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ABSTRACT Recently, labor shortages in the farming industry have increased the demand for automation. 
Object tracking technology has emerged as a critical tool for monitoring livestock through automated systems. 
This study focuses on tracking individual cattle using object detection and tracking algorithms. Data were 
collected noninvasively using cameras, and a tracking-by-detection (TBD) approach was adopted. The 
proposed framework introduces multiple enhancements optimized for cattle tracking. These enhancements 
include a comparison of five different bounding box regression losses to improve detection accuracy, 
modifications to the Kalman filter state vector for more accurate bounding box predictions, and adjustments 
to the feature vector distance metric in the re-identification algorithm. YOLOv9-t was used as the detector, 
whereas DeepSORT and StrongSORT served as trackers. Compared with the baseline, which uses 
DeepSORT, the proposed method achieved significant improvements in higher-order tracking accuracy 
(HOTA) by 4.1%, multiple object tracking accuracy (MOTA) by 1.08%, and identification F1 score (IDF1) 
by 5.12%, reaching values of 78.64%, 90.29%, and 91.41%, respectively, while reducing the number of ID 
switches (IDSW). 

INDEX TERMS Cattle tracking, DeepSORT, Multi-object tracking, StrongSORT, YOLOv9-t 

I. INTRODUCTION 
Cattle tracking plays a crucial role in the livestock industry 
[1]. Farmers can assess cattle health by continuously 
monitoring their behavior and movement through object 
tracking [2]. This monitoring enables early disease 
detection, allowing for swift intervention [3], [4]. 
Furthermore, object tracking enhances farm efficiency [5]. 
Research has demonstrated that using various methods, 
object tracking can individually identify and track each 
animal within its breeding environment [6], [7]. This 
capability allows for the automation of livestock 
monitoring, which, in turn, reduces labor costs and 
improves the overall efficiency of farm management [8]. 
Additionally, real-time tracking of individual cattle 

locations facilitates the analysis of behavioral patterns and 
space utilization, further optimizing farm operations [9]. 

According to statistics on the number of cattle farms and 
cattle population released by the Korea Statistical 
Information Service, as shown in Fig. 1, cattle population 
is increasing, while the number of farms is decreasing [10]. 
As the number of farms decreases while cattle populations 
increase, farm managers face challenges in maintaining the 
health and productivity of larger herds. Traditional methods, 
such as manual observation, are time-consuming, making 
them less viable for large-scale operations. This 
underscores the importance of automated systems capable 
of effectively monitoring cattle health and behavior, 
ensuring that farms can adapt to these demographic shifts 
[11], [12]. Consequently, object tracking technology is 
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gaining significance. Automated systems utilizing object 
tracking facilitate the monitoring of individual cattle health 
and location with fewer personnel, thereby enabling 
efficient farm management even with limited manpower 
[13]. 

Effective cattle tracking systems significantly enhance 
farm efficiency and animal welfare [14], [15]. For example, 
real-time monitoring of cattle can optimize feeding 
schedules by analyzing movement patterns and the time 
spent in feeding areas. This ensures efficient use of 
resources such as feed and water, thereby reducing 
operational costs. Such systems contribute to the long-term 
sustainability and profitability of livestock operations. 
Several studies have applied sensor-based approaches to 

object tracking [16]. These studies primarily used wearable 
devices such as neck-mounted sensors and ear tags [17]. 
Wearable devices incorporate embedded technologies such as 
accelerometers, radio frequency identification (RFID), and 
global positioning systems (GPS) to monitor the activity and 
movement of cattle [18]-[20]. These approaches involve 
attaching a sensor to each cow, facilitating the high-accuracy 
tracking of individual animals. 
 

 
FIGURE 1. Annual trends in the number of farms and cattle in South 

Korea. 
 

However, these wearable devices must be directly 
attached to the cattle, which can be invasive and potentially 
cause stress to the animals [21]. In addition, wearable 
devices are susceptible to damage or breakage owing to the 
activities of the cattle, and their battery life is limited. This 
situation necessitates regular replacement of both batteries 
and devices. On large-scale farms, managing numerous 
devices can significantly increase maintenance costs and 
labor requirements [22]-[24]. Furthermore, if a device's 
battery is depleted, temporary gaps in data collection may 
occur, disrupting the continuity of monitoring. 

Recent advancements in computer vision technology have 
significantly increased interest in video-based object 
tracking [25]. Zheng et al. [26] proposed YOLO-BYTE for 

tracking cattle, utilizing YOLOv7 as the detector and 
ByteTrack as the tracker. Their approach achieved a higher-
order tracking accuracy (HOTA) of 67.6%, multiple object 
tracking accuracy (MOTA) of 75.4%, and identification F1 
score (IDF1) of 77.8%. Similarly, Li et al. [23] employed 
YOLOv8n and DeepSORT for cattle tracking, and their 
proposed framework achieved 92.1% MOTA and 81.1% 
IDF1. Tan et al. [27] introduced the SY-Track algorithm, 
employing YOLOv7-tiny and StrongSORT, and reported 
55.59% HOTA, 84.33% MOTA, and 67.95% IDF1. 
Collectively, these studies demonstrate the increasing 
research efforts in video-based object tracking for livestock 
in recent years. 

Building on this foundation, other researchers have 
explored various techniques. Mar et al. [28], [29] proposed 
a hybrid approach for cow detection and tracking, utilizing 
image processing techniques and deep learning methods, 
and later introduced a multi-feature tracking algorithm that 
demonstrated robust performance even with limited 
numbers of cows in their experimental setups. Aye et al. 
[30] utilized deep learning-based algorithms for tracking 
black cows, validating the system’s performance on small 
datasets and demonstrating its applicability in farm 
environments. 

 

 
FIGURE 2. Workflow of the proposed cattle tracking system. 
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Video-based object tracking uses data collected from 
cameras to analyze the movements of individual cattle. This 
method offers the advantage of real-time monitoring of 
cattle movement without the need for wearable devices. 
Additionally, because it relies solely on video footage for 
tracking, it is noninvasive [31]. 

Object tracking algorithms primarily utilize a tracking-by-
detection (TBD) approach and can be categorized into 
online and offline tracking methods [32]. Offline tracking 
processes an entire video dataset by simultaneously 
assigning IDs to all frames. This approach offers high 
accuracy and demonstrates robust performance, even in 
scenarios involving occlusion or complex environments. 
However, because it processes all the frames 
simultaneously, achieving real-time tracking can be 
challenging. In contrast, online tracking detects objects on 
a frame-by-frame basis and assigns matching IDs to the 
same object across consecutive frames. This enables real-
time object tracking and facilitates rapid tracking, even in 
complex environments. 

In this study, we adopted an online tracking approach that 
facilitates real-time cattle tracking using video data 
collected from RGB cameras. However, a drawback of the 
online tracking method is that its performance may 
deteriorate if missed detections or false positives occur 
during the detection stage [33]. To mitigate this issue, we 
propose a modified detection model and tracker specifically 
optimized for cattle tracking. The overall flow of the cattle 
tracking process is illustrated in Fig. 2. 

II. RESEARCH METHOD 
The aim of this study was to track cattle using the TBD 
approach. The tracking process consisted of three main 
stages. First, a cattle dataset was collected and organized to 
train the object detection model for tracking purposes. Next, 
a deep learning-based object detection model was 
employed to detect the cattle. Finally, based on the 
detection results, object tracking was performed by 
assigning IDs to the detected objects within the images. In 
this research, to enhance the performance of the 
DeepSORT and StrongSORT frameworks for multi-cattle 
tracking, we introduced several key modifications. First, 
the bounding box regression loss was refined to improve 
detection accuracy, particularly for objects of varying 
scales such as cows and calves. Second, we adjusted the 
state vector of the Kalman filter to more directly model the 
motion of cattle based on bounding box information. 
Finally, we customized the feature vector distance metric 
in the re-identification (Re-ID) algorithm to improve 
differentiation between cattle with similar visual 
appearances, thereby enhancing ID consistency. The 
following sections describe the research process and 
propose an optimized method for cattle tracking. 
 

A. DATA COLLECTION AND DATASET COMPOSITION 
CCTV cameras were installed in a research pen at the 
Gangwon State Livestock Research Institute in 
Hoengseong, Gangwon State, South Korea. The pen housed 
two cows and two calves. The data used in this study were 
collected over a 13-day period, from December 2 to 
December 14, 2021. Network IP cameras (GB-CDX04, 
GASI) were used for data collection, continuously 
recording at HD resolution (1280 × 720) for 24 h. The 
cameras were positioned 3 m high at a 45-degree angle to 
ensure comprehensive coverage of the 4.8 m × 9.6 m pen 
accommodating the four cattle. The camera setup was 
designed such that the center of the field of view aligned 
with the center of the research pen, ensuring accurate 
tracking and modeling of cattle movements within the pen. 
A schematic of the pen and sample images from the 
collected data are presented in Fig. 3. 
To enhance the reliability of the experiment, the training, 

validation, and test sets were composed of data collected on 
different days. Data collected from December 2 to 7 were 
allocated to the training set, data from December 8 to 9 were 
used for the validation set, and data from December 10 to 11 
were assigned to the test set. A total of 3,126 images were used 
to train and evaluate the object detection model. The detailed 
composition of the dataset is presented in Table I. 
 

 
FIGURE 3. (a) Layout of the research pen used for data collection. (b) 

Sample images from the collected cattle tracking dataset. 
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TABLE I 
DATASET COMPOSITION FOR CATTLE DETECTION 

Task Images Instances 

Train 2,056 8,125 

Validation 559 2,524 

Test 511 2,133 

Total 3,126 12,782 

 
The clips used to evaluate the performance of the object 

tracker were collected from December 13 to 14, using data 
from dates different from those in the detection phase. To 
enhance the reliability of the tracker performance evaluation, 
eight clips featuring frequent object occlusions and significant 
movement during the collection period were selected. Each 
clip was recorded at a rate of 15 frames per second for a 
duration of 10 s. 

B. CATTLE DETECTION USING YOLOv9-t 
 YOLOv9 [34] is a real-time object detection model 
designed to balance lightweight architecture with high 
performance. It introduces programmable gradient 
information (PGI) and a generalized efficient layer 
aggregation network (GELAN) to enhance performance 
compared with previous models. The PGI, introduced in 
YOLOv9, employs an auxiliary reversible branch to 
mitigate information loss caused by bottlenecks during 
training. This approach enables the model to effectively 
learn multi-scale features without sacrificing critical 
information from the input data. Because PGI is used only 
during the training phase, it does not incur any overhead 
during inference, thus maintaining a high inference speed. 

 GELAN integrates elements from CSPNet [35] and ELAN 
[36], resulting in a more compact model that delivers rapid 
inference while maintaining high detection accuracy. 
YOLOv9 is available in several versions based on model size, 

including t, s, m, and e, with smaller models offering faster 
inference speeds. In this study, a high detection speed is 
essential for real-time cattle object tracking. Therefore, the 
smallest and fastest version of YOLOv9, specifically 
YOLOv9-t, was used. The structure of YOLOv9-t is 
illustrated in Fig. 4. 
 

1) BOUNDING BOX REGRESSION LOSS 
In this study, we compared the loss functions used for 
bounding box regression in the YOLOv9-t model. Five 
intersection over union (IoU)-based loss functions were 
applied to the YOLOv9-t model: generalized-IoU (GIoU)  
[37], distance-IoU (DIoU) [38], complete-IoU (CIoU) [38], 
Scylla-IoU (SIoU) [39], and wise-IoU (WIoU) [40]. 
First, GIoU extends the traditional IoU by introducing a 

penalty term for instances where the two bounding boxes do 
not overlap. This penalty term is derived from the unoccupied 
area of a global box ‘ ’ that encompasses both bounding 
boxes. 
DIoU builds upon GIoU by taking into account the distance 

between the centers of the two bounding boxes. It incorporates 
a penalty term based on the squared distance between the 
centers  , divided by the squared diagonal length of the 
global box  (). 
CIoU, which is the default loss function used in YOLOv9, 

further improves DIoU by incorporating the aspect ratio of the 
bounding boxes. It evaluates the differences in width and 
height ratios between the predicted box and the ground truth 
(gt) box, adding a penalty term   that reflects this difference. 
In this penalty term  ,   represents the aspect ratio 
difference between the predicted box and ground truth box, 
and  is a weighting factor that regulates the influence of this 
difference. 
SIoU introduces additional penalty terms for angle, distance, 

and shape costs, in conjunction with the standard IoU loss. It 
sums the average of the distance cost ∆ and the shape cost , 
with the distance cost ∆ also accounting for the angle cost. 
WIoU is a dynamic loss function based on IoU that adjusts 

the IoU loss by weighting it according to the distance between 
the centers of the predicted and target bounding boxes, as well 
as the size of the global box. It applies an exponential function 
to the squared distance between the center points, divided by 
the sum of the squared width ( ) and height ( ) of the 
global box. The following section presents the formulae for 
each loss function. 
  = 1 −  (1) 

  = 1 −  + | − ( ∪ )||| (2) 

 
FIGURE 4. Architecture of the YOLOv9-t model used for cattle detection. 
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 = 1 −  + (, ) (3) 

  = 1 −  + (, ) +  (4) 

  = 1 −  +  ∆ +  2 (5) 

   = exp  −  +  −  +    (6) 

 

C. MULTI OBJECT TRACKING 
In this study, the multi-object tracking of cattle was conducted 
using object detection techniques. The tracking algorithms 
employed were the online trackers DeepSORT [41] and 
StrongSORT [42]. DeepSORT and StrongSORT algorithms 
track object motion by modeling object positions based on 
bounding boxes and assigning IDs within the angle. To further 
enhance tracking performance, we proposed modifying the 
state vector of the Kalman filter and adjusting the distance 
metric used for comparing feature vectors during the matching 
stage. The following section provides a detailed explanation 
of the methodology implemented to improve performance.  
 
1) OBJECT TRACKER FOR CATTLE TRACKING 
DeepSORT [41] and StrongSORT [42] are extensions of 
the simple online and realtime tracking (SORT) [43] 
algorithm. SORT employs a Kalman filter to predict object 
positions and the Hungarian algorithm to associate objects 
across frames. Although SORT provides high tracking 
speed, it has limitations in handling occlusions, making it 
susceptible to errors when objects are temporarily 
obstructed or overlapped. 
DeepSORT addresses the limitations of SORT by 

incorporating a deep-learning-based re-identification model. 
This re-identification model extracts features from the objects 
detected in each frame, generating feature vectors that 
facilitate the comparison of object similarities across frames. 
When a high degree of similarity is identified, the same ID is 
assigned to the object, thereby enhancing the continuity of ID 
tracking. This capability allows DeepSORT to accurately 
match objects between frames, even in instances of occlusion 
or when an object temporarily disappears and reappears. These 
improvements render DeepSORT more robust against 
occlusions and significantly enhance tracking performance. 
StrongSORT is a further advancement of DeepSORT. 

Whereas DeepSORT relies solely on appearance information 
for matching, StrongSORT incorporates both appearance and 
motion information. Additionally, DeepSORT uses a 
matching cascade algorithm, whereas StrongSORT improves 
the matching accuracy by employing a simpler global linear 
assignment during the matching phase. Moreover, 
StrongSORT incorporates the NSA Kalman filter introduced 

in GIAOTracker [44], thereby improving the original Kalman 
filter used in DeepSORT. The NSA Kalman filter adaptively 
calculates the noise covariance  , making it more resilient to 
low-quality detections and noise. By employing these 
enhancements, StrongSORT achieves superior tracking 
performance. 
In this study, both DeepSORT and StrongSORT were used 

as tracker algorithms to evaluate the proposed methods for 
improving cattle tracking performance. Fig. 5 illustrates the 
operational process of DeepSORT, which served as the 
baseline tracker in this study. 
 

 
FIGURE 5. Architecture of the DeepSORT Object Tracking Algorithm. 
 

2) KALMAN FILTER FOR CATTLE TRACKING 
In this study, both DeepSORT and StrongSORT use a 
Kalman filter to predict the positions of objects in the 
subsequent frame. The Kalman filter functions by 
alternating between “state prediction” and “state update,” 
continuously estimating the object's position and velocity. 
The basic operation of the Kalman filter in DeepSORT and 
StrongSORT is outlined as follows. 
First, state vector  and covariance matrix  are defined. 

The state vector () includes the center coordinates of the 
bounding box (, ), aspect ratio and height (, ℎ), as well as 
their respective velocity components ( ,  ,  , ℎ), which 
represent the rate of change over time for each element. 
  = [ , , , ℎ,  ,  ,  , ℎ] (7) 

  =   , , , ,  ,  ,  ,   (8) 
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In the prediction stage, the next state of the object is 
predicted based on its current state, and the covariance 
matrix is updated accordingly. The prediction is carried out 
using the state transition matrix F, which models the 
evolution of the state of the object over time. This matrix is 
applied to the current state vector to estimate the position 
and velocity of the object in the subsequent frame. In 
addition, the covariance matrix is updated to account for 
the uncertainty in the predicted state. 
 

 =  
⎣⎢⎢
⎢⎢⎢
⎢⎡1 0 0 0  0 0 00 1 0 0 0  0 00 0 1 0 0 0  00 0 0 1 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1 ⎦⎥⎥

⎥⎥⎥
⎥⎤ (9) 

 | = | +  (10) 
 | = | +  (11) 
 
In the update stage, the predicted state is used to estimate 
the observed values, and the Kalman gain  is calculated. 
Subsequently, both the state vector and the covariance 
matrix are updated. The Kalman gain determines the weight 
assigned to the observed values relative to the predicted 
state. The observation matrix  maps the predicted state to 
the observed measurements. 
 

 =  1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 0 (12) 

 | = | (13) 
  =  || +  (14) 
 | =  | +   − | (15) 
 | = ( − )| (16) 
 
In the Kalman filter of the original tracker, the aspect ratio 
( ) is used to account for changes in the shape of the 
bounding box. However, in real farm environments, when 
the cattle rotate, the aspect ratio may not accurately reflect 
changes in the state of the object. To address this limitation, 
we replaced the aspect ratio with the bounding box width 
(). The updated state vector   and covariance matrix   
are defined as follows. 
 

 = [ , , , ℎ,  ,  ,  , ℎ] (17) 
  =   , ,  , ,  ,  ,  ,   (18) 
 
By incorporating the bounding box width () into the state 
vector, the Kalman filter can more intuitively reflect the 
bounding box elements during the prediction process. This 
integration facilitates a more direct modeling of the effects 
associated with changes in the state of cattle. Consequently, 
this approach can improve the performance of tracking 
algorithms. The effectiveness of this approach was 
validated through experiments, and the results are 
discussed in Section III.C. 
 
3) IMPROVED FEATURE VECTOR DISTANCE METRIC 
The re-identification algorithms in DeepSORT and 
StrongSORT use a convolutional neural network (CNN) 
model to extract feature vectors for the objects in each 
frame. The similarity between these feature vectors is then 
assessed to maintain the object's ID even when it is 
temporarily occluded or moves offscreen and subsequently 
reappears. In this process, the cosine distance metric is 
typically employed to compare the similarities between the 
feature vectors. The cosine distance metric is calculated as 
follows: 
     (, ) =   ∙ ‖‖ ‖‖ (19) 
     (, ) = 1 −      (, ) (20) 
  and  represent the two feature vectors being compared, 
and ‖‖ and ‖‖ denote the norms of these vectors. The 
cosine distance metric considers only the directions of the 
two feature vectors. Thus, even if the magnitudes of the 
feature vectors differ, they can still be evaluated as highly 
similar, which may not accurately reflect the true 
characteristics of the objects. Significant noise can occur in 
actual farm environments due to variations in lighting and 
environmental conditions. Under such noisy conditions, 
cosine distance may not function effectively. 
To overcome these limitations, we propose using the Pearson 

correlation as the distance metric for comparing re-
identification feature vectors. The Pearson correlation 
measures the linear correlation between two vectors and 
evaluates their variability relative to their mean values. The 
Pearson correlation coefficient and the corresponding distance 
are calculated as follows: 
    (, ) = ∑( − ) − ∑( − ) ∑ −  (21) 

    (, ) = 1 −    (, )(22) 
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 and  represent the individual elements of each vector, 
and   and   denote the mean values of the vectors. The 
Pearson correlation evaluates the variability of each 
vector's elements relative to their mean, focusing on 
changes in patterns and correlations between objects. 
Therefore, it is better suited for tracking changes in object 
patterns, even when the size or shape of the cattle changes 
drastically in real-world environments. Additionally, the 
Pearson correlation is less sensitive to noise in images, 
enabling more stable similarity evaluations. This means 
that even if the size or shape of the cattle is distorted owing 
to occlusion or other noise, the overall correlation remains 
relatively unaffected. Therefore, the Pearson distance 
metric can assess correlations more accurately than the 
cosine distance metric, thus enhancing the continuity of 
object ID assignment. In addition, the use of Pearson 
correlation improves the robustness of re-identification 
particularly in scenarios where visual similarity between 
objects like cattle poses a significant challenge. 
 

III. RESULTS 

A. EVALUATION METRIC 
Performance evaluations were conducted at each stage to 
demonstrate the effectiveness of the proposed method. In 
the object detection phase, the evaluation focused on the 
accuracy of the model in detecting cattle. In the object 
tracking phase, the evaluation focused on the consistency 
and accuracy of object tracking. The following sections 
describe the evaluation metrics employed at each stage. 
 
1) CATTLE DETECTION EVALUATION METRIC 
The cattle detection performance of the proposed model 
was evaluated using precision, recall, and mean average 
precision (mAP). Precision refers to the proportion of 
correct predictions out of all predictions made by the model, 
and recall indicates the proportion of actual positive 
instances that were correctly predicted by the model. The 
curve that illustrates the relationship between precision 
values and varying recall is known as the precision-recall 
(P-R) curve, and the area under this curve is defined as the 
average precision (AP). mAP is the average AP across all 
the classes. mAP is calculated for objects with an IoU of 
0.5 or higher. The formulas for these metrics are as follows: 
  =       +    (23) 

  =       +    (24) 

   =  1  
 (25) 

2) OBJECT TRACKING EVALUATION METRIC 
The evaluation metrics commonly used for object tracking 
include HOTA [45], MOTA [46], and IDF1 [47]. These 
metrics assess different aspects of the tracking performance. 
In the formulas for the object tracking evaluation metrics, 
false negatives (FN) indicate missed detections where the 
model failed to predict a bounding box for an object, false 
positives (FP) indicate incorrect bounding box predictions, 
and true positives (TP) indicate correctly detected objects. 
HOTA is a comprehensive metric that evaluates both 
detection and association accuracy. It combines detection 
accuracy (DetA) and association accuracy (AssA) using 
harmonic means. HOTA focuses on balancing correct 
object detection with the accurate maintenance of object 
identities across frames. In HOTA, true positives for 
associations (TPA) indicate correctly associated object 
identities across frames, false negatives for associations 
(FNA) denote cases where an object’s identity is not 
correctly maintained, and false positives for associations 
(FPA) represent instances where an identity is incorrectly 
assigned to an object. 
  =  √  ∙  (26) 
  =   +   +   (27) 

  =  1  ()∈{} (28) 

 () =   () () +  () +   () (29) 

 
MOTA is a comprehensive metric used to evaluate overall 

tracking performance, taking into account both object 
detection and ID consistency. In MOTA, ground-truth 
detection (gtDet) refers to the number of actual objects. ID 
switches (IDSW) represent the number of times an object's 
ID changes during tracking, indicating errors in 
maintaining consistent ID assignments. 
   = 1 −  +   +   (30) 

 
IDF1 is a metric used to evaluate the consistency of ID 

assignment during the tracking process. It measures how 
effectively the tracking algorithm maintains the correct 
identity of objects over time. In IDF1, ID true positive 
(IDTP) refers to the number of instances in which a correct 
ID is consistently assigned to an object. ID false positive 
(IDFP) represents the number of times an incorrect ID is 
assigned to an object. ID false negative (IDFN) refers to 
instances in which an object is not assigned an ID when it 
should have been. 
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  1 =  2 ×  ×    +  (31) 

  =   +  (32) 

  =   +  (33) 

 

B. OBJECT DETECTION RESULTS 
In this study, cattle detection was performed using the 
YOLOv9-t object detection model. YOLOv9-t was trained 
on 2,056 images with 8,125 labeled instances. To enhance 
the cattle detection performance, five different bounding 
box regression loss functions were applied, and the 
detection performance of each loss function was compared. 
The results of the detection performance comparison for 
each loss function are presented in Table II. 
 

TABLE II 
PERFORMANCE COMPARISON OF YOLOV9-T CATTLE DETECTION USING 

DIFFERENT BOUNDING BOX REGRESSION LOSS FUNCTIONS 
Loss Precision Recall mAP 
GIoU 95.8 87.7 94.1 
DIoU 95.8 90.7 95.3 
CIoU 95.9 89.5 94.9 
SIoU 95.6 89.3 94.7 
WIoU 95.6 88.1 94.6 

 
In the performance evaluation of 511 test images, DIoU 

outperformed other more advanced loss functions, 
including CIoU, which incorporates a penalty term for 
aspect ratio. DIoU achieved an mAP of 95.3%. This result 
is presumed to be due to the relatively small variation in the 
aspect ratio of cattle, compared to other objects. Since 

CIoU penalizes changes in aspect ratio, it may not 
significantly improve detection accuracy in cattle detection, 
where the shape and size of the cattle are relatively uniform. 
In contrast, DIoU focuses on minimizing the Euclidean 
distance between the centers of the predicted and ground 
truth bounding boxes. This approach appears to enhance 
detection performance in cattle detection, where objects 
have similar shapes. 
The effect of modifying the bounding box regression loss for 

cattle detection on the object tracking process was assessed by 
comparing CIoU, the original loss function used in the 
YOLOv9-t model, with DIoU, which demonstrated the 
highest cattle detection performance. This comparison aimed 
to ascertain how the improved detection performance of DIoU 
influenced the overall tracking accuracy and consistency 
during the object tracking phase. 
 

C.  OBJECT TRACKING RESULTS 
In this study, object tracking was performed using 
DeepSORT and StrongSORT algorithms. Performance 
evaluation was conducted on eight sequences, each 
consisting of a 10-second video with 150 frames. The 
tracker was evaluated across four scenarios to validate the 
effectiveness of the proposed method. All performance 
evaluations were conducted using the same dataset across 
all scenarios to ensure consistency and reliability in 
comparative analyses. 
 
Original: Tracking performance without any modifications 
to the tracker. 
Width: The Kalman filter state vector was modified by 
substituting the aspect ratio component of the bounding box 
with the width component. 
Pearson: The feature vector distance metric in the re-
identification algorithm was changed from the original 
cosine distance metric to the Pearson distance metric. 

 
TABLE III 

CATTLE TRACKING PERFORMANCE OF DEEPSORT 
(↑ INDICATES THAT HIGHER VALUES REPRESENT BETTER PERFORMANCE, ↓ INDICATES THAT LOWER VALUES REPRESENT BETTER PERFORMANCE) 

Detector Loss Methods HOTA (↑) MOTA (↑) DetA (↑) AssA (↑) IDSW (↓) IDF1 (↑) 

CIoU 

original 74.54 89.21 73.92 76.61 18 86.29 

width 76.93 89.88 76.15 78.94 13 88.52 

Pearson 76.88 89.24 73.35 81.97 6 91.15 

width + Pearson 78.64 90.29 76.31 82.22 5 91.41 

DIoU 

original 74.77 89.15 74.15 77.13 19 86.92 

width 76.93 89.88 76.15 78.94 13 88.52 

Pearson 78.07 89.11 74.12 83.82 3 93.50 

width + Pearson 78.64 90.29 76.31 82.22 5 91.41 
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Width + Pearson: Both proposed modifications (the 
Kalman filter state vector adjustment and the Pearson 
distance metric) were combined and implemented. 
 

Each of these four scenarios was compared using two 
bounding box regression losses: the default CIoU loss of 
the YOLOv9-t model, and the DIoU loss, which 
demonstrated the highest performance in Section III.B. The 
test results for each scenario and loss function are listed in 
Tables III and IV, respectively. 
 
1) DEEPSORT RESULTS 
In the results presented in Table III for DeepSORT, the 
“width” setting using the CIoU loss demonstrated 
performance improvements across all metrics, including 
HOTA, MOTA, and IDF1. The “width” setting directly 
influences the positioning of the bounding box during the 
prediction process. This adjustment resulted in a 2.23% 
improvement in the DetA metric, and the overall 
performance metric HOTA increased by 2.39%, reaching 
76.93%. 

The application of the “Pearson” setting to the re-
identification algorithm improves the ID continuity 
between frames. Consequently, the value of IDSW was 
significantly reduced to just 6, and AssA and IDF1 
improved by 5.36% and 4.86%, respectively, achieving 
81.97% and 91.45%, respectively. As a result, the HOTA 
levels increased by 2.34%, reaching 76.88%. 

Finally, the “width + Pearson” setting integrated both 
proposed methods, resulting in improvements in both ID 
continuity and bounding box prediction performance. As a 
result, all major metrics demonstrated improvements, with 
HOTA, MOTA, and IDF1 reaching 78.64%, 90.29%, and 
91.41%, respectively. These results underscore the 
effectiveness of the combined approach in improving the 
tracking performance. 

In addition, when DIoU was used as the bounding box 
regression loss for the detector, performance improvements 
were observed in most metrics, with MOTA remaining 
consistent with that in the original setting. Similar to the results 
obtained with CIoU, applying the proposed methods to DIoU 
yielded a comparable pattern of performance improvement. 
The highest scores were recorded across all major metrics, 
reaching 78.64%, 90.29%, and 91.41%, respectively. This 
demonstrates that the proposed modifications effectively 
improve tracking performance, irrespective of the bounding 
box regression loss applied. 
 

2) STRONGSORT RESULTS 
The same scenarios evaluated in the DeepSORT tests were 
also assessed in the StrongSORT tests. As presented in Table 
IV, StrongSORT demonstrated superior baseline performance 
compared with DeepSORT. This improvement can be 
attributed to StrongSORT being an enhanced version of 
DeepSORT, featuring improvements in the re-identification 
algorithm and modifications to the Kalman filter. 
In the StrongSORT results, for the “width” setting with CIoU 

loss, although the MOTA slightly decreased, performance 
improvements were observed in other metrics, including 
HOTA and IDF1. HOTA increased by 0.99%, reaching 
79.52%, whereas IDF1 improved by 1.23%, reaching an 
accuracy of 92.60%. 
For the “Pearson” setting, AssA improved, resulting in a 0.48% 

increase in HOTA to 79.01%. Additionally, the improved ID 
continuity contributed to a 1.41% increase in IDF1, reaching 
a value of 92.78%. 
Lastly, for the “width + Pearson” setting, HOTA experienced 

the largest increase of 1.03%, reaching 79.56%, while IDF1 
improved by 1.23%, reaching 92.60%, despite a slight 
decrease in MOTA. 
When the DIoU loss was applied, the “original” setting 

maintained the same MOTA value while demonstrating 
improvements in other metrics. The results obtained with  

TABLE IV  
CATTLE TRACKING PERFORMANCE OF STRONGSORT 

(↑ INDICATES THAT HIGHER VALUES REPRESENT BETTER PERFORMANCE, ↓ INDICATES THAT LOWER VALUES REPRESENT BETTER PERFORMANCE) 

Detector Loss Methods HOTA (↑) MOTA (↑) DetA (↑) AssA (↑) IDSW (↓) IDF1 (↑) 

CIoU 

original 78.53 89.56 75.02 83.38 8 91.37 

width 79.52 89.00 75.18 85.22 8 92.60 

Pearson 79.01 89.54 74.91 84.49 9 92.78 

width + Pearson 79.56 89.09 75.24 85.22 8 92.60 

DIoU 

original 78.58 89.52 75.38 83.15 5 91.37 

width 78.60 89.52 75.42 83.11 5 91.37 

Pearson 78.59 89.52 75.20 83.36 5 91.76 

width + Pearson 78.62 89.52 75.25 83.33 5 91.76 
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DIoU exhibited a pattern similar to those observed with CIoU. 
In the “width + Pearson” setting with DIoU, HOTA increased 
by 0.04%, reaching 78.62%, MOTA remained consistent at 
89.52%, and IDF1 improved by 0.39%, achieving 91.76%. 
From Tables III and IV, the DIoU loss, which demonstrated 

high performance in YOLOv9-t, also contributed to overall 
improvements in DeepSORT and significantly lower IDSW in 
StrongSORT, thereby proving its effectiveness in cattle 
tracking. Furthermore, the proposed “width” and “Pearson” 
settings enhanced both detection and re-identification 
accuracy in DeepSORT and StrongSORT. The combination 
of these methods in the “width + Pearson” setting resulted in 
substantial improvements in cattle tracking performance for 
both algorithms. These results confirm that the proposed 
method yields significant gains in tracking performance for 
both DeepSORT and StrongSORT. 

Fig. 6 presents the qualitative evaluation results of cattle 
tracking performed using the DeepSORT algorithm without 
any modifications to its parameters and settings, compared 
to the results obtained after applying the proposed method. 
In Fig. 6 (a), the original method exhibits ID switching 

when the object reappears in frame-036. In contrast, the 
proposed method maintains the same ID without any 
switching. Similarly, in Fig. 6 (b), the original method fails 
to detect objects during occlusion, resulting in ID switching, 
whereas the proposed method demonstrates improved 
detection and tracking accuracy under the same conditions. 
These results indicate that the proposed method enhances 
object detection performance and improves ID continuity 
between objects. 

 

IV. CONCLUSIONS 
In this study, cattle tracking was conducted based on the 
results of cattle detection. YOLOv9-t was used as the detector, 
and five different bounding box regression loss functions were 
compared to improve the cattle detection performance. Both 
DeepSORT and StrongSORT algorithms were employed for 
tracking. To optimize the cattle tracking performance of  
DeepSORT and StrongSORT, modifications were made to the 
Kalman filter state vector, and the feature vector distance 
metric was adjusted. 

FIGURE 6. (a) Tracking results using the original and proposed cattle tracking system with DeepSORT for Clip 1. (b) Tracking results using the original 
and proposed cattle tracking system with DeepSORT for Clip 2. 
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In this study, the “width” setting demonstrated significant 
performance improvements, particularly in bounding box 
prediction accuracy, while the “Pearson” setting notably 
enhanced ID continuity. The combination of these two 
approaches in the “width + Pearson” setting leveraged both 
advantages, resulting in a balanced improvement in bounding  
box prediction accuracy and ID consistency, ultimately 

achieving high overall performance. The proposed methods 
yielded substantial performance gains in both DeepSORT and 
StrongSORT, and the results of this study confirmed the 
effectiveness of these methods for cattle tracking. 
The modifications to the DeepSORT and StrongSORT 

frameworks address critical challenges in multi-cattle tracking, 
such as handling size variability, accounting for the unique 
motion dynamics of cattle, and mitigating issues of visual 
similarity among individuals. The modification of the 
detector's bounding box regression loss has improved object 
detection performance, which, in turn, has enhanced overall 
tracking performance. Additionally, the adjustment of the 
Kalman filter's state vector in the tracker stage enables a more 
intuitive modeling of the movement of object bounding boxes, 
further boosting tracking performance. Lastly, the 
modification of the feature vector distance metric in the re-
identification algorithm has improved ID continuity and re-
identification performance, particularly for cattle with similar 
visual features. These advancements significantly enhance the 
applicability of our system to precision farming, where 
tracking accuracy and robustness are crucial for managing 
livestock in real-world environments. 
This study has some limitations owing to the environment 

and dataset used in the experiments. Data were collected from 
only four cattle housed in a research pen under controlled 
conditions. Further research is necessary to evaluate the 
performance of the proposed cattle tracking system in diverse 
farm environments, particularly in larger pens with more cattle. 
Future studies should collect additional data from various farm 
environments to improve the generalization performance of 
the system. 
Additionally, although this study improved re-identification 

performance to mitigate occlusion issues, relying on data from 
a single camera angle did not completely eliminate occlusions. 
Future research will implement a multi-camera system to 
associate cattle IDs detected from multiple angles, further 
enhancing tracking accuracy. 
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