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ABSTRACT Dynamic state estimation (DSE) is a fundamental task in many fields, including control 

systems, robotics, and signal processing. Traditional DSE methods, which rely on mathematical models to 

describe system dynamics, are often limited in their applicability to real-world scenarios due to inaccuracies 

and assumptions. In this paper, we propose a purely data-driven DSE framework based on a Koopman 

operator-based linear predictor. The Koopman operator is a powerful tool in dynamical systems theory that 

allows us to analyze and predict the behavior of nonlinear systems. By leveraging the Koopman operator 

extracted solely from measured input‒output data through the extended dynamic mode decomposition with 

control (EDMDc) method, a linear predictor that can accurately estimate the state variables of a dynamic 

system is developed. Introducing the extended Kalman filter (EKF) as an estimation method, the learned 

Koopman operator-based linear predictor is then used to estimate the current state of the system given only 

the past and present input‒output measurements. To evaluate the effectiveness of the proposed framework, 

we conduct experiments on both simulated and real-world datasets of complex power systems. The results 

demonstrate that the proposed data-driven approach outperforms traditional model-based approaches in terms 

of accuracy and robustness. Moreover, the proposed framework is capable of handling nonlinear and time-

varying systems, making it applicable to a wide range of practical cases. 

INDEX TERMS Koopman operator, data-driven, linear predictor, extended dynamic mode decomposition 

with control (EDMDc), extended Kalman filter (EKF), dynamic state estimation (DSE)  

I. INTRODUCTION 

A. Background and Motivation 

In many real-world systems, such as power systems [1,2], 

manufacturing processes [3], and transportation systems [4], 

obtaining accurate knowledge of the system's dynamic states 

is crucial for efficient and safe operation. Dynamic state 

estimation provides valuable insights into the behavior, 

performance, and health of the system, enabling effective 

decision-making and control actions [5-7]. 

Traditional model-based DSE techniques heavily rely on 

mathematical models that describe the dynamics of the 

nonlinear system. However, these models often include 

simplifications and assumptions that may not fully capture 

the complexity and variability of real-world systems, such as 

large-scale power systems. Moreover, they require extensive 

computational resources and are prone to modeling errors 

and uncertainties [8]. 

In contrast, data-driven DSE approaches offer a promising 

alternative [9,10]. By utilizing the abundant data available 

from sensors, measurements, and historical records, these 

approaches can directly learn and estimate the system's 

dynamic states without explicit dependence on complex 

mathematical models. This data-driven approach improves 

the accuracy and robustness of state estimation, particularly 

in the face of dynamic changes, uncertainties, and 

disturbances that occur in nonlinear dynamic systems.  

B.  Literature Review 

The two most important tasks in DSE are establishing an 
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appropriate dynamic model (including obtaining accurate 

model parameters) and choosing efficient filtering 

algorithms [11]. Compared to the challenge of developing 

foundational dynamic models, current research on DSE 

mainly emphasizes the selection and application of filtering 

algorithms. 

The Kalman filter (KF) is a well-known and widely used 

algorithm in DSE [12]. It is known for its simplicity and 

efficiency in estimating the state of a linear system in the 

presence of Gaussian noise. The main limitation of the 

Kalman filter in DSE is its reliance on linearity and Gaussian 

assumptions, which may lead to suboptimal performance or 

divergence in the presence of nonlinearities and non-

Gaussian noise. To address these challenges, several 

variations of the Kalman filter have been developed, with 

representative examples including the extended Kalman 

filter (EKF) [13], unscented Kalman filter (UKF) [14], and 

cubature Kalman filter (CKF) [15]. Additionally, continuous 

improvements are being made to the EKF, UKF, and CKF 

[16-21]. Another widely used approach in DSE is particle 

filtering (PF) [22], also known as the sequential Monte Carlo 

(SMC) filter. Similar to the Kalman filter, improved versions 

of particle filtering, such as the extended particle filter (EPF) 

[23] and unscented particle filter (UPF) [24], have also been 

developed. Other filtering algorithms applied in DSE include 

the Bayesian filter [25], Gaussian mixture model filter [26], 

and maximum likelihood ensemble filter (MLEF) [27]. 

Each filtering algorithm possesses specific advantages 

that depend on the characteristics of the dynamic system at 

hand. However, achieving desirable performance with these 

filtering algorithms in DSE relies on the assumption that the 

system model and its parameters are accurate and reliable. 

In fact, the model and parameters are also crucial for DSE. 

References [28] and [29] discussed the effects of applying 

detailed models in DSE. However, even with a unified 

research object, it is challenging to establish a unified model 

specifically for DSE, particularly for dynamic systems that 

involve multiple auxiliary control devices, such as the 

synchronous generator (SG) and the doubly fed induction 

generator (DFIG) wind turbine.  

C.  Contribution and Organization 

In recent years, data-driven modeling techniques and 

methods have received significant attention in the field of 

nonlinear dynamic system monitoring and control. In 

particular, Koopman operator-based data-driven modeling 

methods have experienced rapid development. References 

[10] and [30] conducted exploratory research on data-driven 

DSE based on the Koopman operator. However, neither of 

these studies considered the role of controllers. In this paper, 

a purely data-driven DSE framework is constructed by 

introducing a linear predictor [31] based on the data-driven 

Koopman operator. The developed Koopman operator-based 

linear predictor not only captures the dynamic characteristics 

of the system but also takes into account the role of the 

controller. The main contributions of this paper are 

summarized as follows. 

1) Utilization of the Koopman operator for behavior 

analysis and prediction: The Koopman operator, a powerful 

tool in dynamical systems theory, enables us to analyze and 

predict the behavior of nonlinear systems. By incorporating 

the Koopman operator into our DSE framework, we can 

accurately estimate the current state of the system based on 

past and present input‒output measurements. 

2) Integration of the extended Kalman filter (EKF) for 

state estimation: We employ the EKF as an estimation 

method within our framework. The learned Koopman 

operator-based linear predictor, combined with the EKF, 

enhances the accuracy and robustness of state estimation. 

3) Proposal of a purely data-driven dynamic state 

estimation (DSE) framework: We introduce a novel 

approach that does not rely on mathematical models to 

estimate the state variables of a dynamic system. Instead, we 

leverage the Koopman operator-based linear predictor, 

which is derived solely from input‒output data using the 

extended dynamic mode decomposition with control 

(EDMDc) method. 

4) Evaluation of the proposed framework on simulated 

and real-world datasets: We conduct experiments on 

complex power system datasets to assess the effectiveness of 

our data-driven approach. The results demonstrate superior 

performance compared to that of traditional model-based 

approaches in terms of accuracy and robustness. 

Furthermore, our framework exhibits versatility in handling 

nonlinear and time-varying systems, making it suitable for 

various practical applications. 

The remainder of this paper is structured as follows: 

Section II presents the classical unified DSE framework. 

Section III presents the proposed purely data-driven DSE 

based on a linear predictor extracted by employing EDMDc. 

The performance verifications are presented based on 

numerical simulations and real-world datasets of a complex 

power system in Section IV. The conclusions of this paper 

are presented in Section Ⅵ. 

II.  Unified Dynamic State Estimation Framework 

DSE refers to the estimation of a system's future states 
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Fig. 1. Dynamic state estimation process flowchart for dynamic system 
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over a certain period of time based on observed data and a 

model, as shown in Fig. 1. It has significant applications in 

various fields, such as robot navigation, traffic management, 

power systems, and financial forecasting. 

For complex nonlinear dynamical systems, DSE is a 

complex and crucial process that requires the consideration 

of factors such as model selection, data processing, and 

optimization algorithms to provide accurate and reliable state 

estimation results. It plays a vital role in system monitoring, 

identification, and control. 

DSE is essentially the design of a nonlinear observer, 

where the construction of the system model and the choice 

of filtering algorithm are two key factors for achieving 

accurate and efficient estimation. 

A. The state-space model for dynamic estimation 

In general, the mathematical model of a time-varying 

nonlinear dynamic component/system can be described as 

follows: 

( , )

( )

x f x u

y h x

 =


=

g

                            (1) 

where nx ¡  is the state variable vector, lu ¡  is the 

control variable vector, 
my ¡  is the observation variable 

vector, ( )f g  is an n-dimensional nonlinear state equation, 

and ( )h g  is an m-dimensional nonlinear measurement 

equation. 

In practical applications, it is necessary to discretize 

Equation (1). The resulting equation after discretization can 

be represented as: 

1

1 1 1

( , )

( )

k k k k

k k k

x f x u w

y h x v

+

+ + +

= +


= +
                   (2) 

where nw ¡  is the process noise vector and mv ¡  is the 

measurement noise vector. It is typically assumed that 

~ (0, )kw N Q  and ~ (0, )kv N R , where Q and R are the 

covariance matrices of the process noise and measurement 

noise, respectively. 

Furthermore, we describe the discrete model of the system 

in the state-space form as follows: 

1

1 1 1

k k k k

k k k

x Fx Gu w

y Hx v

+

+ + +

= + +


= +
                   (3) 

where F, G, and H are the state matrix, control matrix, and 

observation matrix, respectively. 

Equation (3) represents the general state-space model of 

the component or system used for nonlinear dynamic state 

estimation. Based on this model, the appropriate filtering 

algorithm can be chosen to perform dynamic estimation of 

the state variables. 

Remark: A precise dynamic component/system model is 

essential for designing effective observers and optimizing 

their parameters. The observers utilize the dynamic 

component/system model in conjunction with observed data 

to perform state estimation. The design of an observer relies 

on the dynamic component/system model, including 

selecting appropriate observer types and determining 

observer gain matrices and noise covariance matrices, 

among other parameters. Therefore, an accurate and 

applicable dynamic component/system model is a 

fundamental prerequisite for achieving efficient and precise 

state estimation. The component/system models traditionally 

used in DSE are generally mathematical models based on 

physical principles and behavioral laws, which help 

researchers understand their physical behavior and 

mechanisms. However, for complex components and 

systems, establishing accurate mathematical models based 

on physical properties can become very complex and 

challenging. Moreover, such models typically involve 

numerous parameters that need to be estimated through 

experiments or other means. The process of parameter 

estimation can be influenced by measurement errors, 

limitations in data collection, and incomplete information, 

which in turn affect the accuracy and reliability of the model. 

Additionally, these types of models do not consider dynamic 

interactions and influences between components. In recent 

years, data-driven modeling methods have developed rapidly 

because data-driven models can effectively avoid the issues 

of poor reliability in physically driven models and their 

parameters. This paper primarily focuses on data-driven 

modeling methods applicable to dynamic state estimation, 

with the objective of achieving model- and parameter-

independent dynamic state estimation under only data-driven 

conditions. 

B. The selection of filtering method 

Among various algorithms, the Kalman filtering 

algorithm is the most classical method in DSE. Based on the 

model given in Equation (3), the KF performs dynamic 

estimation of state variables through the prediction-

correction process. 

1)  Prediction step 
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          (6) 

In Equations (4)-(6), P is the covariance matrix of the state 

variables, and K is the gain coefficient matrix. Wk and Vk are 

the state and observation error covariance matrices, 

respectively. Typically, wk and vk are assumed to be 

independent Gaussian white noise; [ ] 0kw = , 

[ ]T

k k kw w W = , [ ] 0kv = , and [ ]T

k k kv v V = , where [ ] g  

denotes the expectation operator. Reference [12] provides a 
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detailed and comprehensive introduction to the Kalman filter. 

Remark: The selection and application of filtering 

algorithms are common areas of innovation in current 

research on dynamic state estimation. In DSE, the classical 

filtering algorithms that are commonly used include the KF 

and PF, as well as variations and improvements of these two 

algorithms. Every filtering approach provides ideal 

estimation results within its applicable scenario, but this 

relies on accurate and reliable basic models and parameters 

for the system/components. This paper primarily focuses on 

the construction of nonlinear component/system models in 

DSE. The chosen filtering algorithm is the classical extended 

Kalman filter. 

This paper takes a data-driven approach and extracts a 

Koopman operator-based linear predictor from measurement 

data, following the same form as Equation (3), for dynamic 

state estimation.  

III. Purely Data-driven Linear Predictor Based Dynamic 
State Estimation Scheme 

Dynamic state estimation focuses on the prediction of the 

trajectory of the state variables in Equation (1) given a 

condition x and control inputs u. In a purely data-driven 

environment, the key is to use known state variables and 

control variables to extract linear predictors in the form of 

Equation (3). It is a common approach to assume the 

investigated linear predictors are a linear dynamical system 

with control, and the form of this system is as follows [31]. 

$

z Az Bu

x Cz


 = +

 =

g

                                (7) 

( )z x=                                       (8)  

where 
Nz ¡  (with N n ) is the lifting state variable 

vector, $x  is the prediction (estimation) of x, ( ) g  is a lifting 

function that is specified by the user, 
N NA  ¡ , 

N lB  ¡  

and n NC  ¡ . 

 As process noise w and measurement noise v exist 

independently, they can be directly incorporated into the 

linear predictor presented in Equation (7). By incorporating 

filtering algorithms, such as the extended Kalman filter, it is 

possible to perform dynamic estimation of the state variables. 

Next, our primary task is to extract the linear predictor from 

the measurement data. 

A. Koopman operator for dynamic with control 

The Koopman operator is a mathematical tool commonly 

used in nonlinear dynamical systems, providing a linear 

representation of the system's temporal evolution. The 

Koopman operator maps the state variables of the system to 

functions in an infinite-dimensional Hilbert space, where 

linearity characterizes the dynamics, enabling the 

construction of the linear predictor (7). This transformation 

converts the originally complex nonlinear system into a 

linearly solvable problem, facilitating further analysis and 

control. 

Specifically, Koopman is an infinite-dimensional linear 

operator that acts on a scalar observable g: 
n l

, 

which belongs to   and provides the expected value 

evolution in the state space. In this paper, referring to the 

rigorous and practical Koopman operator proposed in 

reference [31] for a dynamical system with control, we 

consider the Koopman operator : →  for dynamic 

system (1) as: 

1[ ]( , ) ( ( , ), )k k k k kg x u g f x u u +=                (9) 

with ( )kx x k=  and ( )ku u k= . Including control in (9) 

renders the Koopman operator nonautonomous.  

In theory, the Koopman operator (9) is a linear operator 

that fully describes the nonlinear dynamical system (1). For 

a detailed review of the Koopman operator and its 

applications, see [31] and [32]. 

To obtain a linear predictor of the form (7), it is highly 

suitable for the objectives of this paper to employ the data-

driven method of extracting a finite-dimensional 

approximation to the infinite-dimensional Koopman 

operator . 

Dynamic mode decomposition (DMD) is a typical and 

effective data-driven method used for extracting finite-

dimensional approximations of the Koopman operator. 

DMD [33] offers a way to project the Koopman operator 

onto the space of linear observables, while extended dynamic 

mode decomposition (EDMD) [34] provides more accurate 

approximations by incorporating nonlinear observables. 

B. Extended dynamic mode decomposition with 
control 

Following [32], it is assumed that the measurement data 

are collected in the form of snapshots as: 

Algorithm 1 Extended dynamic mode decomposition with control 

Inputs: Data matrices X, Xf, U; Lifting function ( ) g  

Outputs: Koopman model matrices °A , °B , and °C  

Step 1: Choose a truncation value r 

Step 2: Perform SVD: *

1 1[ ( ) ]T T T

rX U U S V =  

Step 3: Bipartite 
1 2[ ]T T T

r r rU U U= using the number of observables 

Step 4: Perform SVD: 
*

2 2 2( )fX U S V =  

Step 5: Solve (13) to get C 

Step 6: Compute the reduced-order model matrix 

 ° 1

2 1 1 1 2( )T T

f rA U X V S U U −  

 ° 1

2 1 1 2( )T

f rB U X V S U −  

 °
2C CU  

Step 7:  Return °A , °B , °C  
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1 1 1[ , , ], [ , , ], [ , , ]L L L

f f fX x x X x x U u u= = =K K K       (10) 

where ,i i n

fx x  ¡ , 
i lu  ¡ , and ( , )i i i

fx f x u= . Therefore, 

we do not need to make any assumptions or reset the 

temporal ordering of the data as 1i i

fx x += . The lifting 

function's action can then be expressed as:  
1( ) [ ( ), , ( )]LX x x  = K                      (11) 

where 1( ) [ ( ), ( )]Nx x x  = K is a given dictionary of 

nonlinear lifting functions.  

Given the data X, Xf, and U in Equation (10), we obtain the 

matrices A, B, and C in Equation (7) as the optimal linear 

one-step predictor in the lifted space using least-squares 

regression, and these matrices are derived as the solutions to 

the optimization problem: 

,
min ( ) ( )f FA B

X A X BU − −                   (12) 

min ( )
FC

X C X−                                     (13) 

where the symbol 
F

g  denotes the Frobenius norm of a 

matrix. 

By solving the normal equations for equations (12) and 

(13), we can obtain A, B, and C. 

In practical applications, it is desirable to have a low-

dimensional model for fast dynamic state estimation and 

real-time control. To achieve this, the basic DMD scheme 

can be extended to incorporate exogenous effects and utilize 

truncated POD modes for order reduction [35], allowing 

approximation through linear observables. Here, EDMD is 

developed to establish a reduced-order Koopman 

representation with control. To achieve this objective, the 

EDMD algorithm begins with a singular value 

decomposition (SVD): 
*

1 1[ ( ) ]T T T

rX U U S V =                (14) 

where Ur and V1 are the left and right singular vectors 

respectively; and S1 is the singular value matrix, 

1 2[ ]T T T

r r rU U U= . 

Next, the SVD is performed on ( )fX as follows: 

*

2 2 2( )fX U S V =                            (15) 

where the truncation value is r and r<n; thus, a low 

dimensional Koopman model of order r is established. The 

reduced-order model matrix can be computed using the 

following formulas: 

° 1

2 1 1 1 2( )T T

f rA U X V S U U −=              (16) 

° 1

2 1 1 2( )T

f rB U X V S U −=                 (17) 

°
2C CU=                                       (18) 

The linear predictor (2) thus reduces to the coordinate

2 ( )Tz U x=  by replacing A, B, and C with °A , °B , and °C . In 

this way, we utilize the first r Koopman modes for 

constructing a reduced-order dynamic system representation, 

summarized in Algorithm 1 

C. Purely data-driven dynamic state estimation 
scheme 

Based on the linear predictor extracted from the 

measurement data by employing EDMDc, a purely data-

driven dynamic state estimation strategy is designed, in 

which the extended Kalman filter, proven to be effective in 

dynamic state estimation, is selected. The key of the 

proposed purely data-driven dynamic state estimation 

method is to extract linear predictors from the data, which 

are collected using measurement units (MUs), such as phasor 

measurement units (PMU) in power systems. The signal flow 

diagram of the proposed purely data-driven DSE scheme 

based on the EKF is shown in Fig. 2. 

It should be noted that in the extracted Koopman-based 

linear predictors, a lifting state variable z=φ(x) is introduced, 

and the system state variables are reconstructed as "observed 

( ) (( )( ),)x t x t uf t= 

MU A/D: ( )k ku u t=

( )x t( )u t

MU A/D: ( )k kx x t=

+ +( ) ~ (0, )v t N R
measurement noise

1[ , , ]k L ku u− −

1
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Fig. 2. Signal flow diagram of the proposed data-driven DES scheme based 
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variables". Therefore, in the proposed DSE scheme, by 

utilizing the EKF, we obtain the lifting state variable z. To 

further obtain an estimation of the actual system state 

variables, we need to utilize the observation equations in the 

extracted linear predictors. This is different from the 

traditional EKF approach 

II. CASE STUDIES 

To validate the purely data-driven DSE scheme proposed 

in this paper, we conduct calculations and analysis using the 

example of DSE for a synchronous generator s in a complex 

power system. This section presents the results of our 

investigation and demonstrates the effectiveness of our data-

driven DSE scheme in this specific scenario. 

Modern power systems are typical large-scale nonlinear 

dynamic systems, with the dynamic processes primarily 

driven by synchronous generators. The DSE of synchronous 

generators in a complex power system, as shown in Fig. 3, 

poses unique challenges due to the inherent complexities 

involved. First, synchronous generators are highly nonlinear 

and time-varying systems, which makes it challenging to 

accurately capture their dynamic characteristics and model 

their dynamic behavior. Additionally, synchronous 

generators are interconnected with other components in the 

power system, such as transmission lines, transformers, and 

control devices. This interdependency introduces 

complexities in the dynamics of the system, as variations in 

one component can propagate and affect the behavior of the 

synchronous generator. Thus, the DSE of synchronous 

generators in a complex power system is a challenging task 

that requires robust algorithms, advanced modeling 

techniques, and intelligent data-driven approaches to handle 

the intricacies posed by nonlinearity, coupling effects, 

synchronization requirements, measurement uncertainties, 

and the large-scale nature of the system. 

In the numerical simulations, we first compared the 

proposed data-driven DSE scheme with the model-based 

DSE methods. Next, we analyzed the impact of parameter 

uncertainty on model-based DSE methods and the proposed 

data-driven method. Given the data-driven nature of the 

proposed scheme, we utilized actual PMU recording data to 

investigate and evaluate the effectiveness and applicability 

of the proposed DSE scheme, which is based on the 

Koopman operator-based linear predictor. 

All calculations were performed in MATLAB on a 

workstation with an Intel Core i9-14900K CPU and 16 GB 

memory. 

A. Numerical simulation results 

In this study, the simulation system is the IEEE 10-

generator, 39-bus test system (as illustrated in Fig. 4), in 

which all synchronous generators assumed for numerical 

simulation are described using the detailed two-axis 

generator model with an IEEE-DC1A exciter and a TGOV1 

turbine governor, whose parameters are taken from [36]. A 

three-phase short-circuit fault with a duration of 0.1 s was 

applied to bus 2, and the power system toolbox (PST) [37] 

was used to generate the simulation results, which were 

selected as the actual values. It was assumed that all 

generators were equipped with PMUs, which were used to 
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Fig. 4.  Structural diagram of IEEE 10- generator 39-bus test system.  

 
Fig.5. Estimation results of G3 under the scenario of model mismatch 

 
Fig. 6.  Estimation results of G7 under the scenario of model mismatch.  
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collect measurements of the rotor angle, rotor speed, active 

power, et.al.  

In the construction of linear predictors using EDMDc, the 

selection of the state variables is an open problem that can be 

adjusted based on the requirements of the research object and 

the scenario. Here, we focus on the electromechanical 

dynamic response of synchronous generators. Therefore, x = 

[δ, ω]T was selected as the state variable. Without loss of 

generality, the control variable was chosen as u=[Pm, Efd]T. In 

the proposed data-driven DSE method, another key aspect is 

the selection of the lifting functions φ(x). For different 

research objects and different problems, there is no unique 

choice for the lifting function. In this work, we chose 

z=φ(x)=[ δ, ω, sin(δ), sin(ω), Efd, Pe]T as the lifting function, 

where δ, ω, Efd, and Pe are all measurable electrical quantities. 

(δ and ω are the rotor angle and speed of the synchronous 

generator, respectively; Efd is the field voltage; and Pm and 

Pe are the mechanical power and active electrical power, 

respectively.) 

A random Gaussian variable, 𝑁(0, 0.01), is selected to 

simulate system process noise and measurement noise, and 

the covariance matrix is 10−6𝐼. 
We tested and compared three DSE methods, namely, a 

4th-order model in which a 4th-order synchronous generator 

model was used, a full-order model in which a 6th-order 

synchronous generator model with an IEEE-DC1A exciter 

and a TGOV1 turbine-governor was used, and the proposed 

method in which the extracted linear predictor was used. For 

convenience in analysis, the EKF is used as the filtering 

algorithm for all three methods. 

1) Model mismatch  

After selecting an efficient filtering algorithm, the model 

is the key to obtaining accurate results in dynamic state 

estimation. In current research on DSE for synchronous 

generators, commonly used models are the reduced-order 

models of synchronous generators. In this paper, generators 

G3 and G7 were selected to demonstrate the estimation 

performance of the proposed method, the 4th-order model, 

and the full-order model. Note the different numbers of state 

variables associated with different models. In this paper, we 

focused on analyzing two commonly observed state 

variables, namely, the rotor angle 𝛿 and rotor speed 𝜔. 

The estimated results for generators G3 and G7 are 

displayed in Fig. 5 and Fig. 6, respectively. The estimation 

performance of the 4th-order generator model is significantly 

poorer in terms of both the state variables, rotor angle 𝛿 and 

rotor speed 𝜔. In particular, for generator G7, the estimation 

results of the 4th-order generator model exhibited noticeable 

oscillation with a significant deviation from the true values. 

The same phenomenon also occurred in the initial stage of 

the estimation results for generator G3. The main reason for 

this is that the reduced-order model used for dynamic state 

estimation does not include the detailed models of the 

excitation and turbine-governor systems that are present in 

the actual numerical simulation. 

Additionally, as shown in Fig. 5 and Fig. 6, the estimation 

results of the proposed method and the full-order model 

show good agreement with the true dynamic process of the 

generator. However, there is still a certain deviation between 

the results of the full-order model and the true values. In 

comparison, the estimation results of the proposed method 

perfectly match the true values, except for a small deviation 

during the initial moment. The response data can accurately 

reflect the dynamic process of the system and components. 

The linear predictor extracted from the dynamic response 

data using EDMDc is also closer to the actual physical 

process of the synchronous generator. This is the most direct 

reason why the estimation results of the proposed method are 

more accurate. Although the full-order model also uses the 

same detailed model considering the excitation and turbine-

governor systems as in the numerical simulation, it neglects 

the interaction between the synchronous generators within 

the system, leading to a deviation between its estimation 

results and the true values. 

Remarks: Accurate models serve as the foundation for 

achieving precise dynamic state estimation. The numerical 

results indicate that model mismatch not only leads to 

significant estimation errors but also tends to cause 

numerical oscillations in the estimation process. The linear 

predictor, which is extracted from dynamic response data 

using EDMDc, can more accurately describe the dynamic 

characteristics of grid-connected synchronous generators 

under disturbances. The DSE results based on the proposed 

linear predictor-based scheme are also more accurate. 

2) Parameters uncertainty 

For component mathematical models built on physical 

principles, there are numerous parameters involved. For 

example, the detailed synchronous generator model with the 

IEEE-DC1A exciter and IEEE TGOV1 turbine governor, 

which was used in this paper, has 22 parameters, and the 

numerical values of these parameters are influenced by 

various factors, introducing a level of uncertainty. This 

uncertainty in the model parameters will directly impact the 

results of dynamic state estimation. 

To investigate the impact of the model parameters on the 

dynamic state estimation results, two testing conditions were 

set as follows: 

Case A: We assume 20% uncertainties in the inertia and 

damping constants for generator G3. 

Case B: We assume 15% uncertainties in the transient 

reactance of the generator and the gain of the excitation 

system for generator G7. 

Note: In these two cases, to investigate the advantages of the 

proposed data-driven DSE method under parameter 

uncertainty conditions more clearly, the discussion of the 

4th-order generator model is not included. The proposed 

DSE method is model- and parameter-free, while the full-

order model requires the inclusion of model and parameter 

information. 
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The estimated rotor speed and rotor angle obtained by the 

proposed method and the full-order model for Case A and 

Case B are shown in Fig. 7 and Fig. 8. As depicted in Fig. 7, 

when there is 20% uncertainty in the inertia and damping 

constants used in the state estimation model compared to the 

true values, the estimation results based on the full-order 

model not only have a slow tracking speed but also deviate 

significantly from the actual rotor speed and rotor angle. It is 

evident from Fig. 8 that the estimation results based on the 

full-order model are poor, especially in the case of rotor 

angle, when there is a 15% uncertainty in the transient 

reactance of the generator and the gain of the excitation 

system. 

In summary, the issues found in Case A and Case B 

highlight the sensitivity of model-based DSE methods to 

parameter uncertainties. In contrast, the proposed DSE 

method, which utilizes data-driven modeling, is not 

influenced by parameter uncertainty. The advantages of the 

proposed data-driven DSE scheme based on a linear 

predictor are further evident in this context.  

3) Estimation error statistics  

To objectively analyze the impact of model mismatch and 

parameter uncertainty on the results of dynamic state 

estimation, this study employed three dimensionless error 

statistical indicators, namely: 

Normalized Root-Mean-Squared Error (NRMSE): NRMSE 

is based on the root-mean-squared error (RMSE) and is 

calculated by dividing it by a scalar value [38]. It overcomes 

scale dependency and simplifies the comparison between 

models or datasets of different scales. The range of NRMSE 

is [0, 1], and a value closer to 0 indicates a smaller error 

between the calculated result and the true value. 

Relative Absolute Error (RAE): The RAE is calculated by 

dividing the total absolute error by the absolute difference 

between the mean value and the actual value [38]. The values 

of RAE range from 0 to 1. Zero is the optimal value for a 

model. 

R2 (Coefficient of determination): R2 is a statistical analysis 

indicator used to measure the degree of correlation between 

variables and is commonly used to assess the goodness of fit 

of a model [39]. The range of R2 is from 0 to 1. The closer 

the value is to 1, the stronger the model's fitting ability. In 

this study, it is used to evaluate the performance of the DSE 

results under different scenarios. 

To analyze the estimation errors under different operating 

conditions more clearly, we categorize the estimation results 

under model mismatch and parameter uncertainty into four 

categories: 

 
Fig.9. Violin plot of rotor angle estimation error for G3. 

 

 
Fig.10.  Violin plot of rotor angle estimation error for G7. 

 

 
Fig.7. Estimation results of G3 under the scenario of parameters 

uncertainty  

 
Fig.8. Estimation results of G7 under the scenario of parameters 

uncertainty 

TABLE Ⅰ 

STATISTICAL RESULTS OF ESTIMATION ERROR FOR G3 

State variable Category NRMSE RAE R2 

Rotor Speed 

A 0.0066 0.0027 0.9996 

B 0.3209 0.3469 0.8970 

C 0.8879 0.9065 0.1365 

D 0.9627 0.9968 0.0341 

Rotor Angle 

A 0.0014 0.0016 0.9999 

B 0.1491 0.2196 0.9077 

C 0.6071 0.7566 0.24278 

D 0.9496 0.9653 0.09816 

 
TABLE Ⅱ 

STATISTICAL RESULTS OF ESTIMATION ERROR FOR G7 

State variable Category NRMSE RAE R2 

Rotor Speed 

A 0.0205 0.0072 0.9995 

B 0.1819 0.2124 0.86691 

C 0.6671 0.7514 0.47838 

D 0.8720 0.8083 0. 04391 

Rotor Angle 

A 0.0411 0.0143 0.9983 

B 0.3188 0.4865 0.8983 

C 0.7998 0.7882 0.3602 

D 0.9284 0.9064 0.0871 
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Category A: The results estimated using the proposed 

method. 

Category B: The results estimated using the full-order 

model. 

Category C: The results estimated using the 4th-order 

model. 

Category D: The results estimated using the full-order 

model under the condition of parameter uncertainty. 

The statistical results of the deviation between the 

estimated values and the true values of the rotor speed and 

rotor angle under the four scenarios are shown in Tab. Ⅰ and 

Tab. Ⅱ. In Fig. 9 and Fig. 10, the violin plot is employed to 

illustrate the distribution of rotor angle estimation errors for 

generators G3 and G7 under the four different categories. 

Upon careful observation of the data in Tab. Ⅰ and Tab. Ⅱ, 

along with the violin plots shown in Fig. 9 and Fig. 10, it is 

seen that the values of NRMSE and RAE in Scenario D are 

the highest. Additionally, the values of NRMSE and RAE in 

Categories C and D are significantly higher than those in 

Categories A and B. Moreover, the values of R2 in Categories 

C and D are clearly smaller than those in Categories A and 

B. According to the definitions of NRMSE, RAE and R2, the 

estimation results in Categories C and D are relatively poor. 

Additionally, as depicted in Fig. 9 and Fig. 10, the 

distribution of estimation errors for Categories C and D is 

more dispersed over a larger range than those of Categories 

A and B. The above analysis indicates that Categories C and 

D correspond precisely to model mismatch and parameter 

uncertainty, respectively. This further confirms the crucial 

importance of the model and its parameters in dynamic state 

estimation. 

The data-driven DSE scheme based on a linear predictor 

proposed in this paper, corresponding to Category A, 

exhibits the smallest values of NRMSE and RAE and the 

highest value of R2. Here, the superior performance of the 

proposed data-driven scheme in DSE is verified from the 

perspective of estimation errors. 

 

B. Real-world measurements 

To further validate the practical engineering value of the 

proposed data-driven DSE scheme based on a linear 

predictor, actual data of the synchronous generator rotor 

angle and speed recorded by PMUs in a real power grid after 

a fault event were selected to analyze the estimation 

performance of the proposed method. The rotor angle and 

speed were estimated for 10 seconds after the fault, and the 

results are shown in Fig. 11. Note that the model and 

corresponding parameters of the generator and its control 

system, including the exciter and turbine-governor, are 

unknown. Therefore, we did not analyze the DSE methods 

based on either full-order or reduced-order models. The 

method proposed in this paper allows DSE for the 

synchronous generator with measurements only. 

Due to the presence of measurement noise, the data curves 

recorded by the PMUs contain irregular "spikes". Filtering 

techniques were applied to smooth out the data curves for a 

more refined representation. The DSE results obtained using 

the proposed data-driven method were compared with the 

recorded data from the PMUs, as well as the filtered data, as 

shown in Fig. 11, which demonstrates that the data-driven 

method proposed in this paper is capable of effectively 

tracking and predicting the rotor angle and rotor speed, 

especially with the filtered data. 

Similarly, the statistical analysis of the estimation errors 

for the dynamic state estimation results based on the data 

recorded by the PMUs was conducted and is presented in Tab. 

Ⅲ. As shown in Tab. Ⅲ, the values of NRMSE and RAE are 

small and approach 0, while the value of R2 is close to 1.0. 

This result further validates the effectiveness of the proposed 

method for the measurement data recorded by the PMUs, 

which highlights the significant engineering application 

value and potential of the proposed method. 

 
IV. Conclusion 

In this paper, we present a purely data-driven dynamic 

state estimation (DSE) framework based on the Koopman 

operator-based linear predictor. The framework offers an 

alternative approach to traditional DSE methods by 

leveraging the power of the Koopman operator in analyzing 

and predicting the behavior of nonlinear dynamic systems. 

We evaluated the effectiveness of our framework through 

experiments on both numerical simulations and real-world 

datasets of complex power systems. The results demonstrate 

that our data-driven approach outperforms traditional model-

 
Fig.11. Estimation results based on real-world data 

TABLE Ⅲ 

STATISTICAL RESULTS OF ESTIMATION ERROR BASED ON REAL-WORLD 

DATA 

State variable Reference NRMSE RAE R2 

Rotor Speed 

Measurement data 0.1242 0.1114 0.9845 

Filtered 

measurement 
0.0888 0.0773 0.9921 

Rotor Angle 
Measurement data 0.0877 0.0823 0.9929 

Filtered 
measurement 

0.0512 0.0476 0.9973 
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based approaches in terms of accuracy and robustness. The 

proposed framework exhibits superior performance in 

handling nonlinear dynamic systems, making it highly 

applicable to a wide range of practical cases. The error 

analysis of the estimation results, validated from a statistical 

perspective, provides compelling evidence for the 

superiority of the proposed method over traditional model-

based DSE methods. 

Our approach opens up new opportunities for analysis and 

prediction in fields such as control systems, robotics, and 

signal processing. Future work could focus on further 

improving the computational efficiency of the framework 

and exploring its applicability to other domains beyond 

power systems. Additionally, investigating the performance 

of the framework in the presence of noisy or incomplete data 

would be valuable for real-world implementation. 
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