisfy the test information constraints, and where Nsampled

stands for the total number of random sampling iterations.
Furthermore, the proposed ZDD method assembles equiv-

alent item pools by seeking paths that satisfy the overlapping
item constraint among those that satisfy the test information
constraints. To assess the rate, we calculate Pvalid,oc, which

represents the rate of valid paths which satisfy the overlapping
item constraint as

Pvalid,oc =
Nvalid,oc

Nvalid,info
,

where Nvalid,oc represents the number of valid paths which
satisfy the test information constraints and the overlapping
item constraint.
Table 4 for the simulated item pool and Table 5 for the

actual item pool respectively present Pvalid,info and Pvalid,oc. In
Tables 4 and 5, the values of Pvalid,info vary from 0.01 to 0.17
depending on the value of M because the upper and lower
bounds of test information for equivalent item pools differ
according to the value of M .
By contrast, the value of Pvalid,oc remains nearly unchanged

under all conditions because the value of OC is set to 0.20 of
the value of M .
Despite these extremely low values ofPvalid,info andPvalid,oc,

the proposed ZDD method can assemble more equivalent
item pools than HMCAPIP can for a large number of possible
equivalent item pools.

B. OPTIMIZATION OF EQUIVALENT ITEM POOL AND THE
SWITCHING CRITERION
The proposed method entails a tradeoff between the bias of
item exposure and the measurement accuracy of an exami-
nee’s ability, as affected by the value of the number of items
M in each equivalent item pool and the threshold value SC of
the switching criterion. Therefore, to infer the optimal value
to balance the bias of item exposure and the examinee ability
measurement accuracy, we tune the tradeoff by changing
values of M and SC via grid search. Actually, the values of
M and the threshold value SC are changed respectively as 5
to 100 in 5 steps and 0.05 to 0.50 in 0.05 steps.
Fig. 6 presents the percentage difference of the root mean

squared error (RMSE ) between the students’ ability esti-
mates and the true values (red line) on the right vertical axis
and the standard deviation of item exposure rate SD .IER
(blue line) on the left vertical axis for the value of SC shown
on the horizontal axis. Here, the RMSE , the IERi,J , and the
SD .IER are defined respectively as presented below.

RMSE =

√√√√ J∑
j=1

(θj − θ̂j )2, (23)

IERi,J =
1

J

J∑
j=1

IEi,j , (24)

IEi,j =


1 if the i -th item is exposed
to the j -th examinee, and
0 otherwise.

, (25)

SD .IER =

√√√√ 1

n

n∑
i=1

(IERi,J − IERµ)2 (26)
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TABLE 2. Numbers of equivalent item pools generated from each method
by changing the value M (simulated item pool).

Item Pool M HMCAPIP Proposal

5 27401 16307

10 97829 62526

15 112172 119658

20 114286 176625

25 106048 235317

30 107321 284231

35 100433 314048

40 100175 319819

45 94671 321774

50 92429 293114

simulation 1 55 87720 270989

60 83021 231472

65 80562 195432

70 74354 123919

75 71381 122775

80 65900 79012

85 61288 66068

90 56682 48552

95 51061 34227

100 42238 23343

5 29449 18916

10 101052 64832

15 115459 122190

20 117170 185894

25 108152 252701

30 108958 296333

35 101997 339295

40 101620 340870

45 95825 330727

50 93430 301038

simulation 2 55 88578 270989

60 83846 245029

65 80366 200429

70 74069 162538

75 70817 123870

80 65248 91094

85 60953 72272

90 56479 50857

95 51710 36256

100 43190 24895
Bold numbers in the table signify the best performances.

TABLE 3. Numbers of equivalent item pools generated using the
respective methods by changing the value M (Actual item pool).

Item Pool M HMCAPIP Proposal

5 25024 18627

10 100430 69156

15 112052 128596

20 114057 200869

25 105722 258038

30 106570 311875

35 99046 322250

40 98346 327259

45 92143 313079

50 89339 286742

SPI 55 84860 263949

60 79806 174305

65 75711 181155

70 70290 123919

75 66591 97334

80 61521 75823

85 57146 52225

90 50957 32324

95 44360 23304

100 35326 17754

5 19896 17293

10 97651 66782

15 111745 115331

20 114080 200411

25 105690 259012

30 106811 301127

35 99786 323312

40 99774 331631

45 94193 310294

50 91779 282901

Science 55 87032 264189

60 82271 181921

65 79052 168590

70 73128 133911

75 69757 101289

80 64386 77518

85 60031 59823

90 54944 45282

95 50162 41234

100 41554 24822
Bold numbers in the table signify the best performances.
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TABLE 4. Rates of valid paths that satisfy the test information constraints
and overlapping item constraint (Simulated item pool).

Item Pool M Pvalid,info Pvalid,oc

5 0.008 1.35× 10−3

10 0.027 1.54× 10−3

15 0.070 1.12× 10−3

20 0.086 1.42× 10−3

25 0.104 1.52× 10−3

30 0.170 1.12× 10−3

35 0.128 1.53× 10−3

40 0.107 1.86× 10−3

45 0.170 1.12× 10−3

50 0.100 1.75× 10−3

simulation 1 55 0.131 1.23× 10−3

60 0.068 1.56× 10−3

65 0.068 1.62× 10−3

70 0.067 1.12× 10−3

75 0.048 1.23× 10−3

80 0.025 1.86× 10−3

85 0.026 1.23× 10−3

90 0.011 1.72× 10−3

95 0.011 1.25× 10−3

100 0.009 1.26× 10−3

5 0.008 1.37× 10−3

10 0.031 1.33× 10−3

15 0.054 1.31× 10−3

20 0.089 1.37× 10−3

25 0.121 1.31× 10−3

30 0.140 1.31× 10−3

35 0.143 1.38× 10−3

40 0.147 1.38× 10−3

45 0.132 1.43× 10−3

50 0.105 1.65× 10−3

simulation 2 55 0.099 1.63× 10−3

60 0.076 1.45× 10−3

65 0.066 1.56× 10−3

70 0.065 1.26× 10−3

75 0.048 1.30× 10−3

80 0.027 1.74× 10−3

85 0.025 1.45× 10−3

90 0.022 1.24× 10−3

95 0.019 1.34× 10−3

100 0.010 1.54× 10−3

TABLE 5. Rates of valid paths that satisfy the test information constraints
and overlapping item constraint (Actual item pool).

Item Pool M Pvalid,info Pvalid,oc

5 0.008 1.43× 10−3

10 0.029 1.44× 10−3

15 0.060 1.31× 10−3

20 0.091 1.34× 10−3

25 0.126 1.25× 10−3

30 0.150 1.27× 10−3

35 0.136 1.45× 10−3

40 0.149 1.34× 10−3

45 0.144 1.33× 10−3

50 0.100 1.75× 10−3

SPI 55 0.113 1.42× 10−3

60 0.074 1.44× 10−3

65 0.090 1.23× 10−3

70 0.049 1.54× 10−3

75 0.039 1.54× 10−3

80 0.032 1.45× 10−3

85 0.024 1.33× 10−3

90 0.014 1.44× 10−3

95 0.010 1.42× 10−3

100 0.008 1.41× 10−3

5 0.007 1.54× 10−3

10 0.028 1.43× 10−3

15 0.048 1.45× 10−3

20 0.079 1.54× 10−3

25 0.110 1.44× 10−3

30 0.136 1.35× 10−3

35 0.120 1.64× 10−3

40 0.131 1.54× 10−3

45 0.115 1.64× 10−3

50 0.120 1.44× 10−3

Science 55 0.113 1.43× 10−3

60 0.084 1.32× 10−3

65 0.084 1.23× 10−3

70 0.053 1.54× 10−3

75 0.035 1.75× 10−3

80 0.031 1.54× 10−3

85 0.023 1.61× 10−3

90 0.021 1.29× 10−3

95 0.017 1.47× 10−3

100 0.011 1.37× 10−3
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FIGURE 6. RMSE of the measurement accuracy and the standard deviation of item exposure for each value of SC .

FIGURE 7. RMSE of measurement accuracy and the standard deviation of item exposure for each value of M.

Therein, IERi,J and IERµ respectively represent the item
exposure rate of item i for all examinees and the aver-
age of item exposure rate over all items for all examinees
(IERµ = 1

n

∑n
i=1 IERi,J ). The left vertical axis, which

shows SD .IER given each value of SC in Fig. 6, depends on
the value ofM . Therefore, the left vertical axis shown in Fig.
6 represents the minimum SD .IER by changing M = 5 to
M = 100 in five steps for each value of SC . Fig. 6 shows
that the SD .IER becomes large when SC becomes large,
but the RMSE becomes small. To resolve this tradeoff, we
determined each optimal value of SC for an item pool to
minimize the value of SD .IER among a set of items with the
lowest RMSE within a three-significant-digit range.
Fig. 7 portrays the tradeoff between the RMSE and the

SD .IER by changing M . As presented in Fig. 7, when the
value ofM becomes small, the percentage standard deviation
of item exposure rate SD .IER decreases, but the RMSE of
measurement accuracy tends to increase. Specifically, when
M < 50, the RMSE of the measurement accuracy tends to
increase. By contrast, improvement of the percentage stan-
dard deviation of item exposure rate SD .IER is limited by
changing the value ofM . Therefore, for this study, we found
the optimal value ofM for an item pool to minimize SD .IER
given a condition to minimize the RMSE within a three-
significant-digit range.

C. EFFECTIVENESS OF THE IDI CONDITION
For item selection of the second step, the proposed method
restricts the items which satisfy the Item Difficulty Interval
(IDI) condition. The IDI condition is expected to mitigate the
tradeoff between the bias of item exposure and theRMSE by
tuning parameter δ. Increasing δ increases the interval length
of the IDI condition to mitigate the degree of restriction for
item selection. Specifically, the value of the tuning parameter

TABLE 6. Determined values of parameter δ.

Item pool δ

Simulation 1 1.0

Simulation 2 1.0

SPI 0.8

Science 0.8

δ was changed 0.2 to 1.0 in 0.2 increments to ascertain the
optimal value to balance the bias of item exposure and the
RMSE .
Fig. 8 presents the RMSE (red line) on the right vertical

axis and shows the percentage standard deviation of the item
exposure rate SD .IER (blue line) on the left vertical axis
for the value of parameter δ. As shown in Fig. 8, SD .IER
becomes large when δ becomes large. However, the RMSE
becomes small because increasing the value of δ mitigates
the degree of restriction for item selection. Accordingly, as
presented in Table 6, the values of the parameter δ were deter-
mined to minimize SD .IER, given the condition to minimize
RMSE within a three-significant-digit range for an item pool.
Fig. 9 depicts a scatter plot of the i -th item’s discrimination

parameter value ai and the i -th item’s item exposure rate
IERi,J for the proposed method with and without the IDI
condition. When the discrimination parameter value becomes
large, the item exposure of the proposed method without the
IDI condition tends to become large because these items tend
to have high Fisher information for widely various examinee
abilities. By contrast, the proposed method using the IDI
condition selects and presents items with a lower bias of
item exposure than that obtained using the proposed method
without the IDI condition. In addition, Fig. 10 depicts a scatter
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FIGURE 8. Tradeoff between the examinee ability measurement accuracy and the bias of item exposure by changing parameter δ.

FIGURE 9. Scatter plot of the i -th item’s discrimination parameter value ai and the i -th item’s item exposure rate IERi for the proposed method with and
without the IDI condition using each item pool.

FIGURE 10. Scatter plot of the i -th item’s difficulty parameter value bi and the i -th item’s item exposure rate IERi for the proposed method with and
without the IDI condition using each item pool.

plot of the i -th item’s difficulty parameter value and the i -
th item’s item exposure rate IERi,J for the proposed method
with and without the IDI condition. Each difficulty parameter
of GPCM in Fig. 10 presents only the closest value of step
difficulty parameters to the examinee ability estimate. When
the difficulty parameter value is approximately bi = 0.0, the
IERi,J of the proposed method without the IDI condition
tends to become large because the number of examinees
for whom ability estimates are almost zero is the largest,
as described previously. It is noteworthy that the proposed
method with the IDI condition can select and present items
with lower item exposure than the proposed method without
the IDI condition can.

Regarded in greater detail, Fig. 11 depicts the average
difference between the presented item difficulty parameter
and the examinee ability estimate for each ability value in
the second step. The horizontal axis shows the true ability
of each examinee. The vertical axis shows the average dif-
ference between the presented item difficulty parameter and

the examinee ability estimate in the second step given as

1

n − l ′ + 1

L∑
l=l′

(θ̂l−1 − bl)
2, (27)

where bl is the difficulty parameter of the l -th presented
item, and where θ̂l represents the ability estimate after the
examinee answered the l -th item. Each difficulty parameter
bl of GPCM in Eq. (27) represents only the closest value of
step difficulty parameters to the examinee ability estimate.
Items from l ′-th to L-th are presented in the second step. Fig.
11 shows that the proposed method without the IDI condition
often selects items with difficulty parameter values that differ
greatly from the ability estimates. In contrast, the proposed
method with the IDI condition selects items with difficulty
parameter values that more closely approximate the ability
estimates.
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FIGURE 11. Average difference between the presented item difficulty parameter and the estimated ability for each ability value in the second step.

TABLE 7. Details of threshold values for item pools in Situation 3

Item pool Threshold value

Simulation 1 0.25

Simulation 2 0.31

SPI 0.25

Science 0.20

D. COMPARING THE PROPOSED METHOD TO THE
CONVENTIONALLY USED METHOD
This section presents a comparison of the performance results
of the proposed method using ZDD (designated as Proposed
(ZDD)), the proposed method using approximated ZDD
in section IV-B1) (designated as Proposed (Approximated
ZDD)), only the first step of Proposed (ZDD) (designated as
Proposed (ZDD first-step)), the proposed method using Hy-
brid Maximum Clique Algorithm using Parallel Integer Pro-
gramming [20] (designated as Proposed (HMCAPIP) [29]),
and only the first step of Proposed (HMCAPIP) (designated
as Proposed (HMCAPIP first-step), which is the samemethod
as that presented by Ueno and Miyazawa [28]) to the perfor-
mance results of other computerized adaptive testing methods
(conventional adaptive testing in Section II-B (designated as
CAT), van der Linden’s IP-based method [7] in Section III-A
(designated as IP), Linden and Choi’s item-eligibility prob-
ability method [11] in Section III-B (designated as Prob)),
Choi and Lim’s target information method [9] (designated
as TI), the a-stratification method [13], [14] (designated as
a-stratification), and Lim and Choi’s hybrid method [12] in
Section III-D (designated as Hybrid).

Comparisons of the performances of the proposed methods
to those of other methods were conducted under the following
two experiment conditions.

1. Experiment condition 1 has fixed test length. Linden
[35] described that this condition is in agreement with
practice in nearly all reported adaptive testing studies
(e.g. [9], [13], [14], [35]). It fairly compares the per-
formance of the proposed methods to those of earlier
methods. Particularly, experiment condition 1 has two
test constraints: the test length is 30; and the number
of examinees is 10,000. These test constraints are the

same as those described in Sections V-B and V-C. In
addition, experiment condition 1 restricts the upper
bound to be imposed on the exposure rates of the
items. Specifically, experiment condition 1 restricts the
maximum number of item exposures to 50% of the
total number of examinees according to [28], [29], [36].
For instance, for Prob and Hybrid, we set the upper
bound of exposure rate as rmax = 0.5 according to [11],
[12]. For IP, we set the maximum number of times as
R = 5, 000 according to [7]. Additionally, we apply a
restriction of the upper-bound of item exposure [37] to
CAT (designated as CAT (Restrict)) and TI (designated
as TI (Restrict)). By the restriction method, when an
item is used by more than 50% of the total number of
examinees, the item is removed from the item pool.

2. Experiment condition 2 applies a stopping rule based on
a predetermined level of accuracy for ability estimation
according to Wainer et al. [38]. The stopping rule,
which is expected to reduce the test length without de-
creasing the measurement accuracy, is used frequently
in actual settings of adaptive tests. By the stopping rule,
each method repeats to select and present items until
the standard error of the estimated examinee ability
decreases to a threshold value or less. Actually, we set
the threshold values for each item pool as shown in
Table 7. These thresholds are obtained as the average
of the standard error of the examinee’s ability estimate
(Eq. 19) using conventional CAT in experiment con-
dition 1. In addition, when the standard error of the
examinee’s ability estimate does not converge, each
method finished CAT when 60 items were presented.
It is noteworthy that CAT and the proposed method can
apply the stopping rule to reduce the test length without
decreasing the measurement accuracy. By contrast, IP,
Prob, TI, and Hybrid cannot apply the stopping rule
because thesemethods require the test length in the con-
straint of IP. Therefore, these methods are inapplicable
when using experiment condition 2.

Table 8 presents the standard deviation of item exposure rate
SD .IER (Eq. 26), the maximum number of item exposure
rate Max .IER, RMSE (Eq. 23), and the number of non-
presented items in experiment condition 1. Here, the non-
presented items are those items which have not been pre-
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TABLE 8. Comparing the proposed method to earlier methods for experiment condition 1

Item pool Method SD .IER Max .IER
Number of

non-presented items RMSE
CAT 0.105 1.000 843 0.26

CAT (Restrict) 0.097 0.500 826 0.26
IP 0.098 0.500 829 0.25
Prob 0.098 0.556 837 0.25
TI 0.101 1.000 268 0.26

simulation 1 TI (Restrict) 0.094 0.500 758 0.26
a-stratification 0.092 1.000 476 0.26

Hybrid 0.085 0.495 542 0.26
Proposed (HMCAPIP first-step) 0.029 0.163 15 0.33

Proposed (HMCAPIP) 0.066 0.434 219 0.26
Proposed (Approximated ZDD) 0.088 0.503 182 0.33

Proposed (ZDD first-step) 0.023 0.154 3 0.33
Proposed (ZDD) 0.061 0.372 60 0.26

CAT 0.116 1.000 874 0.32
CAT (Restrict) 0.100 0.500 845 0.32

IP 0.102 0.500 841 0.33
Prob 0.103 0.541 864 0.32
TI 0.110 1.000 306 0.32

simulation 2 TI (Restrict) 0.101 0.500 748 0.32
a-stratification 0.086 1.000 321 0.33

Hybrid 0.095 0.500 689 0.33
Proposed (HMCAPIP first-step) 0.029 0.183 68 0.39

Proposed (HMCAPIP) 0.071 0.557 281 0.34
Proposed (Approximated ZDD) 0.083 0.611 123 0.39

Proposed (ZDD first-step) 0.026 0.172 56 0.39
Proposed (ZDD) 0.056 0.365 52 0.34

CAT 0.114 1.000 850 0.26
CAT (Restrict) 0.100 0.500 822 0.26

IP 0.102 0.500 819 0.26
Prob 0.103 0.545 840 0.26
TI 0.106 1.000 482 0.26

SPI TI (Restrict) 0.100 0.500 798 0.26
a-stratification 0.093 1.000 522 0.26

Hybrid 0.098 0.500 678 0.27
Proposed (HMCAPIP first-step) 0.034 0.278 135 0.37

Proposed (HMCAPIP) 0.072 0.593 398 0.26
Proposed (Approximated ZDD) 0.092 0.551 332 0.36

Proposed (ZDD first-step) 0.029 0.246 111 0.37
Proposed (ZDD) 0.071 0.531 281 0.26

CAT 0.122 1.000 893 0.21
CAT (Restrict) 0.104 0.500 855 0.21

IP 0.104 0.500 854 0.21
Prob 0.107 0.531 878 0.21
TI 0.107 1.000 754 0.21

Science TI (Restrict) 0.102 0.500 759 0.21
a-stratification 0.092 1.000 543 0.22

Hybrid 0.087 0.496 689 0.22
Proposed (HMCAPIP first-step) 0.061 0.292 267 0.36

Proposed (HMCAPIP) 0.071 0.529 399 0.24
Proposed (Approximated ZDD) 0.088 0.533 253 0.36

Proposed (ZDD first-step) 0.056 0.282 216 0.36
Proposed (ZDD) 0.066 0.487 236 0.24

Bold numbers in the table signify the best performances.

sented by any examinee.
Proposed (HMCAPIP) and Proposed (ZDD) provide lower

values of SD .IER, Max .IER, and ‘‘Number of non-
presented items’’ than earlier methods provide without
greatly increasing the RMSE . Especially, Proposed (ZDD)
provides the lowest values of SD .IER, Max .IER, and
‘‘Number of non-presented items’’ without greatly increasing
the associatedRMSE . The results demonstrate that Proposed
(ZDD) provides the best performance of tradeoff control be-
tween decreasing item exposure and increasing measurement
accuracy using the standard CAT’s condition. Furthermore,

Proposed (ZDD first-step) and Proposed (ZDD) respectively
have lower values of SD .IER, Max .IER, and ‘‘Number of
non-presented items’’ than either Proposed (HMCAPIP first-
step) or Proposed (HMCAPIP) has. Results indicate that the
proposed method using ZDD is more effective at mitigating
the tradeoff than the proposed method using the maximum
clique algorithm and IP is. By contrast, Proposed (HMCAPIP
first-step) and Proposed (ZDD first-step) provide lower val-
ues of SD .IER andMax .IER than other methods provide. In
addition, Proposed (ZDD first-step) provides the very lowest
values of ‘‘Number of non-presented items’’ in almost all
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TABLE 9. Comparing the proposed method to earlier methods for experiment condition 2

Item pool Method SD .IER Max .IER
Number of

non-presented items RMSE Avg.TL
CAT 0.104 1.000 773 0.25 30.45

CAT (Restrict) 0.098 0.500 723 0.25 31.25
simulation 1 Proposed (HMCAPIP first-step) 0.110 0.601 35 0.27 59.81

Proposed (HMCAPIP) 0.071 0.508 97 0.27 36.16
Proposed (Approximated ZDD) 0.115 0.592 55 0.27 50.17

Proposed (ZDD first-step) 0.104 0.567 2 0.27 59.67
Proposed (ZDD) 0.066 0.478 75 0.26 35.67

CAT 0.117 1.000 810 0.31 31.72
CAT (Restrict) 0.108 0.500 768 0.31 33.72

simulation 2 Proposed (HMCAPIP first-step) 0.109 0.641 24 0.35 58.23
Proposed (HMCAPIP) 0.078 0.558 135 0.33 37.35

Proposed (Approximated ZDD) 0.115 0.583 123 0.35 52.17
Proposed (ZDD first-step) 0.102 0.630 3 0.35 57.12

Proposed (ZDD) 0.071 0.506 103 0.32 36.25
CAT 0.108 1.000 757 0.24 30.30

CAT (Restrict) 0.101 0.500 702 0.24 31.35
SPI Proposed (HMCAPIP first-step) 0.091 0.644 14 0.26 59.51

Proposed (HMCAPIP) 0.075 0.580 173 0.24 38.16
Proposed (Approximated ZDD) 0.094 0.592 111 0.26 48.53

Proposed (ZDD first-step) 0.082 0.623 3 0.26 59.21
Proposed (ZDD) 0.069 0.531 87 0.24 37.67

CAT 0.121 1.000 801 0.20 31.90
CAT (Restrict) 0.111 0.500 786 0.20 33.11

Science Proposed (HMCAPIP first-step) 0.098 0.684 13 0.23 59.61
Proposed (HMCAPIP) 0.081 0.535 40 0.21 54.41

Proposed (Approximated ZDD) 0.105 0.632 60 0.23 49.02
Proposed (ZDD first-step) 0.095 0.682 3 0.23 59.21

Proposed (ZDD) 0.075 0.502 26 0.21 38.12
Bold numbers in the table signify the best performances.

cases. Proposed (HMCAPIP first-step) and Proposed (ZDD
first-step) provide the largest values of RMSE . These meth-
ods present a large tradeoff between decreasing SD .IER and
decreasing RMSE .
By contrast, Proposed (Approximated ZDD) enumerates

equivalent item pools based on the ZDD that approximates
test information value of the merged two nodes by their av-
erage value. Therefore, Proposed (Approximated ZDD) does
not guarantee to satisfy the test information constraints. As a
result, Proposed (Approximated ZDD) provides higher values
of RMSE than Proposed (ZDD) does.
Additionally, Proposed (Approximated ZDD) does not

control the overlapping items among equivalent item pools. In
fact, as demonstrated in the experiment described in Section
V-A, the rates of valid from the approximated ZDD-based
item pools pasts which satisfy the overlapping item constraint
are less than 2× 10−3. As a result, Proposed (Approximated
ZDD) provides higher values of SD .IER, MAX .IER, and
the ’number of non-presented items’ than Proposed (ZDD)
provides.

When using earlier methods, TI provides the lowest values
of RMSE, but the values of SD .IER are nearly identical to
those of CAT. Additionally, TI, CAT, and a-stratification yield
the same values of Max .IER: 1.000. This finding implies
that one or more items are presented to all examinees. IP,
Prob, and TI (Restrict) provide values ofMax .IER as around
0.500, but the values of SD .IER are as large as those of CAT
(Restrict). A-stratification and Hybrid provide lower values
of SD .IER than earlier methods provide, but the ‘‘Number

of non-presented items’’ is still large.
Table 9 presents the SD .IER, the Max .IER, the RMSE ,

the number of non-presented items, and the average of test
length Avg .TL of the methods in experiment condition 2.
The results indicate that Proposed (HMCAPIP) and Pro-

posed (ZDD) provide lower values of SD .IER andMax .IER
than othermethods provide, but without greatly increasing the
test length or the RMSE. Moreover, Proposed (HMCAPIP)
and Proposed (ZDD) provide lower values of ‘‘Number of
non-presented items’’ than any method except for Proposed
(HMCAPIP first-step) and Proposed (ZDD first-step). Espe-
cially, Proposed (ZDD) provides lower values of SD .IER,
Max .IER, and ‘‘Number of non-presented items’’ than Pro-
posed (HMCAPIP) provides. The results demonstrate that,
in actual settings, Proposed (ZDD) provides the best per-
formance of tradeoff control between decreasing item expo-
sure and increasing measurement accuracy without greatly
increasing the test length.

Proposed (HMCAPIP first-step) and Proposed (ZDD first-
step) provide lower values of ‘‘Number of non-presented
items’’ than other methods provide, but these methods pro-
vide the highest values of Avg .TL because of their high
RMSE .

Similar to experiment condition 1, Proposed (Approxi-
mated ZDD) provides higher values of SD .IER, Max .IER,
‘‘Number of non-presented items’’, RMSE than Proposed
(ZDD) does. Additionally, Proposed (Approximated ZDD)
provides higher values of Avg .TL because of their high
RMSE .
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By contrast, CAT provides the lowest values of Avg .TL,
but SD .IER is extremely large. Additionally, CAT produces
the values of Max .IER as 1.000. This case implies that one
or more items are exposed to all examinees. In addition, CAT
(Restrict) provides values of Max .IER of approximately
0.500, but the values of SD .IER are as large as those of CAT.

VI. CONCLUSION
Conventional CAT entails the difficulties posed by a tradeoff
between increased measurement accuracy and decreased item
exposure in an item pool. To resolve this tradeoff dilemma,
we proposed two-step adaptive testing using zero-suppressed
binary decision diagrams. During the initial step, an opti-
mal item is selected and presented from an equivalent item
pool divided using automated parallel test form assembly
with zero-suppressed binary decision diagrams. The proposed
method switches to the second step when the examinee’s abil-
ity estimate converges. The second step selects and presents
the optimal item with a difficulty parameter value approxi-
mating the examinee’s ability estimate from the whole item
pool. The first step rapidly provides a roughly approximated
ability estimate of an examinee. The second step reaches a
more accurate ability estimate of the examinee.

Experiments were conducted for comparison of the per-
formance achieved using the proposed method with the per-
formance achieved using conventional methods. Results of
empirical experimentation demonstrated that the proposed
method provides a lower bias of item exposure than the com-
pared methods did, but while maintaining low measurement
error. Especially, the results demonstrated that partitioning an
item pool to several equivalent item pools with an appropriate
number of items is extremely effective to address the tradeoff
difficulty associatedwith CAT. Based on these results, we rec-
ommend development of a large item pool, with subsequent
assembly of equivalent item pools.

Recently, through the rapid progress achieved in the study
of artificial intelligence, several CAT methods [39], [40] us-
ing deep learning have been proposed to improve the mea-
surement accuracy of an examinee’s ability. These CATmeth-
ods are applicable to the idea of the proposed adaptive testing
method. In addition, various knowledge tracing (KT)methods
(e.g. Deep-IRT [41]–[43]) have been proposed for adaptive
learning systems using deep learning to discover concepts that
the student has not mastered. That discovery is achieved by
tracing a student’s evolving knowledge state. As future work,
we expect to apply the proposed adaptive testing method to
CATmethods using deep learning, KT methods, and adaptive
learning systems [44], [45].
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APPENDIX A DESCRIPTION OF THE PROPOSED ZDD
CONSTRUCTION
The proposed ZDD construction requires the following in-
puts.

• Tuning parameter Ith represents the threshold value in
Procedure 3.

• Finite set I represents a set of items in an item pool.
• Constant value parameter M denotes the number of

items in equivalent item pool.
• Constant value parameter n stands for the number of

items in the item pool.
• Constant value parameter Γ represents the number of

discretized points for the test information function.
• Constant value parameters ILB(θγ) and IUB(θγ) respec-

tively denote the lower and upper bounds of the test
information function at the test score level θγ .

Using these inputs, Algorithm A provides a description of
the proposed ZDD construction. The output of AlgorithmA is
the set F , which represents equivalent item pools that satisfy
Eq. (11) and Eq. (12).

1: procedure First stage
2: Input: Ith, I , n,M ,Γ, ILB(θγ), IUB(θγ)
3: Output: F
4: Create a new node vroot

▷ root node
5: vroot .state.tl ← 0
6: vroot .state.tis ← Array[Γ]

▷ Declare an array of size Γ
7: for γ ← 1 to Γ do
8: vroot .state.tis[γ]← 0
9: end for
10: V1 ← {vroot}

▷ Vi is a set of nodes of depth i
11: for i ← 2 to n do
12: Vi ← ∅
13: end for
14: Vn+1 ← {0-terminal node, 1-terminal node}
15: for i ← 1 to n do
16: for each v ∈ Vi do
17: for each xi ∈ {0, 1} do

▷ 0-edge, 1-edge
18: {i ′, state′} ← Child(i ,M , v .state, xi )

▷ i ′ is the depth of the child node. state′ is tl and tis of
the child node.

19: v ′ ←create a new node
▷ child node

20: if {i ′, state′} is {n + 1, 0} then
21: v ′ ← 0-terminal node
22: else if {i ′, state′} is {n + 1, 1} then
23: v ′ ← 1-terminal node
24: else
25: v ′.state← state′

26: share_node← False
27: for each w ∈ Vi+1 do
28: if v ′.state.tl = w .state.tl then
29: for γ ← 1 to Γ do
30: if Ith ≤ |v ′.state.tis[γ] −

w .state.tis[γ]| then
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31: next w
32: end if
33: end for
34: UpdateState(v ′,w )
35: v ′ ← w

▷ share node
36: share_node← True
37: break
38: end if
39: end for each
40: if share_node is False then
41: Vi+1 ← Vi+1 ∪ v ′

42: end if
43: end if
44: v .child[xi ]← v ′

45: end for each
46: end for each
47: end for
48: F ← ReductionRule(vroot)

▷ ReductionRule applies the two reduction rules to the
constructed ZDD.

49: Output F
50: end procedure
51: procedure Child(i ,M , state, xi )
52: if xi = 1 then
53: state′.tl ← state.tl + 1
54: for γ ← 1 to Γ do
55: state′.tis[γ]← state.tis[γ] + Ii(θγ)

▷ Ii(θγ) in eq(4)
56: end for
57: end if
58: if state′.tl = M then
59: for γ ← 1 to Γ do
60: if not ILB(θγ) < state′.tis[γ] < IUB(θγ) then
61: return {n + 1, 0}

▷ 0-terminal node
62: end if
63: end for
64: Return {n + 1, 1}

▷ 1-terminal node
65: end if
66: if state′.tl + n − i < M then
67: for γ ← 1 to Γ do
68: if IUB(θγ) < state′.tis[γ] then
69: Return {n + 1, 0}

▷ 0-terminal node
70: end if
71: end for
72: end if
73: Return {i + 1, state′}
74: end procedure
75: procedure UpdateState(v ′,w )
76: for γ ← 1 to Γ do
77: w .state.tis[γ]← (v ′.state.tis[γ]+w .state.tis[γ])/2
78: end for
79: end procedure

APPENDIX B DESCRIPTION OF THE PROPOSED ZDD
SAMPLING METHOD
The proposed ZDD sampling method requires the following
inputs.

• Constant value time LT stands for the algorithm’s total
computation time limit.

• Finite set I represents a set of items in an item pool.
• Constant value parameter n stands for the number of

items in the item pool.
• Constant value parameter Γ represents the number of

discretized points for the test information function.
• Constant value parameters ILB(θγ) and IUB(θγ) respec-

tively denote the lower and upper bounds of the test
information function at the test score level θγ .

• Constant value parameter OC is the maximum number
of common items between any pair of equivalent item
pools.

Algorithm 1 provides a description of the proposed ZDD
sampling method. The output of Algorithm 1 is the family of
setsP , which represents parallel test forms that satisfy all test
constraints.
Algorithm 1: Second stage

1: procedure Second stage
2: Input: Ith, I , n,Γ, ILB(θγ), IUB(θγ),OC
3: Output: P
4: st ← now()

▷ now() retrieves the current timestamp to track the
elapsed computation time.

5: F ← First stage (Ith, I , n,Γ, ILB(θγ), IUB(θγ))
6: P ← ∅
7: while (now()− st) < LT do
8: S ← RandomSampling(F)

▷ random sampling subset S from the constructed canon-
ical ZDD F

9: for γ ← 1 to Γ do
10: TI(θγ)← TestInfo(S, θγ)

▷TestInfo calculates the test information
∑n

i=1 Ii(θγ)xi, xi ∈
S at test score level θγ from the binary variables in subset
S.

11: if TI(θγ) < ILB(θγ) or IUB(θγ) < TI(θγ)
then

12: Next while
13: end if
14: end for
15: for each P ∈ P do
16: if

∑
i∈I x

S
i x

P
i > OC then

17: Next while
18: end if
19: end for
20: P ← P ∪ {S}
21: end while
22: Output P
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23: end procedure
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