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ABSTRACT Interference factors in visible light image data, such as backgrounds and lighting, often
lead to poor performance of RGB-based single-modality face anti-spoofing methods. To address these
limitations, we propose an innovative face anti-spoofing framework. Within this framework, we design a
convolutional neural network (CNN) based on a Dual-path Adaptive Channel Attention (DACA) module,
aiming to filter the features of the input facial images to extract key information. In addition, we develop
feature constraints method based on Inner Similarity Estimation (ISE), which effectively enhances intra-
class consistency by reducing the distance between samples and their class center. This method narrows the
intra-class sample distribution and improves class separability, preventing the model from learning excessive
irrelevant information and enhancing the robustness and generalization of face anti-spoofing. We test our
method on the CASIA SURF dataset, CASIA SURF-CeFA dataset, and CASIA FASD dataset, which shows
that our method has significant advantages in distinguishing between live and spoofed faces.

INDEX TERMS face anti-spoofing,attention mechanism,feature constraint,convolutional neural network.

I. INTRODUCTION

W ITH the advancement of technology, biometric recog-
nitionmethods are receiving increasing attention. Due

to its convenience, natural interaction, and non-contact na-
ture, face recognition technology [1] has gained wide ac-
ceptance and application across various fields, including ac-
cess control, financial transactions, and security checkpoints.
However, the security of face recognition systems is seriously
affected by Presentation Attack (PA)methods, which can lead
to security risks and even property damage. Face recogni-
tion systems are primarily susceptible to three types of PA
methods: print attacks [2], video replay attacks [3], and 3D
mask attacks [4]. Given the high cost associatedwith 3Dmask
attacks, print and video replay attacks remain the most preva-
lent. Print attacks typically involve printing a face image on
paper and using various techniques, such as curling, rotating,
or cutting out the eye area, to present the image in front of a
live user, attempting to deceive the face recognition system.
Video replay attacks involve illegally capturing a user’s facial
video and playing it through an electronic device to bypass

the face recognition system. Although print attacks and video
replay attacks are attempting to replicate live facial charac-
teristics, they exhibit distinct differences from genuine faces
in terms of texture, movement patterns, and depth features.
Based on these differences, a range of anti-spoofing methods
can be developed to effectively assess face authenticity.While
multi-modality face anti-spoofing can cope with different
attacks [5]by fusing variousmodalities (visible light, infrared,
and depth), these methods tend to be more expensive than
single-modality methods. In daily life, the devices used for
capturing faces are often red, green and blue (RGB) cameras
due to their simplicity and cost-effectiveness. Therefore, face
anti-spoofing based on RGB data is still of great research
significance.

With the significant improvement of computing power,
deep learning technology is rapidly emerging in the field of
computer vision, demonstrating superior performance in face
anti-spoofing compared to traditional methods and greatly
enhancing detection accuracy. However, traditional end-to-
end deep learning methods for face anti-spoofing still face
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a lot of challenges in practical applications. Existing deep
convolutional neural networks (CNNs) models, when reliant
solely on RGB data, may overfit to features that are unrelated
to spoofed behaviors, instead of focusing on key cues that
distinguish live and spoofed faces. Face anti-spoofing models
based on traditional deep learning have demonstrated limited
generalization capabilities in the context of complex and
varied attack methods.

In order to address these challenges, researchers consider
improving the immunity of face anti-spoofing models so that
models can adapt to unknown attacks and environmental
changes. They are making improvements from two aspects.
On the one hand, they improve the model performance by
optimizing the CNN model framework. Lucena et al. [6]
proposed a face anti-spoofing network, which employs a
transfer learning method and optimizes the architecture of
the top-level visual geometry group (VGG) network and
achieves good results. On the other hand, face anti-spoofing
has been considered as a binary classification task. Due to the
overlap and confusion between live and spoof face samples
in the sample space, it is difficult for the CNNs accurately
capture the key features that distinguish the two classes and
affect classification accuracy. To overcome this difficulty,
researchers have begun to design feature constraints methods
based on inner sample estimation. The primary goal of these
methods is to narrow the distribution of intra-class samples
and minimize confusion and overlap. Hao et al. [7] used
contrast loss feature constraints to train twin networks to
enhance the differentiation of live faces by driving live sam-
ple matching pairs closer while driving non-matching pairs
farther away in the sample space. Almeida et al. [8] proposed
a multi-target feature constraint to improve the model’s sen-
sitivity to different attack methods and device characteristics,
while also reducing confusion between different devices, ulti-
mately improving the accuracy of detecting face presentation
attacks. Inspired by the above methods, we propose a face
anti-spoofing network framework with channel attention and
feature constrained learning for RGB-based single-modality
images. The main contributions of this paper are as follows:

1) We present a face anti-spoofing framework that com-
bines channel attention and feature constrained learning
to improve the performance of single-modality face
liveness detection.

2) We construct a dual-path adaptive channel attention
(DACA) mechanism by combine two pooling opera-
tions with 1D adaptive convolution. The DACAmodule
effectively optimizes the fusion of global and local
features, accurately allocates feature weights, and sup-
presses features unrelated to spoofing cues, which helps
the CNN better capture spoofed cues in the face and
improves the recognition performance of CNN.

3) We design an inner similarity estimation (ISE) feature
constraints based on the distributions of live and spoof
samples. The feature constraint prevents the CNN from
learning too much interfering information by reduc-

ing the distance from the intra-class samples to the
class center, which enhances the intra-class consistency
while reducing the similarity between samples from
different classes.

II. RELATED WORKS
A. TRADITIONAL HANDCRAFTED FEATURE METHODS
In the past, researchers primarily depended on handcrafted
features to discriminate the authenticity of faces. Määttä et
al. [9] used multi-scale local binary patterns (LBP) to extract
the texture features of the image for face live detection. de
Freitas Pereira et al. [10] proposed an LBP detection method
that focuses on extracting the micro texture and dynamic
changes of facial images from three orthogonal planes as a
way to distinguish different attacks. Pujol et al. [11] intro-
duced a face anti-spoofing method based on histogram of
oriented gradients (HOG) features. However, there are some
limitations of handcrafted-based methods such as high cost,
low efficiency and weak generalization. In order to improve
the detection accuracy, the researchers consider the advan-
tages of combining manual features and deep learning for
face authenticity discrimination. Asim et al. [12] combined
hand-crafted low-level texture features with high-level spatial
and temporal features extracted by CNNs to improve the
accuracy of face anti-spoofing. Agarwal et al. [13] used the
nonlinear mapping filter of CNN to filter the input image,
combined with the histogram features of LBP to compute
the convolutional histogram images feature (CHIF) operator,
and finally used support vector machine (SVM) to judge
the image. Sharifi et al. [14] used overlapping local binary
pattern histograms (OVLBP) and VGG16 to extract facial
information, then combined the matching scores from both
methods to form a fused score vector, which is selectively
evaluated to recognize the reality of the face image. Singh
et al. [15] proposed a feature fusion model based on LBP
and CNN for face anti-spoofing. Although the combination of
handcrafted features with deep learning features has achieved
some success, it still faces challenges due to the inherent
limitations of the former.

B. TRADITIONAL DEEP LEARNING METHODS
The rapid growth of deep learning has led to an increase in
the number of detection methods based on this technology.
Yang et al. [16] firstly used CNN to extract features and
send them into SVM for classification. Shi et al. [17] used
ResNet as the backbone and added spatial pyramid pooling
(SPP) following the last convolutional layer to break down the
extracted feature maps into multiple scales, which effectively
utilizes the spatial information present in face images. Ge et
al. [18] proposed an innovative model that integrates CNNs
with long short-term memory networks (LSTMs). In this
model, LSTMs effectively capture long-range dependencies
within input sequences, while CNNs focus on extracting lo-
calized features from images. However, these methods often
ignore the key deception features in the face, which leave
significant room for improvement in detection capability. To
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better capture spoofing features in faces, researchers have
adopted attention mechanisms to filter valuable information
from feature maps. Alshaikhli et al. [19] used aspatial channel
attention module at the spatial and channel levels, respec-
tively, in order to enhance local features while ignoring those
unrelated to spoofing cues. Kong et al. [20] integrated the
Resnet network with a channel attention mechanism to aug-
ment the network’s capacity to extract and represent salient
features in specific facial regions, such as the nose and cheeks.
This approach yielded promising outcomes on RGB data.
Sun et al. [21] proposed a network called DatNet, which uti-
lizes a dynamic attention mechanism (Dyattention) to capture
spoofing features at different levels. In addition, attention
mechanisms can be combined with feature fusion techniques
to further improve the accuracy of face anti-spoofing. Chen et
al. [22] proposed a two-stream convolutional networks based
on attention fusion. The networks fusing RGB and multi-
scale retinex (MSR) feature to achieve good results. From the
above methods, it is evident that attention mechanisms have
significant promise in face anti-spoofing. Moreover, integrat-
ing these mechanisms with network models can substantially
enhance the accuracy of face anti-spoofing systems.

Due to the interference from lighting variations and back-
grounds in RGB face images, some researchers have incor-
porated feature constrained learning into face anti-spoofing
to improve model’s stability and capacity for generaliza-
tion. Chen et al. [23] employed binary focal loss to widen
the boundaries between live and spoof samples so that the
network can distinguish better. To better identify unknown
attacks, Wang et al. [24] suggested a framework named
PatchNet, which improves the security of facial recognition
systems through fine-grained patch recognition. They pro-
posed feature constraints based on AM-SoftMax loss and
self-supervised similarity loss to regulate the patch embed-
ding space. Zheng et al. [25] put forward a joint feature con-
straint method that combines mean squared error loss (MSE
Loss) and symmetry loss to optimize the arrangement of live
and spoof face samples in feature space and improves the
network’s capability to distinguish between live and spoofed
faces.

In summary, RGB-based single modality face anti-
spoofing suffers from weak generalization ability, low ro-
bustness and low anti-interference ability. Therefore, we de-
sign the CNN based on dual-path adaptive channel attention
to capture more spoofing features. In addition, we propose
the feature constraints based on inner similarity estimation,
which not only narrows the intra-class distribution by mini-
mizing the distance between intra-class samples and the class
center, but also strengths the ability of network to distinguish
between categories. Furthermore, by integrating the cross-
entropy loss function, we perform joint loss optimization
on the network, further improving its generalization perfor-
mance in RGB-based single-modality face anti-spoofing.

III. METHOD

A. THE OVERALL FRAMEWORK
We propose a new framework named DACN for RGB-based
single-modality face anti-spoofing, which combines CNN
with channel attention mechanisms to enhance detection ca-
pability. we design the ISE feature constraints method, which
reinforces intra-class consistency to prevent the CNN from
learning excessive features unrelated to spoofing cues.

B. RESNEXT STRUCTURE BASED ON DUAL-PATH
ADAPTIVE CHANNEL ATTENTION
Since ResNeXt [26] has achieved good results in the field of
face anti-spoofing,we propose a dual-path adaptive channel
network (DACN) based on ResNeXt, as shown in Fig.1. In
the detection process, the face image is firstly processed by
image processing, which randomly divides the face image
into multiple image patches and then image patches are sent
into the DACN backbone network for feature extraction.
The backbone network firstly uses 7 × 7 convolution and
downsampling by the maximum pooling layer to capture
global features while reducing the size of the feature map.
Subsequently, the DACA_Res Block, an enhanced residual
block derived fromDACA, is employed to extract pivotal fea-
tures from the downsampled feature maps. The DACA_Res
Block contains 32 branches, each reduces the number of input
channels from 256 to 4 by a 1 × 1 convolution kernel, which
helps to reduce model size and computational burden. Then,
a 3 × 3 convolution kernel is used to maintain the channel
count while further extracting features. Finally, after restoring
the number of channels to 256 using a 1 × 1 convolution
kernel, the two parallel paths of the DACA module perform
adaptive convolution operations to acquire global and channel
features and extract valuable data. After the information ex-
tracted from each branch is aggregated, we add the original
inputs to the outputs through skip connections, which not
only helps the flow of information and reduces the gradient
vanishing problem during the training process, but also helps
to adaptively adjust the feature weights of each path to en-
hance important features and suppress irrelevant or redundant
information. After the last DACA_Res Block processing, the
extracted features are sent to the fully connected layer for
classification after pooling operation. Finally, by combin-
ing the classification results of each image patch, we can
determine whether the image contains fraudulent behavior.
Throughout the model’s learning and classification process,
we adopt a joint optimization based on ISE feature constraints
and cross-entropy loss. This joint optimization aims to reduce
the gap between similar samples while aggregating samples
from different classes and prevent the CNN from learning
excessive irrelevant features. In this way, we significantly
improve the model’s classification accuracy, making it more
effective and reliable for practical applications.

C. DUAL-PATH ADAPTIVE CHANNEL ATTENTION
In the last decade, channel attention mechanism has become a
key technology a crucial technique to strengthening the per-
formance of CNNs. Since the Squeeze-and-Excitation (SE)
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FIGURE 1. Overall framework of the proposed method. This framework consists of two main components: the dual-path adaptive channel network
(DACN) and Joint Loss Optimization. DACN is composed of several DACA_Res blocks, with each DACA_Res Block integrating a residual block and the
DACA module. The DACA module effectively captures both global and local channel features from the feature map. Joint Loss Optimization combines
cross-entropy loss with ISE feature constraints loss to optimize the network model.

channel attention mechanism [27] was proposed, it has been
widely used in face anti-spoofing, with good results. At the
same time, the disadvantage of SE channel attention module
is that it uses two fully connected layers to acquire cross-
channel interactions. While this reduces complexity of net-
work, but its dimensionality reduction operation negatively
affects the prediction of channel attention. This design is inef-
ficient in capturing dependencies between channels and does
not effectively integrate global and local channel features,
leading to inaccurate feature weight allocation and an inabil-
ity to effectively learn deceptive cues in facial data. Therefore,
to achieve a reasonable allocation of channel feature weights
that enables the network to focus more on areas containing
significant deceptive cues in faces and to learn these cues
efficiently, we design the dual-path adaptive channel attention
mechanism (DACA), as shown in Fig.2.

First, we define the input feature map F(i, j) ∈
RC×H×W , where C ,H , and W represent the channel size,
height, and width, respectively. After the feature map passing
through the pooling layer, the spatial features of the fea-
ture map are aggregated to generate a channel descriptor,
outputting the aggregated feature U ∈ RC . This process

transforms the feature map’s size from C × H × W to
C × 1 × 1.The feature map F(i, j)is sent to two paths for
average pooling and max pooling operations, respectively.
Max pooling reduces the number of features while preserving
those that distinguish live faces from spoof ones. Global aver-
age pooling combines the features of each channel, extracting
discriminative features for recognizing live and spoofed faces,
thus enhancing the networkmodel’s generalization capability.
After undergoing global average pooling (GAP), we obtain
the aggregated feature UGAP. This feature is obtained by
averaging the spatial dimensions of the entire feature map
across each channel and the process is as follows:

UGAP =
1

H ×W

H∑
i=1

W∑
j=1

F(i, j) (1)

Next, we obtain another set of aggregated features UGAP

through themax pooling operation.Max pooling is performed
by selecting themaximum value across the spatial dimensions
of the entire feature map for each channel, and the process is
as follows:

UGMP = max
1⩽i⩽H ,1⩽j⩽M

F(i, j) (2)
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To efficiently achieve cross-channel interaction, we employ
matrixWK for learning channel attention, defined as follows:

w1,1 · · · w1,k 0 0 · · · · · · 0
0 w2,2 · · · w2,k+1 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wC,C−k+1 · · · wC,C

 (3)

WK avoids complete independence between groups after
channels have been divided into groups. By employing
1D convolution, we enable all channels to share the same
weights, ensuring that Wi not only takes Ui into account but
also considers the interactions among its k eighbors. The
process is as follows:

wi = σ

 k∑
j=1

wjU j
i

U j
i ∈ Ωk

i (4)

w = σ(C1Dk(U)) (5)

Where σ is the sigmoid function and Ωk
i epresents the set of

the k neighboring channels U j
i . C1Dk denotes a 1D convo-

lution and its kernel size is k . Another advantage of using
1D convolution is that on the one hand, it avoids the nega-
tive impact of dimensionality reduction on learning channel
attention. One the other hand, it relies solely on k param-
eters to capture local cross-channel interactions, ensuring
improvements in both efficiency and effectiveness. The size
of the convolution kernel k is not a fixed value, but can be
adaptively adjusted according to the size of the channelC .The
calculation of k is as follows:

k = φ(C) =

∣∣∣∣ log2 Cγ
+
b
γ

∣∣∣∣
odd

(6)

Where |t|odd indicates the nearest odd number t . In this paper,
we set b and γ to 1 and 2, respectively. φ(C) is a linear
mapping that allows high-dimensional channels to have a
longer interaction range, enabling the capture of more global
feature information. In contrast, low-dimensional channels
have a restricted range, allowing them to focus more on
local feature information. The aggregated features UGAP and
UGMP are input into 1D convolution for feature filtering and
extraction and the output features will be fused. The channel
attention wight wt is obtained through the sigmoid function.
The process is as follows:

wt = σ
(
C1D1

K (UGAP) + C1D2
K (UGMP)

)
(7)

WhereC1D1
K andC1D2

K represent the 1D convolution in path
1 and path 2, respectively. Finally, the output feature map
F

′
is obtained by element-wise multiplication with the input

feature map F .
F ′ = wt ⊗ F (8)

Where F represents the input feature map and F
′
denotes the

output feature map. The DACA processes the feature maps
from two paths using 1D adaptive convolution, which not only
minimizes the negative effects of dimensionality reduction on
channel attention predictions but also reduces computational

burden. It flexibly captures channel dependencies across dif-
ferent ranges using 1D adaptive kernels, allowing for a more
reasonable allocation of channel featureweights. This enables
the network to pay attention to areas of the face that contain
abundant deception cues.

D. FEATURE CONSTRAINED LEARNING
Face images contain rich features, including shape, texture,
and color. However, when using CNN for anti-spoofing, a
common issue is that the network model may overfit the face
information, leading to errors in classification tasks. In the
space of facial samples, due to the diversity and continu-
ously expanding nature of the samples, the distribution often
appears scattered and prone to confusion. This distribution
characteristic results in significant overlap regions between
live and spoof face samples, which poses challenges for RGB-
based anti-spoofing networks. During the training process,
this overlap may cause the network to overlook critical decep-
tion cues within faces, severely affecting classification perfor-
mance. To address this issue, we design a feature constraint
method called Inner Similarity Estimation (ISE), which mini-
mizes the distance from intra-class samples to the class center
and reduces intra-class dispersion and increases inter-class
separation. In this way, ISE helps effectively separate live
face samples from spoof ones and reduces sample overlap
so that network model can learn more features related to
deceptive behavior and learn fewer features related to identity.
We define the representation of the live sample space Ωlive

and the spoof sample space Ωspoof as follows:

Ωlive = {φ | φ = x1, x2, x3, . . . , xn} (9)

θspoof = {θ | θ = y1, y2, y3, . . . , ym} (10)

We find center points from the live face samples and the spoof
face samples, denoted as Cx and Cy as follows:

Cx =
1

n

n∑
i=1

xi (11)

Cy =
1

m

m∑
i=1

yi (12)

After determining the center points, we calculate the distances
of the remaining samples from the center points. We denote
Llive as the feature constraint for live samples and Lspoof
as the feature constraint for spoof samples, represented as
follows:

Llive =
1

2

n∑
i=1

∥xi − Cx∥22 (13)

Lspoof =
1

2

m∑
i=1

∥yi − Cy∥22 (14)

Where xi and yi the samples in the live class and the spoof
class. n and m denote the number of data samples in the
live and spoof classes. We combine the feature constraints of
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FIGURE 2. The operation process diagram of the Dual-Path Adaptive Channel Attention module.

FIGURE 3. Comparison of sample distributions with and without
feature constraints from Inner Similarity Estimation (ISE).

live samples and spoof samples to obtain the overall sample
feature constraints LISE as follows:

LISE = Llive + Lspoof (15)

As shown in Fig.3, without feature constraint learning, the
distribution of live and spoof face samples in the sample
space is relatively dispersed, with some overlap that makes
misclassification likely. After adding the distribution is more
compact, and the overlap of them is reduced, which is easy to
classify.

E. JOINT LOSS OPTIMIZATION
We optimize the network by using a combined approach of
cross-entropy loss and feature constraints to enhance perfor-
mance during the training and classification process. In each
iteration of model training, the cross-entropy loss function
gradually narrows the gap between the output and the true
labels. This process not only improves the classification ac-
curacy of network but also ensures that the feature repre-
sentations learned by the network can accurately capture the
key information required for the task, while delineating clear

boundaries between different categories. As well, ISE feature
constraints further strengthen the model’s generalization ca-
pability by directing it to prioritize learning features essential
for distinguishing between categories while minimizing at-
tention to irrelevant details. This method enables the model
to classify more stably and reliably when faced with diverse
data. The process of joint loss optimization is illustrated in
Fig.4. The cross-entropy loss function can be expressed as:

LCE = − 1

N

N∑
i=1

yi log(ŷi) (16)

Where N is the number of samples, yi is the true label for the
ith class and ŷi is the predicted likelihood for the ith class by
the network model. The joint loss is defined as follows:

LJoint = αLCE + βLISE (17)

Where LCE is the cross-entropy loss function and LISE is
the ISE feature constraints loss. Our proposed framework
operates as shown in Algorithm 1.

IV. EXPERIMENTS
A. DATASETS
We conducted experimental tests on three benchmark
datasets: CASIA-SURF dataset [28],CASIA-SURF CeFA
cross-ethnicity dataset [29] and CASIA-FASD dataset [30].
CASIA-SURF:CASIA-SURF is a large face anti-spoofing

dataset containing multiple modalities designed to support
research in face recognition and fraud prevention techniques.
As shown in Fig.5, The dataset covers three modalities of
data, RGB images, depth images and infrared images, col-
lected from 1000 individuals with a total of 21,000 video
samples. Each sample contains one real video clip and six
different attack video clips to simulate diverse fraud scenar-
ios in real applications. The dataset is divided into training,
validation, and testing sets, containing 300, 100, and 600
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Algorithm 1 The train process of DACN model
DATA: The mixed live and spoof dataset Ω = {xi, yi}i=1

Initialize: CNN model φ0(·), LISE – ISE feature constraints
loss, LCE – cross-entropy loss.
1: for epoch = 1 to epoch_nums do
2: Shuffle live data samples {xi | i = 1, 2, . . . , n} and

spoof data samples {yi | i = 1, 2, . . . ,m}
3: Compute the center of xi and compute feature con-

straint loss Llive based on (13).
4: Compute the center of yi and compute feature con-

straint loss LSpoof based on (14).
5: Compute the overall sample feature constraints LISE

based on (15).
6: Compute the binary loss LCE of predicted values and

label values based on (16).
7: Compute the joint loss LJoint = αLCE + βLISE .
8: Update model parameters.
9: end for
10: Evaluate φF (·) on the testing data.
OUTPUT: Trained model parameters φF (·).

FIGURE 4. the process of joint loss optimization.

subjects, respectively, and providing 148,000, 48,000, and
295,000 frames of video data to ensure the adequacy and
diversity of model training and evaluation.

CASIA-SURF CeFA:CASIA-SURF CeFA dataset con-
sists of a 2D attack subset and a 3D attack subset. As shown
in Fig.6, the 2D attack subset includes 2D attack samples
collected from 1,500 subjects in the Americas, East Asia,
and Central Asia. The data types include RGB visible light
images, depth images, and infrared images, with a total of

FIGURE 5. Examples of the CASIA-SURF dataset.

4,500 live samples and 13,500 attack samples, amounting to
18,000 samples in total. The 3D attack subset contains 5,538
3D attack samples collected from 107 subjects, including
5,364 mask attack samples collected from 99 subjects under
six different lighting conditions, and 192 samples ofmustache
or glasses attacks collected from eight subjects under four
different lighting conditions. All samples for 3D attacks are
stored in video format. The 2D attack subset is designed with
five protocols and a total of 12 sub-protocols. Each ethnicity’s
500 subjects are divided into three non-overlapping subsets.
Each protocol includes three data subsets: the training set,
validation set, and test set, containing 200, 100, and 200
subjects, respectively.
CASIA-FASD:CASIA-FASD dataset records the live ac-

cess and spoofed attack behaviors of 50 different sub-
jects, comprising approximately 5,123 live images and 7,534
spoofed images. The spoofed faces are created from high-
quality recordings of live faces. As shown in Fig.7, the fa-
cial images are classified into three quality categories: low,
medium, and high. Furthermore, the dataset incorporates
three distinct categories of synthetic facial images, namely
warped photo attack (Bending printed images), cut photo
attack (Cutting out certain parts of the photo), and video
attack.

B. EVALUATION METRIC
There are three evaluation metrics are employed: attack pre-
sentation classification error rate (APCER), normal presen-
tation classification error rate (NPCER), and average classi-
fication error rate (ACER). In the case of the CASIA-FASD
dataset, equal error rate (EER) is used as the evaluation met-
ric. APCER and NPCER indicate classification error rates,
while ACER represents the average of APCER and NPCER.

TPR =
TP

TP+ FN
(18)
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FIGURE 6. Examples of the CASIA-SURF CeFA dataset.

FIGURE 7. Examples from the CASIA-FASD dataset.

FPR =
FP

FP+ TN
(19)

APCER =
FP

FP+ TN
(20)

NPCER =
FN

FN + TP
(21)

ACER =
APCER+ NPCER

2
(22)

EER =
TPR+ FPR

2
(23)

Where TP, FP, TN and FN represent the true positive, false
positive, true negative and false negative.

C. TRAINING SETTING
We constructed DACN by using the PyTorch deep learning
framework and trained it on an NVIDIA 4090. The size of
the face image is 112 × 112, and the whole training process
is divided into 10 theories with 50 iterations per round. We
used a stochastic gradient descent algorithm with the initial

learning rate set to 0.1 and momentum and weight are set to
0.9 and 0.0005, respectively. α and β in (17) are both set to 1.

V. RESULTS AND ANALYSIS
A. EXPERIMENTAL EVALUATION
1) CASIA-SURF Dataset
We input image patches of three different sizes (48×48,
32×32, and full image) into the network for training and
tested on the CASIA-SURF dataset. We compared our per-
formance with other methods, including Spatial and Chan-
nel Attention [31], SPP [17], Large-scale Multimodal [28],
ResNext-50 [26], and TTN-s [32]. Table 1 shows that our
proposed method achieves the lowest APCER of 1.67%, the
lowest NPCER of 1.57%, and the lowest ACER of 2.42%.
These evaluations demonstrate that our method effectively
distinguishes between live and spoofed faces when dealing
with single-modality RGB images.

TABLE 1. Classification results of each protocol on the CASIA-SURF CeFA
dataset.

Protocol Method APCER
(%)

NPCER
(%)

ACER
(%)

Spatial and channel attention[31] Full
Image

5.2 2.6 3.9

SPP [17] Full
Image

– – 6.4

SE-Net [29] Full
Image

1.74 4.21 2.97

Large-scale multimodal[28] Full
Image

8.0 14.5 11.3

ResNext-50 [26] Full
Image

21.76 15.06 18.41

TTN-S [32] 16×16 3.8 3.2 3.5

Ours 32×32 5.89 1.57 3.73

Ours 48×48 1.67 3.17 2.42

Ours Full
Image

2.77 3.13 2.95

2) CASIA SURF-CefA Dataset
The 2D attack subset of the CASIA SURF-CeFA dataset con-
tains five protocols and a total of 12 sub-protocols. We tested
on the challenging Protocol 4 and its three sub-protocols
(Protocol 4_1, Protocol 4_2, and Protocol 4_3). At the same
time, we compare our method with PSMM-Net [29], SD-
Net [33], and CDCN [34].Table 2 presents the experimental
results of our proposed framework for each protocol. The
ACER score on Protocol 4_1 is 2.13%, the ACER score on
Protocol 4_2 is 2.73%, and the ACER score on Protocol 4_3
is 1.08%.We achieve the lowest NPCER of 0.56% in Protocol
4_1 and the lowest APCER of 0.45% in Protocol 4_3. These
results prove that our proposed network structure performs
exceptionally well in the RGB data, effectively addressing
face spoofing attacks across different ethnicities and attack
methods, demonstrating strong generalization ability.
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TABLE 2. Classification results of each protocol on the CASIA-SURF CeFA
dataset.

Protocol Method APCER
(%)

NPCER
(%)

ACER
(%)

Protocol 4_1 PSMM-Net [29] 5.0 3.3 4.2

SD-Net [33] 5.72 18.5 12.11

CDCN [34] 11.17 2.5 6.83

Ours 3.7 0.56 2.13

Protocol 4_2 PSMM-Net [29] 7.7 9.0 8.4

SD-Net [33] 7.33 11.25 9.29

CDCN [34] 6.67 2.0 4.33

Ours 0.76 4.70 2.73

Protocol 4_3 PSMM-Net [29] 10.8 4.3 7.6

SD-Net [33] 3.17 27.0 15.08

CDCN [34] 3.72 3.0 4.33

Ours 0.45 1.71 1.08

3) CASIA-FASD Dataset
Table 3 presents the results of our proposedmethod compared
to other methods on the CASIA FASD dataset. Our pro-
posedmethod achieves the lowestEER is 2.10%, significantly
outperforming other methods. This shows that our proposed
network has good robustness against false face attacks with
different qualities.

TABLE 3. Classification results of RGB images on the CASIA-FASD dataset

Method EER(%)

CNN [16] 4.92

DPCNN [35] 4.50

Patch CNN [36] 2.37

LSTM-CNN [37] 5.17

DeepPixel [38] 2.60

LiveNet [39] 4.59

Ours 2.10

B. ABLATION ANALYSIS
To demonstrate the effectiveness of our designed DACN and
feature constrained learning, we conducted ablation experi-
ments on the CASIA SURF dataset.

1) Impact of channel attention mechanism
To investigate the impact of the attention mechanism on the
classification performance of the network model, we test
the performance of ResNeXt-50 with and without DACA
module under three input patch sizes: 32×32, 48×48, and
full image. As shown in Table 4, the ACER of the ResNeXt-
50 without the DACA module is 4.90%, 4.72%, and 12.19%,
respectively. The ACER of the ResNeXt-50 with the DACA

module decreased to 2.62%, 2.58%, and 3.78%. In addition,
the ResNeXt-50 with the DACA module achieves the lowest
APCER is 3.16% and the lowest NPCER is 0.20%. These re-
sults indicate that the DACAmodule helps the network model
learn deceptive cues in faces more effectively, significantly
improving the model’s accuracy in live detection.
In addition, we also compare the effects of adding the

CBAM module and the SE module to the ResNeXt-50 net-
work. Table 5 shows that our proposed attention mechanism
effectively extracts key features from face images, signifi-
cantly reducing the classification error rate.

TABLE 4. Classification performance with and without the DACA module.

Protocol Method APCER
(%)

NPCER
(%)

ACER
(%)

32×32 7.19 2.61 4.90

ResNeXt-50 [40] 48×48 6.97 2.47 4.72

Full Image 12.46 11.92 12.19

32×32 3.16 2.08 2.62

ResNeXt50+DACA(Ours) 48×48 4.96 0.20 2.58

Full Image 3.18 4.38 3.78

TABLE 5. Classification performance with different attention
mechanisms.

Method APCER
(%)

NPCER
(%)

ACER
(%)

ResNeXt-50+CBAM [41] 4.26 4.00 4.15

ResNeXt-50+SE [27] 2.34 5.24 3.80

ResNeXt-50+DACA(Ours) 4.96 0.20 2.58

2) Impact of feature constrained learning
We optimized the network using a combination of Inner Sim-
ilarity Estimation (ISE) feature constraints and cross-entropy
loss. To investigate the effectiveness of the feature constraints,
we test the ResNeXt-50 with cross-entropy loss and with
both ISE feature constraints and cross-entropy loss. Table 6
shows that the ACER for the ResNeXt-50 model using only
cross-entropy loss is 4.90%, 4.72%, and 12.19% for input
patch sizes of 32×32, 48×48, and Full Image, respectively.
In contrast, the ACER for the ResNeXt-50 with both ISE
feature constraints and cross-entropy loss is 4.39%, 3.85%,
and 4.67%, respectively. With the Patch Size of 32×32, we
get the lowest NPCER is 0.98% after adding ISE feature con-
straints. The experimental results demonstrate that the com-
bined optimization of the network with feature constraints
and cross-entropy loss helps the model reduce the learning
of facial features unrelated to spoofing cues, decrease the
classification error rate and improve the accuracy of face anti-
spoofing.
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TABLE 6. The classification performance with and without Inner
Similarity Estimation (ISE).

Method Patch Size APCER
(%)

NPCER
(%)

ACER
(%)

32 × 32 7.19 2.61 4.90

ResNeXt-50 48 × 48 6.97 2.47 4.72

Full Image 12.46 11.92 12.19

32 × 32 7.80 0.98 4.39

ResNeXt-50+ISE(Ours) 48 × 48 4.38 3.32 3.85

Full Image 3.27 6.07 4.67

C. VISUALIZATION AND ANALYSIS
1) Feature constraint visualization
By applying the t-SNE algorithm for visual analysis of the
sample space, we observe significant changes in the sample
distribution at different training stages, as illustrated in Fig.8.
At epochs 0, 15, 40, and 50. At epoch 0, live and spoof
samples are almost indistinguishable in the feature space,
with a high degree of overlap, making them difficult to sep-
arate. At epoch 15, we begin to notice a trend where the two
classes of samples are aggregating towards opposite sides.
Although some overlap remains, this change indicates that the
model is learning to differentiate between the two classes. At
epoch 40, the overlap between the samples is further reduced,
and most samples can be clearly distinguished, each form-
ing relatively concentrated clusters. This demonstrates that
the model’s discriminative ability is gradually improving. At
epoch 50, the distribution of live and spoof samples becomes
very distinct, with a clear boundary between the two, forming
two separate and well-defined regions. This result strongly
proves that as training progresses, the model’s discriminative
ability is significantly enhanced. The input samples, which
were initially mixed, gradually aggregate towards opposite
sides and eventually separate, forming two relatively indepen-
dent regions. This shows that our proposed joint optimization
method effectively improves the its discriminative capability.

2) Attention Visualization
To gain deeper insights into the performance of our pro-
posed dual-efficient channel attention mechanism in face
anti-spoofing, we employ Grad-CAM activation functions for
visualization to generate attention heatmaps. Fig.9 shows a
comparison between the attention heatmaps of the original
ResNeXt-50 model and our improved model when recogniz-
ing live and spoofed faces. The red regions represent areas
where the model is highly focused, possibly containing im-
portant face spoofing cues. The yellow regions indicate areas
to which the model pays attention, though they are slightly
less important than the red regions; and the blue regions
represent areas where the model considers there to be little
to no spoofing cues, with lower importance.

FIGURE 8. Sample distribution at different epochs.

From the attention heatmap, it can be seen that ResNeXt-50
model pays considerable attention to the image background,
while its focus on the face region is relatively low. In contrast,
our proposed network architecture is able to focus more pre-
cisely on the key parts of the face. This indicates that, first, the
DACAmodule effectively assists the CNNmodel focus more
accurately on the facial region, allowing for more effective
feature extraction. Second, our designed network can identify
the key areas of the face where potential spoofing cues may
exist (such as the eyes, mouth, and nose), while reducing
attention to areas unrelated to spoofing.Our proposed network
is able to flexibly adjust its focus when faced with different
types of attacks. For instance, in the case of an attack using a
handheld printed photo,For instance, in the case of an attack
using a handheld printed photo, themodel paysmore attention
to a human hand within the photograph.

VI. CONCLUSION
In this paper, we propose an RGB-based single-modality face
anti-spoofing framework on DACN and ISE feature con-
straints. The DACA module helps the CNN focus more on
areas of the face containing numerous spoofing cues, rather
than on areas like the image background that contain fewer
cues, allowing for better extraction of spoofing information.
During training, we improve the network’s performance by
applying ISE feature constraints in conjunction with cross-
entropy loss. The feature constraints aim to reduce the sim-
ilarity among samples within the same class while increas-
ing the distinction between samples from different classes.
This makes the sample distribution in the sample space more
compact and easier to classify, while minimizing the CNN’s
learning of distracting information in faces. Experimental
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FIGURE 9. Attention visualization of our proposed method.

results indicate that the proposed method effectively extracts
spoofing cues from faces, leading to significant performance
enhancements on established face anti-spoofing benchmarks.
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